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FORBIDDING INDUCED EVEN CYCLES IN A GRAPH:

TYPICAL STRUCTURE AND COUNTING

JAEHOON KIM, DANIELA KÜHN, DERYK OSTHUS, TIMOTHY TOWNSEND

Abstract. We determine, for all k ≥ 6, the typical structure of graphs that do not contain an
induced 2k-cycle. This verifies a conjecture of Balogh and Butterfield. Surprisingly, the typical
structure of such graphs is richer than that encountered in related results. The approach we take
also yields an approximate result on the typical structure of graphs without an induced 8-cycle or
without an induced 10-cycle.

1. Introduction

1.1. Background. The enumeration and description of the typical structure of graphs with given
side constraints has become a successful and popular area at the interface of probabilistic, enumer-
ative, and extremal combinatorics (see e.g. [7] for a survey of such work). For example, a by now
classical result of Erdős, Kleitman and Rothschild [12] shows that almost all triangle-free graphs
are bipartite (given a fixed graph H, a graph is called H-free if it does not contain H as a not
necessarily induced subgraph). This result was generalised to Kk-free graphs by Kolaitis, Prömel
and Rothschild [14]. There are now many precise results on the number and typical structure of
H-free graphs and more generally graphs, hypergraphs and other combinatorial structures with a
given (anti-)monotone property.

Given a fixed graph H, a graph is called induced -H-free if it does not contain H as an induced
subgraph. Associated counting and structural questions are equally natural as in the non-induced
case, but seem harder to solve. Thus much less is known about the typical structure and number
of induced-H-free graphs than that of H-free graphs, though considerable work has been done
in this area (see, e.g. [2, 4, 13, 18, 19, 20]). In particular, Prömel and Steger [20] obtained an
asymptotic counting result for the number of induced-H-free graphs on n vertices, showing that the
logarithm of this number is essentially determined by the so-called colouring number of H. This was
generalised to arbitrary hereditary properties independently by Alekseev [1] as well as Bollobás and
Thomason [8]. Recent exciting developments in [5, 21] have opened up the opportunity to replace
counting results by more precise results which identify the typical asymptotic structure.

In this paper we determine the typical structure of induced-C2k-free graphs (from which the
corresponding asymptotic counting result follows immediately). The key difficulty we encounter is
that the typical structure turns out to be more complex than encountered in previous results on
forbidden induced subgraphs. This requires new ideas and a more intricate analysis when ‘excluding’
classes of graphs which might be candidates for typical induced-C2k-free graphs.

1.2. Graphs with forbidden induced cycles. Given a class of graphs A, we let An denote the
set of all graphs in A that have precisely n vertices, and we say that almost all graphs in A have
property B if

lim
n→∞

|{G ∈ An : G has property B}|
|An|

= 1.
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Given graphs H1, . . . ,Hm, we say G can be covered by H1, . . . ,Hm if V (G) admits a partition
A1 ∪ · · · ∪Am = V (G) such that G[Ai] is isomorphic to Hi for every i ∈ {1, . . . ,m}, where G[Ai] is
the subgraph of G induced by Ai.

Prömel and Steger proved in [18] that almost all induced-C4-free graphs can be covered by a clique
and an independent set, and in [17] characterised the structure of almost all induced-C5-free graphs
too. More recently, Balogh and Butterfield [4] determined the typical structure of induced-H-free
graphs for a wide class of graphs H. In particular they proved that almost all induced-C7-free
graphs can be covered by either three cliques or two cliques and an independent set, and that for
k ≥ 4 almost all induced-C2k+1-free graphs can be covered by k cliques. They also conjectured that
for k ≥ 6 almost all induced-C2k-free graphs can be covered by k − 2 cliques and a graph whose
complement is a disjoint union of stars and triangles. It is easy to see that such graphs are induced
C2k-free since any 2k vertices in such a graph must contain either a triangle or an induced K1,3

(which is impossible in an induced copy of C2k). Our main result completely verifies the conjecture
of Balogh and Butterfield.1

Theorem 1.1. For k ≥ 6, almost all induced-C2k-free graphs can be covered by k− 2 cliques and a
graph whose complement is a disjoint union of stars and triangles.

Theorem 1.1 together with the discussed results in [4, 12, 17, 18] implies that the typical structure
of induced-Ck-free graphs is determined for every k ∈ N apart from k ∈ {6, 8, 10}. For the cases
k = 8 and k = 10 the methods we use to prove Theorem 1.1 allow us to also prove an approximate
result on the typical structure of induced-Ck-free graphs. In order to state this result we require
the following definitions.

Given η > 0 and graphs G and G′ on the same vertex set, we say G′ is η-close to G if G′ can
be made into G by changing (i.e. adding or deleting) at most η|G|2 edges. We say a graph G is
a sun if either G consists of a single vertex or V (G) can be partitioned into sets A,B such that
E(G) = {uv : |{u, v}∩B| ≤ 1}. We call A the body of the sun and B the side of the sun. Note that
all stars and cliques (including triangles) are suns, and that we consider a single vertex to be both
a star of order one and a clique of order one.

Theorem 1.2.

(i) For every η > 0, almost all induced C10-free graphs are η-close to graphs that can be covered
by three cliques and a graph whose complement is a disjoint union of cliques.

(ii) For every η > 0, almost all induced C8-free graphs are η-close to graphs that can be covered by
two cliques and a graph whose complement is a disjoint union of suns.

We remark that in Theorems 1.1 and 1.2 we get exponential bounds on the proportion of induced-
C2k-free graphs that do not satisfy the relevant structural description. Our proofs also show that
the k−2 cliques in the covering have size close to n/(k−1) in Theorem 1.1, with analogous bounds
in Theorem 1.2. Theorem 1.1 also strengthens a result by Kang, McDiarmid, Reed and Scott [13]
showing that almost all induced-C2k-free graphs have a linear sized homogeneous set. (Their results
were motivated by the Erdős-Hajnal conjecture, and actually apply to a large class of forbidden
graphs H.)

It would of course be interesting to determine the typical structure of induced-C6-free graphs.

Question 1.3. What is the typical structure of induced-C6-free graphs?

Another natural question is that of the typical structure of induced-H-free graphs of a given
density. In particular, an intriguing question is whether their typical structure exhibits a non-trivial
‘phase transition’ as found for triangle-free graphs [16] and more generally Kr-free graphs [6].

1After submission of the manuscript, we learned that similar results to ours have been obtained independently by
A. Scott and B. Reed (personal communication).
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1.3. Overview of the paper. A key tool in our proofs is the recent hypergraph container ap-
proach, which was developed independently by Balogh, Morris and Samotij [5], and Saxton and
Thomason [21]. Briefly, their result states that under suitable conditions on a uniform hypergraph
G, there is a small collection C of small subsets (known as containers) of V (G) such that every
independent set of vertices in G is a subset of some element of C. The precise statement of the
application used here is deferred until Section 3.

Given a graph G and a set A ⊆ V (G), we denote by G[A] the graph induced on G by A, and
we denote the complement of G by G. For k ∈ N and a set V of vertices we define an ordered
k-partition of V to be a k-partition of V such that one partition class is labelled and the rest are
unlabelled. If Q is an ordered k-partition with labelled class Q0 and unlabelled classes Q1, . . . , Qk−1
then we write Q = (Q0, {Q1, . . . , Qk−1}).

For k ≥ 4, we say that a graph G is a k-template if V (G) has an ordered (k − 1)-partition
Q = (Q0, {Q1, . . . , Qk−2}) such that G[Qi] is a clique for all i ∈ [k − 2] and one of the following
holds.

• k = 4 and G[Q0] is a disjoint union of suns.
• k = 5 and G[Q0] is a disjoint union of stars and cliques.
• k ≥ 6 and G[Q0] is a disjoint union of stars and triangles.

Clearly every k-template is induced-C2k-free. If V (G) has such an ordered (k − 1)-partition Q, we
say that G is a k-template on Q, or G has ordered (k − 1)-partition Q. If Q′ is the (unordered)
(k − 1)-partition with the same partition classes as Q, we may also say that G is a k-template on
Q′. Thus Theorem 1.1 can be reformulated as:

‘For k ≥ 6, almost all induced C2k-free graphs are k-templates.’

