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ABSTRACT 

Background and Objective: Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells 

acquire a mesenchymal-like phenotype and this may be induced by exposure to Gram-negative bacteria. 

It has been proposed that EMT is responsible for compromising epithelial barrier function in the 

pathogenesis of several diseases. However, the possible role of EMT in the pathogenesis of periodontitis 

has not previously been investigated. The aim of this study therefore was to investigate whether Gram-

negative, anaerobic periodontal pathogens could trigger EMT in primary oral keratinocytes in vitro. 

Methods: Primary oral keratinocytes were harvested from labial mandibular mucosa of Wistar Han rats. 

Cells were exposed to heat-killed Fusobacterium nucleatum, Porphyromonas gingivalis (100 

bacteria/epithelial cell), and 20μg/ml E. coli lipopolysaccharide (LPS) over 8-days. Exposure to bacteria 

did not significantly change epithelial cell number or vitality in comparisons with unstimulated controls 

at the majority time-points examined. Gene expression of EMT-markers were determined  by semi-

quantitative reverse transcriptase-polymerase chain reaction (sqRT-PCR) at 1, 5, and 8 days following 

stimulation. The expression of EMT-markers was also assessed by immunofluorescence (E-cadherin and 

vimentin) and using immunocytochemistry to determine Snail activation. The loss of epithelial 

monolayer coherence, in response to bacterial challenge, was determined by measuring trans-epithelial 

electrical resistance. The induction of a migratory-phenotype was investigated using scratch-wound and 

transwell-migration assays. 

Results: Exposure of primary epithelial cell cultures to periodontal pathogens was associated with a 

significant decrease in transcription (~3 fold) of E-cadherin and the upregulation of N-cadherin, 

vimentin, Snail, matrix metalloproteinase-2 (MMP2) (~3-5 fold) and Toll-like receptor 4 (TLR-4). Bacterial 

stimulation (for 8-days) also resulted in an increased percentage of vimentin-positive cells (20% for P. 

gingivalis and 30% F. nucleatum stimulation, compared with controls). Furthermore, periodontal 

pathogens significantly increased the activation of Snail (60%) and cultures exhibited a decrease in 

electrical impedance (P<0.001) in comparison with unexposed controls. The migratory ability of the cells 

increased significantly in response to bacterial stimulation as shown by both the number of migrated 

cells and scratch-wound closure rates.   

Conclusion: Prolonged exposure of primary rat oral keratinocyte cultures to periodontal pathogens 

generated EMT-like features which introduces the possibility that this process may be involved in loss of 

epithelial integrity during periodontitis.   
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INTRODUCTION 

Periodontitis is a polymicrobial, inflammatory condition affecting tooth-supporting tissues, characterised 

by a progressive loss of epithelial attachment and resorption of alveolar bone (1). If not correctly 

managed, it eventually leads to tooth loss (2). Periodontitis is associated with a wide diversity of 

bacterial species in the oral environment; however, a small group of bacteria has been shown to be 

strongly associated with disease progression and tissue destruction, particularly Fusobacterium 

nucleatum, Porphyromonas gingivalis, Bacteroides forsythus and Aggregatibacter 

actinomycetemcomitans (3). These bacteria possess potent virulence factors including 

lipopolysaccharide (LPS) and bacterial DNA, which can induce an intense immune response stimulating 

the release of range of pro-inflammatory cytokines and metalloproteinase (MMP) enzymes (4, 5, 6). 

Sulcular and junctional epithelium are the first defense against dental biofilms, acting both as a 

mechanical barrier and by secreting inflammatory cytokines and enzymes (7) which can orchestrate the 

local host immune response. Loss of epithelial integrity has been associated with invasion of bacteria 

into underlying connective tissues potentially increasing the inflammatory response and the subsequent 

tissue damage, which is characteristic of periodontal disease (8). 

