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Observable Environments

Ferdian Jovan Jeremy Wyatt Nick Hawes
University of Birmingham University of Birmingham University of Oxford

Abstract

When sensors that count events are unre-
liable, the data sets that result cannot be
trusted. We address this common problem
by developing practical Bayesian estimators
for a partially observable Poisson process
(POPP). Unlike Bayesian estimation for a
fully observable Poisson process (FOPP) this
is non-trivial, since there is no conjugate den-
sity for a POPP and the posterior has a num-
ber of elements that grow exponentially in
the number of observed intervals. We present
two tractable approximations, which we com-
bine in a switching filter. This switching filter
enables efficient and accurate estimation of
the posterior. We perform a detailed empir-
ical analysis, using both simulated and real-
world data.

1 Introduction

There is an increasing trend toward the creation of
large data sets of counts of events, often gathered using
automatic event detection techniques. Application do-
mains include detection and counting of people, vehi-
cles, cells, pixel level events in cameras, minor earth-
quakes and geological events, astronomical bodies, etc.
Where these counts are made using sensor data, both
humans and all the currently available event count-
ing algorithms have some level of unreliability. This
means that large data-sets typically contain systematic
errors that lead to bias in the statistical estimates pro-
duced by the event detection and counting processes.
In this paper, we address this problem by formulating
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a partially observable Poisson process (POPP)1. We
contrast this with standard fully observable Poisson
process (FOPP).

We make several technical contributions. First, we ad-
dress the problem of how to efficiently correct counts
made by either single or multiple unreliable counting
devices. The main difficulty in inference arises from
the fact that a POPP has no conjugate density. We
address this by utilising two approximations. One (the
Gamma filter) is fast, but prone to drift from the true
posterior in certain circumstances. The second (the
histogram filter) is slower but avoids drift. We also
combine them in a switching filter that avoids drift
while being reasonably quick to compute. We demon-
strate the properties of the filters by numerical sim-
ulations. Finally, we show the benefit of the POPP
model and the switching filter on a person counting
task performed by a mobile robot.

2 Preliminaries - the FOPP process

A fully observable Poisson process is a counting pro-
cess N(t1, t2) where a counter tells, without error, the
number of events that occurred during a specified in-
terval (t1, t2). N(t1, t2) = xi states that in the i-th ob-
servation of interval (t1, t2), there are xi events. The
number of events N(t1, t2) in a finite interval of length
t = t2 − t1 obeys the Poisson distribution,

Poi(N(t1, t2) = x | λ) =
e−λλx

x!

where λ represents the arrival rate, mean count, in-
tensity, or expected number of events in a fixed inter-
val (t1, t2). Bayesian estimation for fully observable
Poisson processes is straightforward. The conjugate
density to the Poisson is a Gamma density

Gam(λ | α, β) =
βα

Γ(α)
λα−1e−βλ

where α, β are the shape and the rate parameters. An
interpretation of these is that we have made β samples

1We note that similar terms have been used to describe
other stochastic processes.
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x′1, . . . , x
′
β from a Poisson with cumulative count α =

x′1 + . . .+ x′β . The posterior is thus also Gamma:

P (λ | x1, . . . , xn) ∝ Poi(x1, . . . , xn | λ) Gam(λ | α, β)

= Gam

(
λ |

n∑
i=1

xi + α, n+ β

)

3 Related Work

There are many variations of the basic Poisson process.
The Markov modulated Poisson process (MMPP), for
example, is a Poisson process in which fully observ-
able counts are conditioned on a latent state which
evolves according to a Markov chain (Ludkovski &
Sezer, 2012; Ihler, Hutchins, & Smyth, 2006; Scott,
1998; Meier-Hellstern, 1987; Rydén, 1996; Prabhu &
Zhu, 1989). Ludkovski and Sezer (2012) employed
an MMPP in a reward-maximisation decision-making
problem. An extended version of the MMPP includes
a non-homogeneous Poisson process which models the
posterior probabilities of Poisson arrival rates as a
function of time (Ihler et al., 2006; Scott & Smyth,
2003; Ihler, Hutchins, & Smyth, 2007). Hutchins, Ih-
ler, and Smyth (2007) extended the work of (Ihler et
al., 2006) from single to multiple counters, and ap-
plied it to estimating the occupancy level of a building.
This extension also modelled unreliable counters for
the first time. A similar example to MMPP is a non-
homogeneous Poisson process where the λ parameter is
modulated by Weibull type distribution which governs
how the λ should increase (or decrease) over time by
small amount. This shows its usefulness in predicting
noise exceedances, ozone exceedances, and software re-
liability issues (Guarnaccia, Quartieri, Barrios, & Ro-
drigues, 2014; Achcar, Barrios, & Rodrigues, 2012;
Achcar, 2001). Other work uses non-homogeneous
Poisson process (NHPP) to predict re-occurring pat-
terns of human activity level at particular times and
places (Jovan, Wyatt, Hawes, & Krajńık, 2016; Hawes
et al., 2017).