Theorem 1.2 can be similarly reformulated in terms of 4- and 5-templates. As mentioned earlier,
the main difficulty in proving Theorem 1.1 (compared to related results) is that typically G[Q0]
is close to, but not quite, a complete graph. This makes it very difficult to rule out other similar
classes of graphs as typical structures. To overcome this we use tools such as Ramsey’s theorem to
classify the graphs according to the neighbourhoods of certain vertices.

More precisely, our approach to proving our main result is as follows. Firstly, in Section 3 we use
the hypergraph containers result discussed above to show that almost all induced-C2k-free graphs
are close to being a k-template, for every k ≥ 4 (see Lemma 3.1). Note that Lemma 3.1 immediately
implies Theorem 1.2.

In Section 4 we prove upper and lower bounds on the number of k-templates on n vertices (see
Lemmas 4.7 and 4.9). In Section 5 we prove some preliminary results about graphs that are close
to being a k-template.

In Section 6 we state a key result which is a version of Theorem 1.1 with respect to a given
ordered (k−1)-partition (see Lemma 6.1) and use it together with Lemma 4.9 to derive Theorem 1.1.
The remainder of the paper is devoted to proving Lemma 6.1 via an inductive argument, which we
introduce at the end of Section 6. This argument involves partitioning the class of graphs considered
in Lemma 6.1 into three ‘bad’ classes of graphs, and in Section 7 we use Lemma 4.7 and the results
in Section 5 to prove an upper bound on the number of graphs in a different one of these classes
(see Lemmas 7.3, 7.10 and 7.18). In particular, Lemmas 7.3 and 7.10 already show that almost all
induced-C2k-free graphs are ‘extremely close’ to being k-templates (see Proposition 7.11). Finally
in Section 8 we use Lemmas 3.1, 7.3, 7.10 and 7.18 to complete the inductive argument set up in
Section 6 and so prove Lemma 6.1. Before starting on any of this however, we lay out some notation
and set out some useful tools in Section 2, below.
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2. Notation and tools

Given a graph G, a vertex x ∈ V (G), and an ordered (k− 1)-partition Q = (Q0, {Q1, . . . , Qk−2})
of V (G), we let N(x), N(x) denote the set of neighbours and non-neighbours of x in G, respectively.
We also let NQi(x), NQi(x) denote the set of neighbours of x in Qi and non-neighbours of x in Qi,

respectively. We sometimes use the notation diG,Q(x) = |NQi(x)| and d
i
G,Q(x) = |NQi(x)| when we

want to emphasise which graph we are working with. For a set A of vertices in G, we define

N(A) :=
⋂
v∈A

N(v), N(A) :=
⋂
v∈A

N(v),

NQi(A) :=
⋂
v∈A

NQi(v), NQi(A) :=
⋂
v∈A

NQi(v).

If it generates no ambiguity, we may write Ni(x), N i(x), Ni(A), N i(A) for NQi(x), NQi(x), NQi(A),

and NQi(A) respectively. Given A,B ⊆ V (G), we define

N∗(A,B) := N(A) ∩N(B), N∗i (A,B) := Ni(A) ∩N i(B).

In the case when A and B both have size one, containing vertices a, b respectively, we may write
N∗(a, b) for N∗(A,B) and N∗i (a, b) for N∗i (A,B).

We say that a partition of vertices is balanced if the sizes of any two partition classes differ by
at most one. Given a (k − 1)-partition Q of [n] with partition classes Q0, . . . , Qk−2, and a graph
G = (V,E) on vertex set [n], and an edge or non-edge e = uv with u ∈ Qi and v ∈ Qj , we call e
crossing if i 6= j and internal if i = j.

We denote a path on m vertices by Pm. Given a path P = p1 . . . pm and a sequence A1, . . . , Am
of sets of vertices, we say that P has type A1, . . . , Am if p` ∈ A` for every ` ∈ [m]. We call a graph
a linear forest if it is a forest such that all components are paths or isolated vertices.

Given `, t ∈ N we let R`(t) denote the `-colour Ramsey number for monochromatic t-cliques,
i.e. R`(t) is the smallest N ∈ N such that every `-colouring of the edges of KN yields a monochro-
matic copy of Kt.

We define

nk :=

⌈
n

k − 1

⌉
.

In a number of our proofs we shall use the following Chernoff bound.

Lemma 2.1 (Chernoff bound). Let X have binomial distribution and let 0 < a ≤ E[X]. Then

(i) P (X > E[X] + a) ≤ exp
(
− a2

4E[X]

)
.

(ii) P (X < E[X]− a) ≤ exp
(
− a2

2E[X]

)
.

Whenever this does not affect the argument, we assume all large numbers to be integers, so that
we may sometimes omit floors and ceilings for the sake of clarity. In some proofs, given a, b ∈ R
with 0 < a, b < 1, we will use the notation a � b to mean that we can find an increasing function
g for which all of the conditions in the proof are satisfied whenever a ≤ g(b). Throughout we write
log x to mean log2 x.

We define ξ(p) := −3p(log p)/2. The following bounds will prove useful to us. For n ≥ 1 and
3 log n/n ≤ p ≤ 10−11,

(2.1)

(
n

≤ pn

)
:=

bpnc∑
i=0

(
n

i

)
≤ pn

(
en

pn

)pn
≤ 2ξ(p)n,
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and

(2.2) ξ(p) ≤ 3

2
p

(
1

p

)1/8

≤ p3/4.

3. Approximate structure of typical induced-C2k-free graphs

The main result of this section is Lemma 3.1, which approximately determines the typical struc-
ture of induced-C2k-free graphs. As mentioned earlier, we make use of a ‘container theorem’ which
reduces the proof of Lemma 3.1 to an extremal problem involving induced-C2k-free graphs. More
precisely, the argument is structured as follows.

We first introduce a number of tools (see Subsection 3.1): a ‘Containers’ theorem (Theorem 3.2),
a Stability theorem (Theorem 3.3), and two Removal Lemmas (Theorem 3.4, Lemma 3.5). In
Subsection 3.2 we use Theorem 3.3 to derive a Stability result involving induced-C2k-free graphs
(Lemma 3.7). Similarly we use Theorem 3.4 to derive another specialised version of the Removal
Lemma (Lemma 3.9). In Subsection 3.3 we use Theorem 3.2 together with Lemmas 3.5, 3.7 and 3.9
to determine the approximate structure of typical induced-C2k-free graphs.

We denote the set of (labelled) induced-C2k-free graphs on vertex set [n] by F (n, k).

Lemma 3.1. Let k ≥ 4. For every η > 0 there exists ε > 0 such that the following holds for

all sufficiently large n. All but at most |F (n, k)|2−εn2
induced-C2k-free graphs on n vertices can be

made into a k-template by changing at most ηn2 edges.

Note that Lemma 3.1 immediately implies Theorem 1.2.

3.1. Tools: containers, stability and removal lemmas. The key tool in this section is The-
orem 3.2, which is an application of the more general theory of Hypergraph Containers developed
in [5, 21]. We use the formulation of Theorem 2.6 in [21]. We require the following definitions in
order to state it.

A 2-coloured multigraph G on vertex set [N ] is a pair of edge sets GR, GB ⊆ [N ](2), which we
call the red and blue edge sets respectively. If H is a fixed graph on vertex set [h], a copy of H
in G is an injection f : [h] → [N ] such that for every edge uv of H, f(u)f(v) ∈ GR, and for every
non-edge u′v′ of H, f(u′)f(v′) ∈ GB. We write H ⊆ G if G contains a copy of H, and we say that

G is H-free if there are no copies of H in G. We say that G is complete if GR ∪GB = [N ](2). We
denote by GB the graph on vertex set [N ] and edge set GB.

Theorem 3.2. Let H be a fixed graph with h := |V (H)|. For every ε > 0, there exists c > 0 such
that for all sufficiently large N , there exists a collection C of complete 2-coloured multigraphs on
vertex set [N ] with the following properties.

(a) For every graph I on [N ] that contains no induced copy of H, there exists G ∈ C such that
I ⊆ G.

(b) Every G ∈ C contains at most εNh copies of H.

(c) log |C| ≤ cN2−(h−2)/((h2)−1) logN .