Epithelial-mesenchymal transition (EMT) has been proposed as a reversible process that shifts the cell 

phenotype from epithelial to mesenchymal-like (8). This is mainly characterised by the dissociation of 

cellular adhesion junctions, upregulation of mesenchymal markers, the downregulation of epithelial 

markers and an increased migratory ability of the cells (9, 10).  Persistent inflammation and cytokines 

elicited by bacteria have been reported among potential predisposing factors for EMT-induction 

elsewhere in the body, for example in the lungs, liver and intestine (11-13). Furthermore, inflammatory 

signaling induced by microbial challenge, reportedly shares common pathways with EMT (14). Indeed 

gingival samples collected from patients with chronic periodontitis showed significant downregulation of 

E-cadherin compared with healthy controls (15). This finding was supported by another study showing 

that E-cadherin downregulation occurred following co-culturing of human gingival epithelium with P. 

gingivalis-LPS (16). Furthermore, prolonged application of LPS to epithelium of gingival sulcus of rats 

was shown to result in loss of cellular adhesion (17). These cellular changes are considered hallmarks of 

EMT (9, 18) and are regulated by the transcriptional factor Snail-1 (19, 20). Interestingly, overexpression 

of Snail-1 is known to be associated with vimentin upregulation (21, 22) and evidence from previous 

studies has indicated that Gram-negative bacteria are a potent Snail-stimulus through activation of LPS-

TLR4 signaling (23, 24).  
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The potential role of EMT as a mechanism involved in compromising epithelial barrier function in 

periodontal diseases has not yet been fully investigated. While the influence of a plaque biofilm on the 

host response is well established, the cellular level mechanisms involved remain to be fully 

characterised. Indeed, it is possible that EMT is involved in loss of pocket epithelium integrity. The aim of 

this study therefore was to investigate whether EMT was induced in primary oral keratinocytes, 

obtained from rats, through exposure to periodontal pathogens in an in vitro model of periodontitis. 

MATERIALS AND METHODS 

Bacterial cultivation and heat-killing 

Lyophilised stocks of F. nucleatum (ATCC 10953) and P. gingivalis (ATCC 33277) purchased from the 

American Type Culture Collection (ATCC, Rockville,MD) were reconstituted then plated onto a trypticase 

soy agar (with 5% sheep blood) and incubated anaerobically at 37°C in an atmosphere of 80% nitrogen, 

10% carbon dioxide, 10% hydrogen for 48hr. Pure cultures, indicated by colony morphology, Gram stain 

and biochemical test, were inoculated into 10ml trypticase soy broth and incubated at 37°C in anaerobic 

conditions for 24hr. Post-inoculation, the bacterial suspension was pelleted, washed with sterile PBS and 

then heat-inactivated at 100°C for 10min in an autoclave (Prestige Medical, UK). Bacteria concentration 

of the suspension was determined by measuring the optical density (OD) using a spectrophotometer 

(Jenway, Dunmow, UK) at 600nm. A final suspension containing 4x108 bacteria/ml was produced using a 

standard curve (OD vs. bacterial count). Fifty µl of the suspension were re-plated on blood agar and 

cultured anaerobically for 48hr to confirm the death of the bacteria.  

For each experiment a ratio of 100 bacteria per epithelial cell (25) in an attempt to mimic the cell-

bacteria ratio reported in periodontal pockets. Twenty μg/mL E. coli LPS (Sigma, UK), a well-

characterised EMT inducer, was used as a positive control (26).   