Our work is hence most related to (Hutchins et al.,
2007). They used multiple unreliable counters, each
at a different exit or entrance. Thus, each sensor is
associated with a different Poisson process. For each
entrance or exit they used a MMNHPP to estimate
the arrival rate and a noise model to capture under-
and over-counting. Their work differs from ours in that
they are interested in estimation of a single latent vari-
able (occupancy) that influences arrivals at multiple
exits and entrances. They employed an MCMC esti-
mator. Here, we consider multiple unreliable sensors
applied to estimating the parameter of a single Pois-
son process. We present three precise and tractable
Bayesian estimators for this problem.

Figure 1: Structure of the POPP.

4 The POPP Process

In the FOPP, the counter is fully reliable. We now
remove this assumption. Counters may now either
under-count or over-count. We distinguish the true
count (or simply count) and the sensed count. The
true count xi is the number of events that actually
occurred in the i-th sample from the interval (t1, t2).
We suppose that we have several sensors, and thus the
sensed count sji is the count given by sensor j in the
i-th sample from the interval (t1, t2).

We obtain a graphical model with the structure shown
in Figure 1. There are m sensors polled every sample i,
−→si = (s1i, . . . , smi). The true count xi is a latent vari-
able with posterior inferred from −→si , and the posterior
of λ is inferred from the posterior of xi after multiple
samples i = 1 . . . n.

One way to estimate the parameter λ is by Bayesian
averaging the posterior P (λ | xi) over all possible
count values xi with mixing proportions equal to the
posterior over xi. The posterior of λ, given n samples
−→s = (−→s1 . . .−→sn), each consisting of m sensors, is:

P (λ | −→s )=

∞∑
x1=0

. . .

∞∑
xn=0

P (λ | −→x ) P (−→x | −→s ) (1)

where

P (λ | −→x )=Gam

(
λ |

n∑
i=1

xi + α, n+ β

)

with −→x = (x1, . . . , xn) for 1 ≤ i ≤ n. This shows the
difficulty of belief state estimation in a POPP. There
is no conjugate density and the resulting posterior is
a sum of countably infinite sums. Even if we place an
upper bound xmax on the value of each xi the num-
ber of elements in the curtailed approximate posterior
grows by a factor xmax with every sample. Having
made this observation, we will now show how to ob-
tain tractable approximations under conditional inde-
pendence assumptions.

We now factor P (−→x | −→s ). First, we make the as-
sumption that the vector of sensed counts for sample
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i, −→si , is conditionally independent of all the other sen-
sor vectors given xi. Then we assume that each sensor
is conditionally independent of the other sensors given
xi. Consequently, the probability that the vector of
true counts is −→x , given n samples of the vector of m
sensed counts −→s1 , . . . ,−→sn, is

P (−→x | −→s1 , . . . ,−→sn)∝ P (−→s1 , . . . ,−→sn | −→x ) P (−→x )

∝
n∏
i=1

P (−→si | xi) P (xi)

∝
n∏
i=1

m∏
j=1

P (sji | xi) P (xi | −−→x−1)

(2)
where −−→x−1 = xi−1, . . . , x1.

To complete Eqn. 2, we define P (sji | xi) and P (xi |−−→x−1). P (xi | −−→x−1) can be considered as the uncon-
ditional distribution of xi informed by the previous
counts xi−1, . . . , x1. It is obtained by imposing a
Gamma prior Gam(λ | α, β) on the count parameter λ
of the Poisson distribution Poi(xi | λ) and integrating
out λ. It is, in fact, the posterior predictive distribu-
tion of a Poisson-Gamma mixture, and takes the form
of a negative binomial distribution.

P (xi | −−→x−1)=

∫ ∞
λ=0

P (xi | λ) P (λ | −−→x−1) dλ

=

∫ ∞
λ=0

Poi(xi | λ) Gam(λ | α, β) dλ

=

∫ ∞
λ=0

e−λλxi

xi!