(Theorem 2.6 in [21] does not explicitly specify that each C ∈ C is complete, but this follows
from the proof (see the discussion in [21, Section 9])). Another tool that we will use is the following
classical Stability theorem of Erdős and Simonovits (see e.g. [10, 11, 22]). By Tk(n) we denote the
Turán graph, the largest complete k-partite graph on n vertices, and we define tk(n) := e(Tk(n)).
Given a family H of fixed graphs, we say a graph G is H-free if G does not contain any H ∈ H
as a (not necessarily induced) subgraph, and we say G is induced-H-free if G does not contain any
H ∈ H as an induced subgraph.

Theorem 3.3. Let H = {H1, . . . ,H`} be a family of fixed graphs, and let k := min1≤i≤` χ(Hi). For
every δ > 0 there exists ε > 0 such that the following holds for all sufficiently large n. If a graph G
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on n vertices is H-free and e(G) ≥ tk−1(n)− εn2, then G can be obtained from Tk−1(n) by changing
at most δn2 edges.

The final tools that we introduce in this subsection are the following two Removal Lemmas. The
first is an extension of the Induced Removal Lemma to families of forbidden graphs, and is due
to Alon and Shapira [3]. The original statement of this theorem also applies to infinite families
of forbidden graphs, but the version for finite families is sufficient for our purposes. The second
is a version of the Removal Lemma applicable to complete 2-coloured multigraphs. The proof is
similar to that of the standard Removal Lemma, so we omit it here; for details see [23]. For two
sets A,B, we denote their symmetric difference by A4B. For 2-coloured multigraphs G,G′ on the
same vertex set we define their distance by dist(G,G′) := |GR4G′R|+ |GB4G′B|.

Theorem 3.4. [3] For every finite family of fixed graphs H and every δ > 0, there exists ε > 0 such
that the following holds for all sufficiently large n. If a graph G on n vertices contains at most εnh

induced copies of each graph H ∈ H on h vertices, then G can be made induced-H-free by changing
at most δn2 edges.

Lemma 3.5. For every fixed graph H on h vertices, and every δ > 0, there exists ε > 0 such
that the following holds for all sufficiently large n. If a complete 2-coloured multigraph G on vertex
set [n] contains at most εnh copies of H, then there exists a complete 2-coloured multigraph G′ on
vertex set [n] such that G′ is H-free and dist(G,G′) ≤ δn2.

3.2. Stability and removal lemmas for even cycles. Suppose H is a complete 2-coloured
multigraph on m vertices with HR ∩ HB = ∅. If m = 3 and |HR| ≤ 1 we call H a mostly blue
triangle. For k ∈ {4, 5, 6}, if m = 4 and |HR| ≥ 6 − k and HB contains a copy of P4 then we call
H a k-good tetrahedron. The following technical proposition will be useful in proving Lemmas 3.7
and 3.9.

Proposition 3.6. Let k ≥ 4 and let G be a complete 2-coloured multigraph on 2k vertices. If G
satisfies one of the following properties then G contains a copy of C2k. Below, ri always denotes a
red edge.

(E1) GR4GB is a set of at most k disjoint (red or blue) edges.
(E2) GR4GB is the edge set of two disjoint copies of a blue Kk.
(E3) GR4GB is the edge set of a union of disjoint graphs K1

3 ,K
2
3 , r1, . . . , rk−3, where each Ki

3 is a
mostly blue triangle.

(E4) GR4GB is the edge set of a union of disjoint graphs K1
4 , r1, . . . , rk−2, where K1

4 is a 4-good
tetrahedron.

(E5) k ≥ 5 and GR4GB is the edge set of a union of disjoint graphs K1
4 , r1, . . . , rk−2, where K1

4 is
a 5-good tetrahedron.

(E6) k ≥ 6 and GR4GB is the edge set of a union of disjoint graphs K1
4 , r1, . . . , rk−2, where K1

4 is
a 6-good tetrahedron.

Proof. Let V (G) = {v1, . . . , v2k}. Let C = c1 . . . c2k be a 2k-cycle. Note that if there exists a
permutation σ of [2k] such that for every edge cicj ∈ E(C) we have vσ(i)vσ(j) ∈ GR and such that for
every non-edge ci′cj′ /∈ E(C) we have vσ(i′)vσ(j′) ∈ GB, then vσ(1) . . . vσ(2k) is a copy of C2k in G. We
call such a permutation σ a covering permutation from C to G. For ease of reading, we will write a
permutation σ on [2k] using the notation σ = (σ(1), . . . , σ(2k)). If σ restricted to {m,m+1, . . . , 2k}
is the identity permutation, we may simply write σ = {σ(1), . . . , σ(m− 1)} instead. So for example
if σ = (1, 3, 4, 2) is a covering permutation from C to G, then v1v3v4v2v5 . . . v2k is a copy of C2k in
G.

We now show that each of the properties (E1), . . . ,(E6) imply that there exists a covering per-
mutation from C to G, and hence that G contains a copy of C2k.
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⇒
v1

v2

v3

v4

v5

v6

v7

v8

GR4GB
(E1) with k = 4, b = 2, r = 2.

v1

v2

v3

v4

v5

v6

v7

v8

⇒
v1

v3

v2

v4

v5

v7

v6

v8

GR4GB
(E2) with k = 4.

v1

v3

v2

v4

v5

v7

v6

v8

Figure 1. Copies of C2k forced by (E1) and (E2), where dotted lines indicate edges
in GB \GR

(E1) There exists b, r ∈ N ∪ {0} with b + r ≤ k such that, by relabelling vertices if necessary,
GB\GR = {v1v2, . . . , v2b−1v2b} and GR\GB = {v2b+1v2b+2, . . . , v2(b+r)−1v2(b+r)}. Depending
on the value of b we find the following covering permutations σ from C to G, as required.
• If b = 0 (meaning GB \GR = ∅) then σ is the identity permutation.
• If b = 1 then σ = (1, 3, 4, 2).
• If b ≥ 2 then σ = (1, 3, . . . , 2b− 1, 2, 4, . . . , 2b) (see Figure 1).

(E2) Let {v1, . . . , vk}, {vk+1, . . . , v2k} be the respective vertex sets of the two copies of a blue Kk

in GR4GB. Then σ = (1, k+ 1, 2, k+ 2, . . . , k, 2k) is a covering permutation from C to G, as
required (see Figure 1).

(E3) Let V (K1
3 ) = {v1, v2, v3}, V (K2

3 ) = {v4, v5, v6} and V (ri) = {v2i+5, v2i+6} for every i ∈ [k− 3].
Depending on the colour of the edges in K1

3 ,K
2
3 we find the following covering permutations

σ from C to G, as required.
• If K1

3 ,K
2
3 both contain no red edges, then σ = (1, 4, 2, 5, 3, 6).

• If K1
3 contains exactly one red edge v1v2 and K2

3 contains no red edges, then σ =
(4, 1, 2, 5, 3, 6).
• If K1

3 contains exactly one red edge v1v2 and K2
3 contains exactly one red edge v5v6, then

σ = (1, 2, 4, 3, 5, 6).
(E4) Let V (K1

4 ) = {v1, v2, v3, v4} and V (ri) = {v2i+3, v2i+4} for every i ∈ [k − 2]. Depending on
the configuration of red edges in K1

4 we find the following covering permutations σ from C to
G, as required.
• If K1

4 contains exactly three red edges v1v2, v2v3, v3v4, then σ is the identity permutation.
• If K1

4 contains exactly two red edges v1v2, v2v3, then σ = (1, 2, 3, 5, 6, 4).
• If K1

4 contains exactly two red edges v1v2, v3v4, then σ = (1, 2, 5, 6, 3, 4).
(E5) We may assume that K1

4 contains exactly one red edge, since that is the only case not covered
by (E4). Let V (K1

4 ) = {v1, v2, v3, v4} and V (ri) = {v2i+3, v2i+4} for every i ∈ [k − 2], and let
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v1v2 be the red edge in K1
4 . Then σ = (1, 2, 5, 6, 3, 7, 8, 4) is a covering permutation from C

to G, as required.
(E6) We may assume that K1

4 contains no red edges, since that is the only case not covered by
(E5). Let V (K1

4 ) = {v1, v2, v3, v4} and V (ri) = {v2i+3, v2i+4} for every i ∈ [k − 2]. Then
σ = (1, 5, 6, 2, 7, 8, 3, 9, 10, 4) is a covering permutation from C to G, as required.