Primary oral keratinocytes isolation and culturing on feeder layer 

Gingival samples were excised from mandibular labial gingiva of 6-week old euthanized male Wistar Han 

rats (Charles River Laboratory, UK). Keratinocyte culture medium (KCM) was prepared, consisting of 

20ml of Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, UK), supplemented with 2.5mM L-

glutamine, 10% foetal calf serum (FCS) (Sigma, UK), 10μl/ml of penicillin–streptomycin, 2x10-2μl/ml 

cholera toxin, 5x10-2μl/ml of epidermal growth factor (ThermoFisher, UK) and 5x10-2μl/ml Amphotericin-

B (Sigma, UK). Following excision, samples were incubated overnight in tubes containing 0.25% trypsin-

EDTA at 4°C. The following day, the sheet of epithelium was carefully peeled away from connective 
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tissue using forceps. Then the epithelial sheet was dissected into smaller pieces (approximately 2x2mm) 

and seeded into T75 flasks containing Mitomycin-C-inhibited 3T3 fibroblasts and KCM, and incubated at 

37°C in 5% CO2. Keratinocyte growth was identified by the formation of round-tightly adherent 

epithelioid colonies. Once cultures reached ~70-80% confluence, the cells were sub-cultured up to 5 

times and this was the maximum passage number used before they were discarded.  

For each experiment, epithelial cells cultures were fed every two days. Experimental groups were 

repeatedly stimulated with bacteria every time media were changed, taking in consideration the 

increasing number of epithelial cells. Further, bacteria number was adjusted to keep the ratio between 

epithelial cells and bacteria constant (100 bacteria per cell) throughout experiment period.  

Cell count and viability assay 

The number and viability of oral keratinocytes were assessed using Trypan blue (Sigma, UK) and a 

haemocytometer (Improved Neubauer, Hawksley, UK). Viable and non-viable cells were counted 

separately to determine the percent of viable cells and the total cell number in each sample using an 

inverted microscope (Primovert, Zeiss, Germany) with a 10x objective. The procedure was repeated in 

triplicate and mean readings used to calculate total cell count and percentage viability. 

Semi-quantitative reverse transcriptase-polymerase chain reaction (sq-RT-PCR) 

Total RNA was extracted from stimulated and unstimulated cultures, after 1, 5, and 8 days, using RT lysis 

buffer (Qiagen, UK). Single stranded cDNA was synthesised from 1μg of RNA using the Tetro kit (Bioline, 

UK). cDNA templates were added to RedTaq (Sigma, UK) mastermix then amplified in a thermal cycler 

(Mastercycler, Eppendorf, Germany) using selected primers (Suppl. Table 1) for between 18-40 cycles. 

Each cycle consisted of denaturation, 5min at 94°C, followed by an amplification cycle, 94°C for 20s, 

then 60–61°C for 20s and 72°C for 20s ending with a 10min extension at 72°C. Amplification products 

were visualised following separation in 1.5% agarose gels supplemented with ethidium bromide 

(10mg/ml) (Sigma, UK). Images were captured using GeneSnap software (Syngene, USA) and analysed 

using the GeneTools software (Syngene, USA). Relative levels of PCR products were calculated and 

normalised against the housekeeping gene GAPDH. All analyses were performed in duplicate. 

Immunofluorescence (IF) and immunocytochemistry (ICC) technique 

Keratinocytes were cultured on sterilised glass coverslips (22x22mm) and stimulated with bacteria as 

described previously for 8 days. Cultures were prepared for IF and ICC by fixing in 4% paraformaldehyde 
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for 15min. Cells were permeabilised with 0.25% Triton X-100 in PBS (10min). Non-specific binding of 

antibodies was blocked by incubating samples for 30min in 5% bovine serum albumin (BSA) in 

phosphate-buffered saline (PBS). Incubation with primary antibodies (1:100) for Anti-E-cadherin (rabbit 

polyclonal IgG), Anti-vimentin (mouse monoclonal IgG) (Santa Cruz, USA), and Anti-Snail (rabbit 

polyclonal IgG) (Abcam, UK) was undertaken overnight at 4°C. For IF, secondary antibodies were applied 

for 1hr at room temperature. The antibodies were FITC-conjugated (bovine anti-rabbit) and TRITC-

conjugated (goat anti-mouse) for immunofluorescence (Santa Cruz Biotechnology (USA)). Cell nuclei 

were counterstained with 4',6-diamidino-2-phenylindole (DAPI) (Sigma, UK) and images captured using a 

confocal microscope (LSM 700, Zeiss, Germany). The number of vimentin-positive cells were counted in 

5 random fields and expressed as percentage of the total number of cells (27). 