βα

Γ(α)
λα−1e−βλ

=
βα

xi! Γ(α)

Γ(xi + α)

(β + 1)xi+α

=

(
xi + α− 1

xi

)(
β

β + 1

)α(
1

β + 1

)xi

=NB

(
xi | α,

β

β + 1

)
(3)

To define an arbitrarily close approximation to the
probability P (sji | xi), we first assume there exists
a small enough finite subinterval of length δ for which
the probability of more than one event occurring is less
than some small value ε. With this assumption, the
whole interval (t1, t2) can be divided into l subinter-
vals I1, . . . , Il of equal size, such that l > λ. Conse-
quently, the whole interval (t1, t2) = I1, . . . , Il is a se-
ries of Bernoulli trials, where the kth trial corresponds
to whether (1) an event ek happens with probability
λ/l and (2) a sensor j captures the event ek as dk at
the subinterval Ik.

Given the argument above, the probability of sji de-
tections given xi arrivals is the aggregate of the true
positives tpji in xi sub-intervals, and the false positives

fpji in l−xi sub-intervals. The probability of a TP for
sensor j in a sub-interval is tprj = Pj(d = 1 | e = 1),
and the probability of an FP is fprj = Pj(d = 1 | e =
0). Thus P (sji | xi) is defined as a sum of two bino-
mial distributions B(r | n, π), where the aggregate is
constrained to be sji:

P (sji | xi)=

xi∑
tpji=0

B
(
tpji | xi, tprj

)
B
(
fpji | ∆xi, fprj

)
(4)

where sji = tpji + fpji, tprj = Pj(d = 1 | e = 1),
fprj = Pj(d = 1 | e = 0), and ∆xi = (l − xi).

Eqn. 1 now makes the posterior of λ depend not only
on the nature of the problem, and the settings of
hyper-parameters α and β but also on the reliability of
each individual sensor. However, as we noted above, it
also requires an exponentially rising computation time
in the number of samples n.

To provide an efficient estimator we propose three fil-
ters, each of which offers an approximation to the pos-
terior. First, we can often approximate the posterior
Eqn. 1 with a single Gamma distribution. This grad-
ually worsens as sensor reliability degrades, so we also
define a histogram filter. Finally, we can combine these
two approximations in a switching filter.

4.1 Strategy I: Gamma filter

Eqn. 1 is an infinite mixture of gamma distributions.
Given a matrix of sensor observations −→s , if the sen-
sors were reliable, the

∑
xi would be determined,

and Eqn. 1 would simplify by definition to the single
gamma posterior for a FOPP. We could thus use a sin-
gle gamma as an approximation to the posterior under
the assumption that the sensors have minor unrelia-
bilities, and expect this approximation to deteriorate
with sensor reliability. Thus, in this approximate filter,
as observations arrive, we calculate the true posterior
as a sum of gamma distributions and then fit a single
gamma to it by gradient descent on the KL-divergence.
Specifically, to approximate P (λ | −→s1 , . . . ,−→sn), we
use an optimisation algorithm which minimises KL-
divergence DKL(P (λ | −→s1 , . . . ,−→sn) || Gam(λ | α, β)).2

We employ a numerical hill climbing algorithm which
changes the β parameter of the Gamma prior to min-
imise DKL(P (λ | −→s1 , . . . ,−→sn) || Gam(λ | α, β)) given
P (λ | −→s1 , . . . ,−→sn).

2Note that this problem of approximating a mixture of
gammas is entirely different from the well-known problem
of estimating the sum of a several i.i.d. variables, each of
which follows a gamma distribution.
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Figure 2: Average KL-divergence (in bits) from the
gamma and histogram filters to the true posterior
P (λ | −→s1 , . . . ,−→sn) with variations on the sensor model.
Standard error is shown

4.2 Strategy II: Histogram filter

As sensor reliability deteriorates we would expect the
Gamma filter to worsen as an approximation to the
posterior belief for λ. We may instead use a histogram
filter for P (λ | −→x ) by quantising λ:

PHF (λ | −→x )=
P (xj | λ) P (λ | −−→x−1)∑

λi∈R
P (xj | λi) P (λi | −−→x−1) (5)

and redefine Eqn. 3 as:

PHF (xj | −−→x−1)=
∑
λi∈R

P (xj | λ) P (λ | −−→x−1) (6)

with −−→x−1 = xj−1, . . . , x1.