�

We now use Theorem 3.3 and Proposition 3.6 to prove the following more specialised Stability
result involving C2k-free 2-coloured multigraphs.

Lemma 3.7. Let k ≥ 4. For every δ > 0 there exists ε > 0 such that the following holds for
all sufficiently large n. If a complete 2-coloured multigraph G on vertex set [n] is C2k-free and
|GR∩GB| ≥ tk−1(n)−εn2, then the graph ([n], GR∩GB) can be obtained from Tk−1(n) by changing
at most δn2 edges.

Proof. Choose n0 ∈ N and ε > 0 such that 1/n0 � ε � δ. Let n ≥ n0. Since G is C2k-free,
we know by Proposition 3.6 that no 2k vertices of G induce on G a 2-coloured multigraph G′ that
satisfies (E1). So, since G is complete, the graph ([n], GR ∩ GB) must be Tk(2k)-free. Note that
χ(Tk(2k)) = k. By Theorem 3.3, this together with the fact that |GR∩GB| ≥ tk−1(n)− εn2 implies
that the graph ([n], GR ∩GB) can be obtained from Tk−1(n) by changing at most δn2 edges. �

The following proposition characterises the structure of graphs without k-good tetrahedrons. It
will be useful in proving Lemma 3.9. The proof is fairly straightforward so we give only a sketch of
it here.

Proposition 3.8. Let G be a 2-coloured multigraph with GR ∩GB = ∅.
(i) If G does not contain a 6-good tetrahedron then GB is a disjoint union of stars and triangles.
(ii) If G does not contain a 5-good tetrahedron then GB is a disjoint union of stars and cliques.

(iii) If G does not contain a 4-good tetrahedron then GB is a disjoint union of suns.

Proof. (i) follows immediately from the fact that if G is 6-good tetrahedron-free then GB does
not contain a P4.

To see (ii), note that if G is 5-good tetrahedron-free and P is a copy of P4 in GB, then GB[V (P )] =
K4. So every component H of GB is either a star or a triangle or contains a K4. But in the latter
case it is easy to check that H is actually a clique.

It remains to prove (iii). If G is 4-good tetrahedron-free and P is a copy of P4 in GB, then
GB[V (P )] is either a K4 or a copy of the graph K−4 obtained from K4 by deleting one edge. So
every component H of GB is either a star or a clique or contains an induced copy of K−4 . Using
induction on |H|, it is not hard to show that in the latter case H must be a sun. �

We now use Theorem 3.4 together with Propositions 3.6 and 3.8 to prove the following more
specialised Removal Lemma involving even cycles.

Lemma 3.9. For every k ≥ 4 and every δ > 0 there exists ε > 0 such that the following holds
for all sufficiently large n. Suppose G is a complete 2-coloured multigraph on n vertices such that
GR ∩ GB = E(Tk−1(n)). Let Q be the unique (k − 1)-partition of the vertices of G such that no
partition class induces an edge in GR ∩ GB. Suppose further that G contains at most εn2k copies
of C2k. Then there exists a k-template T = (V (G), ET ) on Q such that |GR4ET | ≤ δn2.

Proof. We first prove the lemma in the case k ≥ 6. Choose n0 ∈ N and ε, γ > 0 such that
1/n0 � ε� γ � δ, 1/k. Let n ≥ n0 and let Q = (Q1, . . . , Qk−1). Let c := ε1/3.

We claim that for no two distinct i, j ∈ [k − 1] do G[Qi] and G[Qj ] both contain at least cnk

copies of a blue Kk. Indeed, if they do then there are at least c2n2k > εn2k sets of 2k vertices that
each induce on G a 2-coloured multigraph G′ that satisfies (E2). By Proposition 3.6 each such G′
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contains a copy of C2k. This contradicts the assumption that G contains at most εn2k copies of
C2k, which proves the claim.

Thus there exists J ⊆ [k − 1] with |J | ≤ 1 such that for all i ∈ [k − 1] with i /∈ J , G[Qi] contains
fewer than cnk copies of a blue Kk. Together with Theorem 3.4 (applied to GB[Qi]) this implies
that G[Qi] can be made free of blue cliques of size k by changing the colour of at most γn2 edges
inside Qi. So by Turán’s Theorem, for all i ∈ [k − 1] with i /∈ J , G[Qi] must have at least

(k − 1)

(
n/(k − 1)2

2

)
− 2γn2 ≥ n2

4(k − 1)3

red edges.

Claim 1: There is at most one index i ∈ [k − 1] such that G[Qi] contains at least cn3 mostly blue
triangles. Moreover, if there is such an index i then J ⊆ {i}, and if there is no such index then
J = ∅.
Indeed, suppose for a contradiction that there exist distinct i, j ∈ [k − 1] such that Qi, Qj both

contain at least cn3 mostly blue triangles. Note that any class that contains at least cnk copies
of a blue Kk must contain at least cn3 mostly blue triangles. So we may assume that J ⊆ {i, j}.
Thus for every index ` 6= i, j, G[Q`] contains at least n2/(4(k − 1)3) red edges. Thus there are
at least 2εn2k sets of 2k vertices that each induce on G a 2-coloured multigraph G′ that satisfies
(E3). (To see this, note that to choose such a set of 2k vertices we may choose, for both indices
i, j, the vertices of any one of the at least cn3 mostly blue triangles in G[Qi], G[Qj ] respectively,
and then choose, for each index ` 6= i, j, any one of the at least n2/(4(k − 1)3) red edges in Q`.)
By Proposition 3.6 each such G′ contains a copy of C2k. This contradicts the assumption that G
contains at most εn2k copies of C2k, which proves the claim.

Let J ′ consist of the index j0 ∈ [k−1] such that G[Qj0 ] contains at least cn3 mostly blue triangles,
if such an index exists. Otherwise let J ′ := ∅. Thus J ⊆ J ′. For all i ∈ [k − 1] with i /∈ J ′, Claim 1
together with Theorem 3.4 (applied to GB[Qi]) implies that G[Qi] can be made free of mostly blue
triangles by changing the colour of at most γn2 edges inside Qi. This implies that the blue edges
inside Qi after such a change form a matching. Hence G[Qi] contains at most 2γn2 blue edges.

If J ′ = ∅ then G[Qi] contains at most 2γn2 blue edges for all i ∈ [k−1], and hence |GB\GR| ≤ δn2
(since γ � δ, 1/k). In this case we are done by setting T to be Kn. Otherwise, J ′ = {j0} and it
suffices to show that the blue edges in G[Qj0 ] can be made into the edge set of a disjoint collection
of stars and triangles by changing the colour of at most γn2 edges inside Qj0 , since then we are
done by setting T to be Kn minus this disjoint collection of stars and triangles.

Claim 2(a): G[Qj0 ] contains fewer than cn4 6-good tetrahedrons.

Indeed, otherwise there are at least ε1/2n2k sets of 2k vertices that each induce on G a 2-coloured
multigraph G′ that satisfies (E6). (To see this, note that to choose such a set of 2k vertices we
may first choose the vertices of any one of the at least cn4 6-good tetrahedrons, and then choose,
for each other class Qi, any one of the at least n2/(4(k − 1)3) red edges in Qi.) By Proposition 3.6
each such G′ contains a copy of C2k. This contradicts the assumption that G contains at most εn2k

copies of C2k, which proves the claim.

Claim 2(a) together with Theorem 3.4 (applied to GB[Qj0 ]) implies that G[Qj0 ] can be made free
of 6-good tetrahedrons by changing the colour of at most γn2 edges inside Qj0 . Proposition 3.8(i)
implies that after such a change, all blue edges inside Qj0 form a disjoint collection of stars and
triangles, as required. This completes the proof in the case k ≥ 6.

For the case k = 5, the proof is almost identical to the case k ≥ 6, except that instead of
Claim 2(a) we prove the following weaker claim, which follows in a similar way.



10 JAEHOON KIM, DANIELA KÜHN, DERYK OSTHUS, TIMOTHY TOWNSEND

Claim 2(b): G[Qj0 ] contains fewer than cn4 5-good tetrahedrons.