For Snail activation, biotin-conjugated (mouse anti-rabbit) (Abcam, UK) was used and counterstained 

with Mayer's haematoxylin. Slides were viewed (10x objective) using a bright field microscope (Olympus 

BX50, Japan). A total of 4 random fields from each sample were used to calculate the percent of Snail-

positive cells in the fields examined. Both assays were performed in triplicate.  

Transepithelial electrical resistance (TEER) 

This assay was used to examine integrity of epithelial monolayers in vitro by measuring their resistance 

to the passage of an electric current. Tissue culture inserts with 0.4μm pore membrane (Greiner Bio-

one, Germany) mounted in 24-well plates were seeded with keratinocytes (7x104) in the upper chamber 

(28). Cultures were exposed separately to media only (unstimulated control), or the bacterial 

components described previously. Measurement of the transepithelial electrical resistance (TEER) was 

initiated at a point where stable recording was obtained (after 3-days) from the culture using an AC-

based ohmmeter (EVOM2, USA). Experiments were performed in triplicate. 

Scratch wound assay 

Primary oral keratinocytes were grown to confluency in 6-well plates and either treated with media only 

or exposed to bacterial components over 8 days. The epithelial cultures were “scratched” using a sterile 

10μm pipette tip and rinsed with phosphate buffered saline (PBS) to remove debris prior to media 

replenishment. Only samples with the same initial gap width (about 500µm) were selected for this 

experiment to avoid discrepancy in the closure rate. Images were captured immediately after scratching 

(time 0hr), then at 12, 24, and 36hr using phase contrast microscopy (Primo Vert, Zeiss, Germany). 

Images were superimposed by grid and the distance between the wound margins at ten points was 
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measured and analysed using Java-based ImageJ (29). Three images were captured at each time-point 

and data were averaged. Experiments were repeated in triplicate  

Transwell migration assay 

Cells were either treated with media only or heat-inactivated bacteria or 20μg/ml E. coli LPS for 8 days. 

Then the cells were passaged and seeded (1x105 cells) in the upper compartment of 8μm-pore tissue 

culture insert (Greiner Bio-One, Germany), containing 200μl FCS-free media, assembled in the 24-well 

plate. Media supplemented with FCS (700μl) were added to the lower compartment of each well. Cells 

were incubated at 37°C and 5% CO2 for 12hr. Non-migrated cells in the upper compartment of the 

membrane were removed using a cotton swab; cells on the lower surface of the membrane were fixed 

with 4% paraformaldehyde for 15min followed by Giemsa staining (Sigma, UK) (30). Cell counts were 

performed on 4 random fields obtained using phase contrast microscopy. All experiments were 

performed in triplicate.    

Statistical analysis 

Normal distribution of data was first checked using Statistical Package for the Social Sciences (SPSS) 

(version 21, IBM, USA) to decide which statistical tests to be applied for analysis. Results were expressed 

as mean ± standard deviation. Analyses were performed using one-way ANOVA followed by Tukey’s 

post-hoc test between and within multiple groups to compare differences. Statistically significant results 

were considered for P values < 0.05.   

RESULTS 

Effect of periodontal pathogens on oral keratinocyte growth rate and viability 

During the experimental period of 10 days, the number (Fig.1A) and viability (Fig.1B) of oral 

keratinocytes cells exposed to heat-killed F. nucleatum, P. gingivalis, and 20μg/ml E. coli LPS, did not 

show any significant differences at most of time points when compared with cultures in media only. 

However, a significant decrease (P<0.05) in percentage of viable cells was observed at days 7 and 8 only 

in association with exposure to F. nucleatum and P. gingivalis, respectively.  