The advantage of this filter over the gamma filter is
that it can track the posterior to an arbitrary fidelity
via finer quantisation. The disadvantage is increased
computational time, as typically its run-time is 10-40
times that of the gamma filter.

4.3 Strategy III: Switching filter

As we shall see from experimental data, the gamma
filter is fast and can provide a good approximation of
the posterior when sensors are relatively reliable. The
histogram filter is slow, but can track the posterior
near perfectly given enough computation. This sug-
gests the possibility of a switching filter. This runs ei-
ther one of the filters, using a switching mechanism in
each posterior update to determine which one to run.
Given the latest sampled sensor vector −→si , the poste-
rior P (λ | −→si ) is calculated by Eqn. 1. The gamma
filter then returns an approximation to this. If the
KL-divergence DKL exceeds a threshold θ then the
histogram filter takes over. Each step, the gamma fil-
ter still runs, using the histogram filter as a prior, and
the histogram filter is switched off if DKL < θ. This
will happen as observations accumulate and the pos-
terior tightens. This ensures that the gamma filter

Figure 3: Average KL-divergence (over 60 trial of 144
observations) from the gamma and switching filters to
the proxy ground truth posterior P (λ | −→s1 , . . . ,−→sn).
The horizontal axis shows the true positive rate (top)
and true negative rate (bottom) of the simulated sen-
sor. Standard error is shown.

only replaces P (λ | −→si ) with a single gamma density
whenever P (λ | −→si ) resembles a gamma distribution.
Hence, the general dissimilarity between the estimated
and the true posterior P (λ | −→si ) is minimised, while
unnecessary computation is minimised.

5 Numerical evaluation of filter
performance

To evaluate filter behaviour we first performed evalu-
ations on synthetic data, such that we can precisely
control sensor unreliability, and know the true λ and
the true counts xi of each sample.

5.1 Comparing filters to the true posterior

First, we measured the performance of a baseline case
with a single unreliable sensor. We measured the KL-
divergence from the tested filters to the true posterior.
Since the true posterior takes an exponential amount
of time to compute this can only be achieved for very
short sequences of samples from the Poisson, in our
case seven samples. We tested three different levels of
sensor unreliability: the case where the true positive
rate (TPR) is 0.1 and the true negative rate (TNR)
is 1.0; the reverse of this; and a case in the middle
where TPR=TNR=0.5. The prior for all filters was
Gamma(λ | α = 1.01, β = 0.01).

Figure 2 shows the divergence in bits. The histogram
filter perfectly tracks the true posterior. The gamma
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Table 1: Comparison of the update time for three fil-
ters at each observation. 100, 1000, and 10000 repre-
sents the number of bins (histogram filter) or epochs
(gamma filter) used on each observation.

Method
Avg. updating time (std. dev)

100 1000 10000

Gamma 0.2s (0.03) 1.0s (0.33) 9.3s (3.62)
Switching 0.4 (0.46) 4.7 (3.24) 85.9s (71.39)
Histogram 2.0s (0.22) 16.4s (2.50) 338.3 (1.96)

filter has low divergence except in the case that the
TNR is low. So, the gamma filter is a poor fit to the
posterior when the sensor produces many false posi-
tives, but copes well with sensors with low sensitivity.

5.2 Filter behaviour on long sequences

Given that the histogram filter in practice tracks the
true posterior with zero error, we can use it as a proxy
ground truth posterior. This enables us to compare
the behaviour of the gamma and switching filters on
much longer sample sequences (up to 144 samples).
Using numerical simulation we first measured the av-
erage KL-divergence from the gamma and switching
filters to this proxy posterior. For each trial, we gen-
erated simulated counts x1, . . . , x144 by random sam-
pling according to a Poisson with λ = 3. These were
fed to a simulated sensor that counted unreliably. We
then recursively updated P (λ | −→si ) using the gamma
filter and the histogram filter. We ran 60 trials, and
show the average for each level of sensor unreliability
in Figure 3.

The results clearly show that the switching filter pro-
duces a lower divergence, and that its advantage over
the simple gamma filter improves as the sensor unreli-
ability increases. Again, note that the gamma filter is
adversely affected by a low TNR.