Claim 2(b) together with Theorem 3.4 (applied to GB[Qj0 ]) implies that G[Qj0 ] can be made free
of 5-good tetrahedrons by changing the colour of at most γn2 edges inside Qj0 . Proposition 3.8(ii)
implies that after such a change, all blue edges inside Qj0 form a disjoint collection of stars and
cliques. We are now done by setting T to be Kn minus this disjoint collection of stars and cliques.

For the case k = 4, the proof is again almost identical to the case k ≥ 6, except that instead of
Claim 2(a) we prove the following even weaker claim, which follows in a similar way.

Claim 2(c): G[Qj0 ] contains fewer than cn4 4-good tetrahedrons.

Claim 2(c) together with Theorem 3.4 (applied to GB[Qj0 ]) implies that G[Qj0 ] can be made free
of 4-good tetrahedrons by changing the colour of at most γn2 edges inside Qj0 . Proposition 3.8(iii)
implies that after such a change, all blue edges inside Qj0 form a disjoint collection of suns. We are
now done by setting T to be Kn minus this disjoint collection of suns. �

3.3. Approximate structure of typical induced C2k-free graphs. We are now in a position
to prove the main result of this section.

Proof of Lemma 3.1. Choose n0 ∈ N and ε, δ, γ, β > 0 such that 1/n0 � ε � δ � γ � β �
η, 1/k. Let ε′ := 2ε and n ≥ n0. First we claim that |F (n, k)| ≥ 2tk−1(n). To see this, first note

that any graph G that contains Tk−1(n) is induced-C2k-free (since for any set of 2k vertices on G,

3 of them must form a triangle). Moreover, there are precisely 2tk−1(n) such graphs for any given
labelling of the vertices, which proves the claim.

By Theorem 3.2 (with C2k, n and ε′ taking the roles of H,N and ε respectively) there is a
collection C of complete 2-coloured multigraphs on vertex set [n] satisfying properties (a)–(c). In
particular, by (a), every induced-C2k-free graph on vertex set [n] is contained in some G ∈ C. Let
C1 be the family of all those G ∈ C for which |GR ∩ GB| ≥ tk−1(n) − ε′n2. Then the number of
(labelled) induced-C2k-free graphs not contained in some G ∈ C1 is at most

|C| 2tk−1(n)−ε′n2 ≤ 2−εn
2 |F (n, k)|,

because |C| ≤ 2n
2−ε′

, by (c), and |F (n, k)| ≥ 2tk−1(n). We claim that for every G ∈ C1 there exists a

complete 2-coloured multigraph G̃ and a k-template T on partition Q = {Q0, Q1, . . . , Qk−2} such
that

G̃R ∩Q(2)
i = E(T [Qi]) and G̃R ∩ G̃B ∩Q(2)

i = ∅

for every i ∈ {0, 1, . . . , k − 2}, and dist(G, G̃) ≤ ηn2. (Note that this claim implies that every
induced-C2k-free graph contained in G can be made into a k-template by changing a total of at
most ηn2 edges within the vertex classes Qi.) Indeed, by (b), each G ∈ C1 contains at most ε′n2k

copies of C2k. Thus by Lemma 3.5 there exists a complete 2-coloured multigraph G′ on the same
vertex set that is C2k-free, such that dist(G,G′) ≤ δn2. Then |G′R ∩ G′B| ≥ tk−1(n) − (ε′ + δ)n2.
Thus by Lemma 3.7 there exists a complete 2-coloured multigraph G′′ on the same vertex set, with
G′′R ∩G′′B = E(Tk−1(n)) and such that dist(G′, G′′) ≤ γn2. Note that G′′ can contain at most γn2k

copies of C2k, since G′ is C2k-free. Let Q = {Q0, Q1, . . . , Qk−2} be the unique (k − 1)-partition of
V (G′′) such that no partition class induces an edge in G′′R ∩G′′B. Thus by Lemma 3.9, there exists

a k-template T = (V (G), ET ) on Q such that |G′′R4ET | ≤ βn2. Define G̃ to be the 2-coloured

multigraph with G̃R ∩ G̃B = G′′R ∩G′′B and G̃R ∩Qi = E(T [Qi]) for every i ∈ {0, 1, . . . , k− 2}. Then

dist(G, G̃) ≤ (δ + γ + β)n2 ≤ ηn2, and G̃ satisfies the required properties. This proves the claim
and thus the lemma. �
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4. The number of k-templates

The aim of this section is to estimate the number of k-templates on n vertices as well as the
number of such k-templates for which Q is an ordered (k − 1)-partition (see Lemmas 4.9 and 4.7
respectively). Before we start with this we need to introduce some more notation.

Definition 4.1 (T (n, k) and TQ(n, k)).

• For k ≥ 4 we denote the set of all k-templates on n vertices by T (n, k).
• Let TQ(n, k) denote the set of all k-templates on n vertices for which Q is an ordered (k−1)-

partition.

Definition 4.2 (k-sun). A k-sun is defined as follows.

• If k = 4, a k-sun is any sun (as defined in Section 1.2).
• If k = 5, a k-sun is a star or a clique.
• If k ≥ 6, a k-sun is a star or a triangle.

Note that the results of this section are only needed for Theorem 1.1 (and not Theorem 1.2) and
so we would only need to consider the case k ≥ 6. However, including the cases k = 4, 5 makes
little difference to the proofs, and are also interesting in their own right, so we work with all k ≥ 4
throughout this section.

Definition 4.3 (Fk(n) and fk(n)).

• Let Fk(n) denote the set of all n-vertex graphs whose complement is a disjoint union of
k-suns.
• Define fk(n) := |Fk(n)|.

A pair of vertices x, y is called a twin pair if N(x)\{y} = N(y)\{x}.
The following two lemmas give some estimates of the value of fk(n). Note that we do not make

use of the upper bound in Lemma 4.4 anywhere in this paper, but we include it for comparison. It
would not be difficult to obtain more accurate bounds.

Lemma 4.4. For all n ∈ N and k ≥ 4,

2n logn−en log logn ≤ fk(n) ≤ 2n logn−n log logn+n.

Proof. Let P (n) denote the number of partitions of an n element set. It is well known (see
e.g. [9]) that

2n logn−en log logn ≤ P (n) ≤ 2n logn−n log logn.

We will count the number fk(n) of graphs G ∈ Fk(n). Note that fk(n) ≥ P (n) follows by considering
each partition class as the vertex set of a star in G. This then immediately yields the lower bound
in Lemma 4.4. Now note that if we choose a partition of [n] into the vertex sets of disjoint suns in
G (for which there are at most 2n logn−n log logn choices), and then for every vertex choose whether
the vertex will be in the body of its sun or side of its sun (for which there are a total of 2n choices),
we can generate every possible graph G ∈ Fk(n) (note that some such graphs can be generated by
multiple different choices). This yields the upper bound in Lemma 4.4. �

Lemma 4.5. For k ≥ 4 and n > s ≥ 107,

ss/2 ≤ fk(n)

fk(n− s)
and

fk(n)

fk(n− 1)
≤ n2.

Proof. By Lemma 4.4, fk(n) ≥ fk(s)fk(n − s) ≥ 2s log s−es log log sfk(n − s) ≥ 2s log s/2fk(n − s),
which gives us the lower bound in the statement of the lemma.

For the upper bound, note that every graph in Fk(n) has a twin pair. For any twin pair i, j ∈ [n]
the number of graphs in Fk(n) for which i, j are twins is at most 2fk(n − 1), since every such
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graph can be obtained from a graph in Fk(n− 1) on vertex set [n] \ {i} by adding the vertex i and
choosing whether to add the edge ij (note that all other edges incident to i are prescribed, since
i, j are twins). Thus

fk(n) ≤
∑

0<i≤n−1

∑
i<j≤n

2fk(n− 1) ≤ n2fk(n− 1),

as required. �

The following proposition can be proved by a simple but tedious calculation, which we omit here.

Proposition 4.6. Let k, n ∈ N with n ≥ k ≥ 2 and let 0 < s < n.

(i) Suppose G is a k-partite graph on n vertices in which some vertex class A satisfies |A−n/k| ≥ s.
Then

e(G) ≤ tk(n)− s
(s

2
− k
)
.