Expression of EMT-related markers in oral keratinocyte cultures stimulated with bacterial components 

Exposure of oral keratinocytes to heat-killed periodontal pathogens and E. coli LPS for 8 days resulted in 

altered expression of key molecules, consistent with EMT-related changes. PCR data demonstrated that 
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the transcription of E-cadherin in stimulated cultures was significantly downregulated (P<0.001) in 

comparison with controls. This was associated with significant upregulation (P<0.001) of mesenchymal 

markers (vimentin, N-cadherin, Snail-1, and MMP2). The highest upregulation of mesenchymal 

associated markers at day 8 was associated with cells stimulated with F. nucleatum. In addition, the level 

of TLR-4 expression was also significantly (P<0.001) increased in stimulated cultures relative to 

unstimulated controls (Fig.2A, B).   

Consistent with these findings, the analysis of immunofluorescence images (Fig.3A) showed an increase 

in the percentage of epithelial cells staining positively for vimentin in response to bacterial exposure 

(P<0.05) after 8-days culture (Fig.3B). This was also associated with the decrease of E-cadherin 

expression on the cell membrane of stimulated cultures compared with controls. In addition, vimentin 

and E-cadherin were co-expressed in some fibroblast-like cells (Fig.3A).  

Integrity of oral epithelial cultures stimulated with bacteria 

The analysis of Snail ICC images showed that the number of Snail-positive epithelial cells treated with 

bacterial components was higher compared with unstimulated controls (Fig.4A). Snail activation during 

EMT is considered to be a major event responsible for suppressing E-cadherin transcription with 

subsequent loss of cellular adhesion. ICC images (Fig.4B) showed increased nuclear and/or cytoplasmic 

activity of Snail when compared with unstimulated cultures. Stimulated cultures, at day 8, (Fig.4C) had 

increased Snail activity associated with dispersion of epithelial cells. In contrast, unstimulated control 

cultures retained their integrity and cells were tightly packed in a typical cobblestone pattern. Further 

confirmation of potential loss of epithelial barrier function was obtained from the TEER experiments. 

Resistance of epithelial monolayers to the passage of an electric current was significantly decreased 

(P<0.05) in cultures exposed to bacteria compared with unstimulated controls (Fig.4D). A decrease in 

electric impedance began at day 5, following exposure to heat-killed F. nucleatum, P. gingivalis and E. 

coli LPS, and continued until day 7 which suggested that epithelial integrity was compromised by 

exposure to these bacteria or E. coli LPS. 

Effect of bacterial components on migratory ability of oral keratinocytes 

EMT is typically accompanied by an increased migratory activity of the cells. This feature was assessed in 

oral keratinocytes, stimulated with bacteria for 8 days, using a transwell migration assay which showed 

that the migration rate of epithelial cells was significantly increased (P<0.001) (Fig.5A). The migratory 

ability was further investigated using the scratch wound assay on confluent monolayers also treated 
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with heat-killed bacteria and E. coli LPS. For each group, scratch wounds were  performed multiple times 

in order to generate sufficient samples with the same initial gap width (~450μm) (Fig.5B). This avoided 

differences in closure rate due to variations of wound widths. Measurement, at 12 and 24hr, did not 

show any significant differences between stimulated and control groups in the rate of gap closure. 

However, after 36hr, stimulated cultures showed a greater rate of gap closure (P<0.05) in comparison 

with unstimulated controls (Fig. 5C)   

DISCUSSION 

EMT is a process that has been proposed to be involved (to varying degrees) in embryogenesis, cancer 

metastasis, and impaired healing of injured epithelium (9). The EMT process comprises a sequence of 

cellular events; starting with loss of apico-basal polarity, architectural cytoskeletal changes, loss of cell-

cell and cell-extracellular matrix attachment, simultaneous downregulation of epithelial markers with 

upregulation of mesenchymal markers and finally acquisition of a migratory-phenotype (18). In the 

current study, we investigated the possibility of periodontal pathogens being able to trigger such EMT in 

primary oral epithelial cells. The study hypothesis was based on the presence of potential EMT-

predisposing factors such as Gram-negative bacteria and inflammatory cytokines in the pocket 

microenvironment (14, 31, 32). This may interfere with the integrity of the pocket lining that represents 

an impenetrable physical barrier against bacteria in the dental biofilm, hence participating in disease 

progression.  