5.3 Computational efficiency

We examined the computation time per sample for
each of the three filters. Table 1 displays how the run-
time for the three filters grows, as a function of the
control parameters of each filter. The measurements
were tested on a laptop with Intel i7 core processor and
16 gigabytes of RAM. In general, the gamma filter is
ten to thirty-seven times faster than the histogram fil-
ter. The switching filter sits in the middle. The stan-
dard deviation of the gamma-histogram is quite high
due to the switching mechanism on each update. Note
that, for all remaining evaluations in the paper, we set
the epoch to 100 for the gamma filter, and used 1000

Figure 4: The divergence (top) and calculation time
(bottom) of the switching filter for different θ values.
In each graph the TNR of a single sensor is varied.
Each trial consisted of a stream of −→s1 . . .−−→s144 samples.
Each data point is an average of 30 trials. Standard
errors are shown.

bins for the histogram filter. This combination brings
down the average update time for the switching filter
to slightly less than 4.655 seconds per sample.

5.4 θ selection of switching filter

θ is the acceptable KL-divergence in a single filter-
ing step in switching filter from the true posterior (or
the histogram filter as a proxy) to the approximation.
The selected θ influences how low the KL-divergence
is and how fast the computation time per sample is.
In previous sections, we chose θ for the switching filter
to be 0.05. In this subsection, we present a system-
atic study of the effect of θ on computation time and
KL-divergence over long runs, and show why we chose
0.05 for θ. As shown in Figure 3, it is low TNR values
that affect the gamma approximation most. Hence, we
varied the TNR of a single sensor for this experiment.

In each trial, simulated counts x1, . . . , x144 were gener-
ated by sampling a Poisson with λ = 3 and fed to the
simulated sensor. P (λ | −→si ) was updated using only
the switching filter with variation on θ. We ran 30 tri-
als, and show the average divergence and calculation
time for each level of TNR reliability in Figure 4.

Figure 4 shows how five different values for θ (0.01,
0.05, 0.1, 0.5 and 1.0) change the divergence and com-
putation as the TNR changes. For, θ = 0.05 the total
bit divergence after a simulated run of 144 steps with a
TNR of 0.1 and a single sensor is around 0.04 bits. We
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(a) Estimation accuracy for λ while varying the TPR. (b) Estimation accuracy for λ while varying the TNR.

Figure 5: The RMSE of posterior estimates of λ for different filters. In each graph the unreliability of a single
sensor is varied. Each trial consisted of a stream of −→s1 . . .−−→s144 samples. Top panels show accuracy of the MAP
estimate, and the bottom panels the accuracy of the expectation of the posterior. Each data point is an average
of 30 trials. Standard errors are shown.

Figure 6: This shows the RMSE of different poste-
rior estimates of the λ parameter as more sensors are
added. Each trial consisted of a stream of −→s1 . . .−−→s144
samples. The top panel is the accuracy of MAP esti-
mates, the bottom panel is the accuracies of expecta-
tion estimates. Each data point represents the average
of 30 trials. Standard errors are shown.

can further reduce this by setting θ = 0.01 to 0 bits,
but in that case the switching filter only ever runs the
histogram filter.

5.5 Accuracy of posterior estimates of λ

Finally, having characterised the quality of the pos-
terior for each filter, we examined the difference that
filtering according to a POPP model makes relative to
filtering according a FOPP model.

To make this comparison, we evaluated the corrected
estimate of the arrival rate λ of a Poisson process by
applying Eqn. 1, using all three filters for the POPP
model. We compared these against the uncorrected es-
timate using the standard Bayesian inference accord-
ing to the FOPP model. We generated another series
of simulated counts x1, . . . , xn sampled from a Poisson
process P (x | λ′).

In each experiment, we again sampled 144 counts from
a Poisson process together with their corresponding
sensor readings. We varied sensor specificity (true neg-
ative rate) while fixing sensor sensitivity (true positive
rate) and vice versa. The performance of both POPP
filters and a standard FOPP filter were assessed by
comparing the RMSE of two estimators: the MAP hy-
pothesis (mode) and the expectation (mean) of each
posterior over λ to the true λ′. The results for a fil-
ter with a single sensor input are shown in Figure 5.
This shows that all POPP filters generate much better
estimates of λ than the FOPP filter. The FOPP fil-
ter’s performance deteriorates linearly with declining
sensor reliability.

Figure 6 shows the results for increasing numbers of
unreliable sensors. We varied the sensor models in
such a way that each pair of sensors have their sum of
TPR and TNR equal to one (e.g. sensor A TPR=0.1,
TNR=0.2, sensor B TPR=0.9, TNR=0.8). The figure
shows that–given this balancing–the number of sensors
has no effect on the accuracy of the estimates of λ for
POPP model filters. Whereas the FOPP model filter
is far from the true λ′.