(ii) tk−1(n) ≥ tk−1(n− s) + sn(k − 2)/(k − 1)− s(k − 2)− tk−1(s).
Lemma 4.7. Let k ≥ 4. There exists n0 ∈ N such that for every n ≥ n0 and every ordered
(k − 1)-partition Q of [n], the number of k-templates on Q satisfies

|TQ(n, k)| ≤ 26(logn)
2
2tk−1(n)fk (nk) ,

where we recall that nk := dn/(k − 1)e.
Proof. Denote the classes of Q by Q0, Q1, . . . , Qk−2 and let b := ||Q0| − d n

k−1e|. Then by

Proposition 4.6(i) the number of k-templates on this partition is at most

fk(|Q0|)2
∑

0≤i<j≤k−2 |Qi||Qj | ≤ fk (nk + b) 2tk−1(n)−b(b/2−(k−1)).

Let h(b) := fk(nk + b)2tk−1(n)−b(b/2−(k−1)). Then by Lemma 4.5,

h(b+ 1)

h(b)
≤
(

n

k − 1
+ b+ 2

)2

2−((2b+1)/2−(k−1)).

Thus h(b) is a decreasing function for b ≥ 3 log n. This together with Lemma 4.5 gives us that the
number of k-templates on Q is at most

h(b) ≤ fk (nk + 3 log n) 2tk−1(n) ≤ (n2)3 logn2tk−1(n)fk (nk)

= 26(logn)
2
2tk−1(n)fk (nk) ,

as required. �

We call a component of a graph non-trivial if it contains at least 2 vertices. The proof of
Lemma 4.9 will make use of the following proposition.

Proposition 4.8. Let k ≥ 4. There exists n0 ∈ N such that the following holds for every n ≥ n0.
Let Q be a balanced ordered (k− 1)-partition of [n]. The proportion of k-templates G on Q that are
such that G[Q0] has at most one non-trivial component is at most 2−n.

Proof. Since Q is balanced, the number of k-templates on Q is at least 2tk−1(n)fk(b n
k−1c).

We can generate all possible edge sets for G[Q0] such that G[Q0] has at most one non-trivial
component in the following way. Note that for every such G[Q0], G[Q0] contains at most one
disjoint sun S of order at least two. For every vertex in Q0 we choose whether it will belong to the
body of S, the side of S, or neither (for which there are a total of at most 3n choices). Hence the
number of k-templates G on Q that are such that G[Q0] has at most one non-trivial component is

at most 3n2tk−1(n).
Since we have by Lemma 4.4 that fk(m) ≥ 2m logm−em log logm for all m ∈ N, the result follows

(with some room to spare). �
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The following trivial observation will be useful in the proof of Lemma 4.9.

(4.1) If a graph G is a disjoint union of suns then G contains no induced 4-cycles.

Lemma 4.9. For every k ≥ 4 there exists n0 ∈ N such that the following holds for all n ≥ n0,
where we recall that nk := dn/(k − 1)e. The number of k-templates on vertex set [n] satisfies

|T (n, k)| ≥ (k − 1)n

2(k − 2)!nk
2tk−1(n)fk (nk) .

Proof. Choose n0 such that 1/n0 � 1/k, and let n ≥ n0. Given a k-template G on vertex set [n]
and an ordered (k− 1)-partition Q = (Q0, {Q1, . . . , Qk−2}) of [n], we say that G is Q-compatible if
G is a k-template on Q and the following hold:

(α) Whenever ` ≤ 2k and 0 ≤ i ≤ k − 2 and v1, v2, . . . , v` ∈ V (G) \Qi, we have that

|NQi({v1, v2, . . . , v`})| ≥
n

2`+1(k − 1)
.

(β) G[Q0] has at least 2 non-trivial components.

Claim 1: Given a balanced ordered (k − 1)-partition Q = (Q0, {Q1, . . . , Qk−2}) of [n], the number

of k-templates G on vertex set [n] that are Q-compatible is at least 2tk−1(n)−1fk(nk)/n
2.

Indeed, consider a random graph G where for each potential crossing edge with respect to Q we
choose the edge to be present or not, each with probability 1/2, independently; we let G[Q0] be
one of the fk(|Q0|) graphs in Fk(|Q0|), chosen uniformly at random; and we choose all edges to
be present inside Qi for every i > 0. So each k-template on Q is equally likely to be generated.
Note that the number of potential crossing edges with respect to Q is 2tk−1(n). This together with
Lemma 4.5 implies that the number of graphs in the probability space is at least 2tk−1(n)fk(nk)/n

2.
By Lemma 2.1(ii) and Proposition 4.8 respectively, we have that at least half of all graphs G in the
probability space satisfy (α) and (β), which proves the claim.

Claim 2: Given two balanced ordered (k − 1)-partitions Q = (Q0, {Q1, . . . , Qk−2}) and Q′ =
(Q′0, {Q′1, . . . , Q′k−2}) of [n], and a k-template G on [n] that is both Q-compatible and Q′-compatible,
there exist k vertices u0, v0, v1, . . . , vk−2 ∈ [n] that are such that G[{u0, v0, v1, . . . , vk−2}] contains
exactly one edge u0v0 and u0 ∈ Q0 ∩Q′0 and vi ∈ Qi ∩Q′i for all i ≥ 0.
To show this, we first choose a set of 2k vertices U = {u0,1, w0,1, u0,2, w0,2, u1, w1, . . . , uk−2, wk−2}
such that u0,1, w0,1, u0,2, w0,2 ∈ Q0 and ui, wi ∈ Qi for every i > 0 and

E(G[U ]) = {u0,1u0,2, u0,2w0,1, w0,1w0,2, w0,2u0,1, u1w1, . . . , uk−2wk−2}.

This is possible since G satisfies (α), (β) with respect to Q. Now if there exist distinct i, j > 0
such that ui, wi, uj , wj ∈ Q′0 then G[Q′0] contains the induced 4-cycle uiujwiwj , which by (4.1)
contradicts the fact that G is a k-template on Q′. So, by relabelling vertices if necessary, we may
assume that u2, . . . , uk−2 /∈ Q′0. If u0,1, w0,1 /∈ Q′0 then by the pigeon-hole principle there must
exist i > 0 such that Q′i contains at least 2 elements of {u0,1, w0,1, u2, . . . , uk−2}, contradicting the
assumption that G[Q′i] is a clique. So, by relabelling vertices if necessary, we may assume that

u0,1 ∈ Q′0, and similarly that u0,2 ∈ Q′0. Now if u1, w1 ∈ Q′0 then G[Q′0] contains the induced 4-cycle
u0,1u1u0,2w1, which by (4.1) contradicts the fact that G is a k-template on Q′. So, by relabelling
vertices if necessary, we may assume that u1 /∈ Q′0, and thus u1, . . . , uk−2 /∈ Q′0. Recall that for
all i > 0, G[Q′i] is a clique, so Q′i can contain at most one vertex in {u1, . . . , uk−2}. Thus we may
assume, by relabelling indices if necessary, that u0,1, u0,2 ∈ Q0∩Q′0 and ui ∈ Qi∩Q′i for every i > 0.
So setting u0 := u0,1, v0 := u0,2 and vi := ui for all i > 0 yields the required set of vertices.
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Claim 3: If there exist balanced ordered (k − 1)-partitions Q = (Q0, {Q1, . . . , Qk−2}) and Q′ =
(Q′0, {Q′1, . . . , Q′k−2}) of [n], and a k-template G on [n] that is both Q-compatible and Q′-compatible,
then Q = Q′.
Consider any k vertices u0, v0, . . . , vk−2 ∈ V (G) that are such that G[{u0, v0, v1, . . . , vk−2}] contains
exactly one edge u0v0 and u0 ∈ Q0 ∩ Q′0 and vi ∈ Qi ∩ Q′i for all i ≥ 0. Such vertices exist by
Claim 2. For i > 0 define

N i := NQi({u0, v0, . . . , vk−2} \ {vi}).

N
′
i := NQ′i

({u0, v0, . . . , vk−2} \ {vi}).