In the current study, whole dead periodontal bacteria (F. nucleatum and P. gingivalis) were used to 

stimulate epithelial cells. The rationale for using dead bacteria was that the established periodontal 

pocket contains a relatively static biofilm with a number of dead bacteria. In vitro viable bacteria would 

multiply in the cell growth media over the experimental course resulting in changes in the bacterial host 

cell ratio, infection of the cell monolayer and production of metabolic byproducts that would 

compromise cell viability. It is well reported in the literature that whole dead bacteria are able to 

stimulate an inflammatory response in gingival epithelial cells (7). . Whole  dead bacteria contains 

several important virulence factors such as LPS, known to be released after death of bacteria, and 

bacterial DNA. Further, LPS is a well-characterised component of Gram-negative bacteria responsible for 

inducing an intense inflammatory response during periodontitis (33). Before investigating EMT-related 

features, a preliminary experiment was carried out on our model to investigate any harmful effect of 

bacterial components used on the oral keratinocytes. Data indicated that the concentration of bacterial 

stimuli used had limited inhibitory or toxic effect on keratinocyte cultures, which may interfere with the 
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results of this study. However, a transient decrease in viability was noted at day 7 (FN) and day 8 (PG). 

Cell viability was restored on days 9 & 10.. The precise reason for this temporary fluctuation in epithelial 

cell viability at these time points is not clear; however, this could be due to exhaustion of media 

nutrients prior to media change on day 8 which resulted in restoration of % cell viability. Another 

possible explanation is the increases in bacteria utilized during the experiment (increased numbers of 

bacteria introduced at each media change to reflect the increasing cell numbers) which could have 

compromised viability due to toxic effects of bacterial components, bacteria could have developed some 

level of tolerance resulting in improvements in cell viability.. Stimulation of primary oral keratinocytes 

with periodontal bacteria resulted in upregulation of TLR-4 expression that is responsible for recognition 

of LPS. Similar results have been reported in a previous study, which showed upregulation of TLR-4 in 

oral keratinocytes cultures following 24hr incubation with heat-inactivated P. gingivalis and F. 

nucleatum (26). TLR-4 acts as transducer for LPS-associated signaling, and activation of this pathway 

results in increased production of inflammatory cytokines (34), which are potentially involved in EMT-

induction. This notion is supported by previous studies, which indicated that LPS is a potent EMT 

stimulus (35, 36). In addition, treatment of oral gingival epithelium with E. coli-LPS resulted in 

downregulation of E-cadherin expression (16). For this reason, E. coli-LPS was used as a positive control 

in our EMT studies. Various types of cellular junctional complexes including tight junctions, 

desmosomes, and adherence junctions (AJ) maintain the coherence of the epithelium (37). Calcium-

dependent AJ is the most abundant epithelial junctions formed mainly by smaller structural units, such 

as E-cadherin, which also plays a crucial role in the formation of other cellular junctions (38, 39). 

Furthermore, E-cadherin complexes with the cytokeratin structural proteins of the epithelial cell 

cytoskeleton, thus forming a continuous network between the epithelial cells that add further support 

to the cellular attachment and hence generates a relatively strong physical barrier (40). Therefore, 

downregulation of E-cadherin expression is considered a major driver of EMT induction in vivo and in 

vitro (9). Results presented here demonstrated decreased E-cadherin transcription in response to 

stimulation with periodontal pathogens. This finding was in agreement with results from previous 

studies which indicated downregulation of E-cadherin expression in the inflamed periodontal tissue in 

vivo (16, 41) and in vitro (42, 43), and this was mostly attributed to Gram-negative anaerobic bacteria 