6 Performance on a real world dataset

We also investigated the performance and practicality
of the POPP model and its associated filters–versus
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Figure 7: The environment in which the robot gath-
ered data, with the regions marked.

Figure 8: Correct and incorrect detections (and non-
detections) from different regions in the environment
for each sensor. Top row: change detector. Middle
row: upper body detector. Bottom row: leg detector.
Detections are marked with 2D or 3D bounding boxes.

the FOPP model–on a large, real world data set. This
dataset was gathered from an office building in which
a mobile robot counts the numbers of people pass-
ing by, as it patrols. The data set contains a time
series of counts from three different automated per-
son detectors (Dondrup, Bellotto, Jovan, & Hanheide,
2015). These use laser, depth camera and RGB infor-
mation. We refer to them respectively as the leg detec-
tor (LD), upper body detector (UBD), and change de-
tector (CD). Each returns a sensor count of the number
of people it detected in each 10 minute interval during
the day. These detectors are unreliable, as can be seen
from Figure 8, which shows examples of correct and
incorrect detections.

The data set was acquired during a 21-day deployment
of the mobile robot. The detections are organised ac-
cording to time/date and the spatial region where each
detection was made. Since these observations were
made while the robot patrolled the environment, the
detections are temporally and spatially scattered. In
addition, due to the robot’s patrol policy the samples
are not uniformly distributed across space.

By comparing the ground truth with the detections

Table 2: Averaged sensor model across all areas
trained from 15 days of data.

Sensor True Positive True Negative

Leg 0.315 0.894
Upper body 0.266 0.853
Scenery change 0.611 0.820

made by sensors, we calculated a sensor unreliability
model for each region. An example of such a sensor
model can be seen in Table 2. Although the robot
operated 24/7, the sensor models were built using the
data collected from 10am-8pm each week day, there
being negligible detections outside these times. By
limiting the robot to weekdays, we obtained 15 days
of observations. We specified a time interval for the
Poisson of 10 minutes, and recorded both the true
counts and the detections made by each sensor in each
interval. We estimated the parameter λ of the Pois-
son distribution by running a FOPP filter on the true
counts.

The different POPP filters rely on sensor models that
must be calculated from a confusion matrix relating
true counts and the different sensor counts. To sepa-
rate the training and testing data we performed five
fold cross-validation with the unit being whole days,
i.e., we used 3-days of data as a training set for a sen-
sor model and then used the remaining 12-days of data
as a test set on which to test the inferences made by
each filter from the sensor counts.

For the 12 days of test data the different filters each
made predictions of the λ parameter of the Poisson.
Given this, we recorded the root mean squared er-
ror (RMSE) for each estimator compared to the true
counts. Using this metric, we compared the perfor-
mance of the POPP model, using the switching filter,
to the standard Bayes’ filter arising from the FOPP
model. Each filter had to produce an estimated ar-
rivals rate λ for each region within the patrol space.

The results are shown in Figure 9. As can be seen,
the POPP model with the switching filter consistently
produces better estimates than FOPP. The POPP fil-
ter’s RMSE also varies less than that of the FOPP
filter with respect to region.

In some areas (e.g. Region 4) the underlying sensor
models for the POPP model were constructed from
limited data. This resulted in a smaller gain in RMSE
over the FOPP estimator for Region 4. We also show
how the POPP and FOPP estimators evolved with
time, again in terms of RMSE. The bottom panel of
figure 9 shows that as time passes the performance of
the POPP estimator steadily becomes better. This is
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Figure 9: The top panel is the accuracy of estimators
of λ derived from the POPP and FOPP filters. The
bottom panel is the RMSE evolution from Day 1 to
Day 12, averaged across all regions. Standard errors
are shown.

shown by the growing gap between the RMSE of the
two estimators.

7 Discussion and Conclusion

Estimation of counts from streaming data, generated
by automated detectors, is an important problem.
Currently, many studies in machine learning fail to
address issues of any unreliability in their underlying
data. When detectors are unreliable, this inevitably
leads to significant under or over-counts. In this pa-
per we showed how to compensate for unreliable count
data from multiple sensors observing a single Poisson
process. We have proposed a POPP model, presented
three filters for it, and empirically investigated their
properties. We have been able to show a significant
improvement over the baseline FOPP model.

We constructed the model for multiple sensors. How-
ever, the model here assumes that sensor failures are
conditionally independent from one other given the
true count. Removing this assumption is our future
work.
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