Since both N i and N
′
i are subsets of the common non-neighbourhood of {u0, v0, v1 . . . , vk−2} \ {vi},

neither can intersect Qj or Q′j for j /∈ {0, i}. Note that all vertices in N i are adjacent. Thus

|N i ∩Q′0| ≤ 1, since otherwise G[Q′0] contains an induced 4-cycle on u0, v0 together with 2 vertices

from N i, which by (4.1) contradicts the fact that G is a k-template on Q′. Similarly, |N ′i ∩Q0| ≤ 1.
Define

N
†
i := (N i ∪N

′
i) \ (Q0 ∪Q′0).

Then N
†
i ⊆ Qi ∩Q′i.

Now we consider any vertex w ∈ Q0. Since G satisfies (α) with respect to Q, we have that for
every i > 0,

|NQ′i
(w)| ≥ |N(w) ∩N †i | ≥ |N(w) ∩N i| − 1(4.2)

= |NQi({u0, v0, . . . , vk−2, w} \ {vi})| − 1 ≥ n

2k+1(k − 1)
− 1 ≥ 1.

Thus w must belong to Q′0, since G[Q′i] is a clique for every i > 0. Hence Q0 ⊆ Q′0. In the same
way we can show that Q′0 ⊆ Q0. Thus Q0 = Q′0.

Now we consider any vertex w ∈ Qj , for j > 0. Since G satisfies (α) with respect to Q, we have
(similarly to (4.2)) that for every i 6= j with i > 0,

|NQ′i
(w)| ≥ |N(w) ∩N †i | ≥ 1.

Thus w ∈ Q′0 ∪Q′j . Together with the fact that Q0 = Q′0 this implies that w ∈ Q′j . Thus Qj ⊆ Q′j
for all j > 0.

Hence Q = Q′, which proves the claim.

We now count the number of balanced ordered (k − 1)-partitions. Since the vertex classes of a
balanced ordered (k − 1)-partition of [n] have sizes d n

k−1e, d
n−1
k−1e, . . . , d

n−k+2
k−1 e, the number of such

(k − 1)-partitions is

1

(k − 2)!

(
n

d n
k−1e, d

n−1
k−1e, . . . , d

n−k+2
k−1 e

)
.

This together with Claims 1 and 3 implies that

(4.3) |T (n, k)| ≥ 1

2(k − 2)!n2

(
n

d n
k−1e, d

n−1
k−1e, . . . , d

n−k+2
k−1 e

)
2tk−1(n)fk(nk).

Now note that if a1 + · · · + ak−1 = n, then
(

n
a1,a2,...,ak−1

)
is maximized by taking aj := dn−j+1

k−1 e
for every j. This implies that

(k − 1)n =
∑

a1+···+ak−1=n

(
n

a1, a2, . . . , ak−1

)
≤ nk−2

(
n

d n
k−1e, d

n−1
k−1e, . . . , d

n−k+2
k−1 e

)
,

which together with (4.3) implies the result. �
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5. Properties of near-k-templates

In this section we collect some properties of graphs which are close to being k-templates. In
particular, when k ≥ 6, this means we consider graphs G which have a vertex partition such that
each vertex class induces on G an almost complete graph. (As in the previous section, we will need
the results of this section for our main results only for the case k ≥ 6, but we prove the results for
all k ≥ 4 since it makes little difference to the proofs.) More formally, given k ≥ 4, a graph G on
vertex set [n], and an ordered (k − 1)-partition Q of [n] we define

h(Q,G) :=

k−2∑
i=0

|E(G[Qi])|.

We say Q is an optimal ordered (k − 1)-partition of G if h(Q,G) is the minimum value h(Q′, G)
takes over all partitions Q′ of [n]. Note that if h(Q,G) = 0 then G is a k-template on Q, and that
the following also holds.

(5.1) If k ≥ 6 then every k-template G′ on Q satisfies h(Q,G′) ≤ n.

Note that (5.1) does not hold for k ∈ {4, 5}.
Given k ≥ 4, ν = ν(n) > 0 and an ordered (k − 1)-partition Q = (Q0, {Q1, . . . , Qk−2}) of [n], we

define the following properties that a graph on vertex set [n] may satisfy with respect to Q.

(F1)ν If Ui ⊆ Qi and Uj ⊆ Qj with |Ui||Uj | ≥ ν2n2 for distinct 0 ≤ i, j ≤ k − 2, then 1
4 ≤

|e(Ui,Uj)|
|Ui||Uj | ≤

3
4 .

(F2)ν ||Qi| − n
k−1 | ≤ νn for every 0 ≤ i ≤ k − 2.

Note that (F2)ν actually only concerns the partition Q rather than the graph itself.
We will now recall some definitions and introduce some further necessary notation.

• Recall that F (n, k) denotes the set of all labelled induced-C2k-free graphs on vertex set [n].
• Recall that T (n, k) denotes the set of all k-templates on n vertices.
• Recall that TQ(n, k) denotes the set of all k-templates on n vertices for which Q is an ordered

(k − 1)-partition.

Definition 5.1 (F (n, k, η), FQ(n, k), FQ(n, k, η) and FQ(n, k, η, µ)). For given n ∈ N, k ≥ 4 and
an ordered (k − 1)-partition Q = (Q0, {Q1, . . . , Qk−2}) of [n], we define the following.

• Given η > 0, we define F (n, k, η) ⊆ F (n, k) to be the set of all graphs in F (n, k) such that
h(Q,G) ≤ ηn2 for some optimal ordered (k − 1)-partition Q of G.
• We define FQ(n, k) ⊆ F (n, k) to be the set of all graphs in F (n, k) for which Q is an optimal

ordered (k − 1)-partition.
• Similarly we define FQ(n, k, η) ⊆ F (n, k, η) to be the set of all graphs in F (n, k, η) for which
Q is an optimal ordered (k − 1)-partition.
• Given η, µ > 0, we define FQ(n, k, η, µ) to be the set of all graphs in FQ(n, k, η) that satisfy

(F1)µ and (F2)µ together with Q.

Note that in the final definition, FQ(n, k, η, µ) = ∅ if Q does not satisfy (F2)µ. Recall that, given

a graph G on vertex set [n] and an index i ∈ {0, 1, . . . , k − 2}, we let diG,Q(x), d
i
G,Q(x) denote the

number of neighbours and non-neighbours of x in Qi, respectively. The following proposition follows
immediately from the definition of optimality.

Proposition 5.2. Let k ≥ 4, let η > 0, let Q = (Q0, {Q1, . . . , Qk−2}) be an ordered (k−1)-partition
of [n], and let G ∈ FQ(n, k, η). For any two distinct indices i, j ∈ {0, 1, . . . , k − 2} every vertex

x ∈ Qi satisfies d
j
G,Q(x) ≥ diG,Q(x).

Next we show that for most graphs which are close to being k-templates, the bipartite graphs
between the partition classes are quasirandom.
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Lemma 5.3. Let n ≥ k ≥ 4, let 0 < η < 1, let 6k/n ≤ ν = ν(n) ≤ 1, let 6 log n ≤ m = m(n) ≤
10−11n2, and let Q = (Q0, {Q1, . . . , Qk−2}) be an ordered (k−1)-partition of [n]. Then the following
hold.

(i) The number of graphs G in FQ(n, k, η) that fail to satisfy (F1)ν with respect to Q and that

have at most m internal non-edges is at most 2tk−1(n)+ξ(m/n
2)n2

22n+1 exp(−ν2n2/32).
(ii) The number of graphs G in FQ(n, k, η) that fail to satisfy (F2)ν with respect to Q and that

have at most m internal non-edges is at most 2tk−1(n)+ξ(m/n
2)n2

exp(−ν2n2/6).

Proof. For both (i) and (ii) we consider constructing such a graph G. By (2.1) there are at most(
n2

≤m
)
≤ 2ξ(m/n

2)n2
choices for the internal edges of G.

We first prove (i). For a given choice of internal edges, consider the random graph H where
for each possible crossing edge with respect to Q we choose the edge to be present or not, with
probability 1/2, independently. Note that the total number of ways to choose the crossing edges

is at most 2tk−1(n), and each possible configuration of crossing edges is equally likely. So an upper
bound on the number of graphs G ∈ FQ(n, k, η) that fail to satisfy property (F1)ν with respect to
Q and that have at most m internal non-edges is

(5.2) 2tk−1(n)+ξ(m/n
2)n2

P(H fails to satisfy (F1)ν with respect to Q).