such as P. gingivalis. Additionally, permeability of the epithelial monolayer, in tissue culture inserts, 

increased in association with downregulation of E-cadherin expression in response to P. gingivalis-LPS 

exposure, which suggested loss of E-cadherin-mediated cellular junction (16). These data are also 

consistent with our findings that showed decrease in resistance of stimulated oral epithelial monolayers 
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to the passage of an electric current. Further support for this was obtained from the ICC images, which 

showed dispersion of stimulated epithelial cells in comparison with unstimulated cultures that 

maintained a classical cobblestone appearance. The increased percentage of cells with positive Snail-1 

nuclear activity, as determined by ICC, was observed following stimulation of primary keratinocytes 

cultures with periodontal pathogens. Notably this transcriptional factor plays a pivotal role in EMT (19). 

The reason for increased nuclear activity of Snail-1 was not known but was likely due to signaling directly 

related to TLR-4 activation or in response to alternative signaling pathways triggered by inflammatory 

cytokines. Nevertheless, increased Snail-1 expression is a known marker of EMT-induction (19). Notably 

the increased Snail-1 activity could provide a possible mechanism for the downregulation of E-cadherin, 

which is in agreement with the fact that Snail-1 binds to the motif sites of E-cadherin and consequently 

decreases the expression of this adhesive protein. This molecular change will result in the subsequent 

disruption of cellular attachment essential for EMT programming (19, 20).    

According to the definition of EMT, one of the major criteria used to identify this process is cadherin 

switching from an epithelial to a mesenchymal-like phenotype (9, 10), which was indicated by increased 

expression of mesenchymal N-cadherin with simultaneous downregulation of epithelial E-cadherin. 

Furthermore, upregulation of MMP2 was also noted during the experimental period. This enzyme is 

highly expressed during periodontitis and is involved in the breakdown of the basement membrane and 

local tissue destruction (5, 6). This is also regarded as an essential step required by EMT to facilitate 

migration of cells to the underlying connective tissue (9, 10). In addition, the acquisition of a migratory-

phenotype, usually observed at the later stages of the EMT process, is reported in several studies and is 

regarded as a key indicator of EMT-associated cell plasticity (9). Notably the treatment of epithelial 

cultures with periodontal pathogens resulted in an increased rate of closure of scratch wounds inflicted 

on confluent epithelial monolayers. This was further confirmed by the transwell migration assay, which 

showed increased numbers of migrated cells through the membrane after bacterial stimulation. The 

increased cell mobility was possibly due to a decrease in cohesiveness of epithelial cells as a 

consequence of downregulation of E-cadherin associated with upregulation of vimentin expression, 

which is involved in formation, and maturation of cellular protrusion (38). This explanation is supported 

by findings of previous studies which indicated that increased locomotion of epithelial cells was 

associated with overexpression of vimentin and decreased E-cadherin expression (21, 22).  

Previous studies were limited in investigating the effect of periodontal pathogens or their virulence 

factors on E-cadherin expression. Our study further explored other aspects of EMT in a periodontitis 
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model that further highlighted the role of Gram-negative bacteria in compromising the integrity of the 

epithelial barrier potentially by altering epithelial-phenotype. Our study has now indicated molecular, 

functional, and structural changes, representative of EMT, in primary oral keratinocytes in response to 

Gram-negative periodontal pathogens. These findings may implicate EMT in the pathogenesis of 

periodontitis. Further work is needed however to investigate the role of other periodontal pathogens, 

particularly ones form the red complex group, in inducing EMT. In addition, tissue samples collected 

from patients with varying severities of periodontitis are required to demonstrate the clinical 

importance of EMT in periodontitis. Furthermore, this phenotypic shifting could also occur due to 

shared risk factors for both EMT and periodontitis that include smoking, micronutrient availability, and a 

genetically determined aberrant immune response. Ultimately these data could explain the 

predisposition of certain individuals to EMT and hence their susceptibility to progressive periodontal 

disease.  
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