Note that the number of choices for Ui ⊆ Qi, Uj ⊆ Qj with |Ui||Uj | ≥ ν2n2 is at most 22n and that
E(e(Ui, Uj)) = |Ui||Uj |/2 ≥ ν2n2/2. Hence by Lemma 2.1,

P(H fails to satisfy (F1)ν with respect to Q) ≤ 22n+1 exp

(
−ν

2n2

32

)
.

This together with (5.2) yields the result.
We now prove (ii). If ||Qi| − n

k−1 | > νn for some 0 ≤ i ≤ k − 2, then by Proposition 4.6(i) the
number of crossing edges in G is at most

tk−1(n)− ν2n2

3
.

We can conclude that the number of G ∈ FQ(n, k, η) that fail to satisfy (F2)ν with respect to Q
and that have at most m internal non-edges is at most

2ξ(m/n
2)n2

2tk−1(n)− ν
2n2

3 ≤ 2tk−1(n)+ξ(m/n
2)n2

exp

(
−ν

2n2

6

)
,

as required. �

We will apply the following special case of Lemma 5.3 in Section 8 in the proof of Lemma 6.1.

Corollary 5.4. Let k ≥ 4 and let 0 < η, µ < 10−11 be such that µ2 > 24ξ(η). There exists an
integer n0 = n0(µ, k) such that for all n ≥ n0 and every ordered (k − 1)-partition Q of [n],

|FQ(n, k, η) \ FQ(n, k, η, µ)| ≤ 2tk−1(n)−µ
2n2

100 .

Proof. We choose n0 such that 1/n0 � η, µ, 1/k. Applying Lemma 5.3 with µ, ηn2 playing the
roles of ν,m respectively yields that

|FQ(n, k, η) \ FQ(n, k, η, µ)| ≤ 2tk−1(n)+ξ(η)n
2
22n+1

(
e−

µ2n2

6 + e−
µ2n2

32

)
≤ 2tk−1(n)−µ

2n2

100 ,

as required. �
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The next proposition follows immediately from [4, Lemma 2.22]. We will use it to find induced
copies of C2k. (Usually T will be a suitable induced subgraph of C2k and the Ai, Bi will be the
intersection of (non-)neighbourhoods of vertices that we have already embedded.)

Proposition 5.5. Let n0, k ∈ N and η, µ > 0 be chosen such that k ≥ 4 and 1/n0 � η � µ� 1/k.
Then the following holds for all n ∈ N with n ≥ n0. Let Q = (Q0, {Q1, . . . , Qk−2}) be an ordered
(k− 1)-partition of [n] and suppose G ∈ FQ(n, k, η, µ). Let I ⊆ {0, 1, . . . , k− 2}. For every i ∈ I let

Ai, Bi ⊆ Qi be disjoint with |Ai|, |Bi| ≥ µ1/2n. Let T be a 2|I|-vertex graph with a perfect matching
whose edges are viui for every i ∈ I. Then there exists an injection f : V (T ) → V (G) such that
f(vi) ∈ Ai, f(ui) ∈ Bi for every i ∈ I, and f(V (T )) induces on G a copy of T .

Finally we show that if G is close to being a k-template then removing a small number of vertices
from G does not alter its optimal ordered (k − 1)-partition very much.

Given m,n ∈ N and an ordered (k− 1)-partition Q of [n], we define P(Q,m) to be the collection
of all ordered (k − 1)-partitions of [n] that can be obtained from Q by moving at most m vertices
between partition classes, and possibly choosing a different partition class to be the labelled one.
Then it is easy to see that

(5.3) |P(Q,m)| ≤ k
(
n

m

)
km ≤ k

(
ekn

m

)m
≤ 2m log(ek2n/m).

Given an ordered (k − 1)-partition Q of [n] and a set S ⊆ [n], let Q − S denote the ordered
(k − 1)-partition (possibly with some empty classes) obtained from Q by deleting all elements of S
from their partition classes.

Lemma 5.6. Let k ≥ 4, let 0 < η, µ ≤ 1/k3, let 0 < ν = ν(n) ≤ 1/k3, and let 0 ≤ m = m(n) ≤ n2
with ν2 > 4m/n2 for all n ∈ N. There exists n0 ∈ N such that the following holds for all n ≥ n0. Let
Q = (Q0, {Q1, . . . , Qk−2}) be an ordered (k−1)-partition of [n] and let S ⊆ [n] with |S| ≤ n/k2. Then
for every G ∈ FQ(n, k, η, µ) that satisfies (F1)ν with respect to Q and that has at most m internal
non-edges, every optimal ordered (k − 1)-partition of G− S is an element of P(Q− S, k4ν2n).

Proof. Let G ∈ FQ(n, k, η, µ) have at most m internal non-edges and satisfy (F1)ν with respect
to Q, and let Q′ = (Q′0, {Q′1, . . . , Q′k−2}) be an optimal ordered (k − 1)-partition of G − S. By
optimality of Q′ it must be that G− S has at most m internal non-edges with respect to Q′.

For every i ∈ {0, 1, . . . , k − 2}, since |Qi − S| ≥ n/(k − 1) − µn − n/k2 ≥ n/k, the pigeon-hole
principle implies that there exists j ∈ {0, 1, . . . , k − 2} such that |Qi ∩ Q′j | ≥ n/k2. We define a

function σ by setting σ(i) to be an index in {0, 1, . . . , k − 2} that satisfies |Qi ∩Q′σ(i)| ≥ n/k2, for

each i ∈ {0, 1, . . . , k − 2}. Suppose for a contradiction that there exists i′ ∈ {0, 1, . . . , k − 2} with
i 6= i′ such that |Qi′ ∩Q′σ(i)| ≥ k

2ν2n. Then since G satisfies (F1)ν with respect to Q we have that

the number of internal non-edges in G−S with respect to Q′ is at least |Qi∩Q′σ(i)||Qi′ ∩Q
′
σ(i)|/4 ≥

ν2n2/4 > m. This contradicts our previous observation that G−S has at most m internal non-edges
with respect to Q′. Hence σ is a permutation on {0, 1, . . . , k − 2}. Moreover |Qi ∩Q′j | < k2ν2n for

all j ∈ {0, 1, . . . , k − 2} with j 6= σ(i).
Let P be the set of all ordered (k−1)-partitions of [n]\S for which such a permutation exists. So by

the above we have that for every G ∈ FQ(n, k, η) that satisfies (F1)ν with respect to Q and that has
at most m internal non-edges, every optimal ordered (k−1)-partition of G−S is an element of P. So
it remains to show that P ⊆ P(Q−S, k4ν2n). This follows from the observation that every element
of P can be obtained by starting with the (labelled) (k − 1)-partition Q0 \ S,Q1 \ S, . . . , Qk−2 \ S,
applying a permutation of {0, 1, . . . , k− 2} to the partition class labels, then for every ordered pair
of partition classes moving at most k2ν2n elements from the first partition class to the second, and
finally unlabelling all but one of the resulting partition classes. �
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The following is an immediate corollary of Lemma 5.6, applied with µ, ηn2 playing the roles of
ν,m, respectively.

Corollary 5.7. Let k ≥ 4 and 0 < η, µ < 1/k3 with µ2 > 4η. There exists n0 ∈ N such that
the following holds for all n ≥ n0. Let Q = (Q0, {Q1, . . . , Qk−2}) be an ordered (k − 1)-partition
of [n] and let S ⊆ [n] with |S| ≤ n/k2. Then for every G ∈ FQ(n, k, η, µ), every optimal ordered
(k − 1)-partition of G− S is an element of P(Q− S, k4µ2n).

6. Derivation of Theorem 1.1 from the main lemma

The following lemma is the key result in our proof of Theorem 1.1. Together with Lemma 4.7 it
implies that, for k ≥ 6, almost all induced-C2k-free graphs G with a given optimal ordered (k − 1)-
partition are k-templates. Recall that nk := dn/(k − 1)e, that fk(n) and TQ(n, k) were defined at
the beginning of Section 4, and that FQ(n, k) was defined at the beginning of Section 5.

Lemma 6.1. For every n, k ∈ N with k ≥ 6 there exists C ∈ N such that the following holds. For
every ordered (k − 1)-partition Q of [n],

|FQ(n, k)| ≤ |TQ(n, k)|+ 5C2−n
1

2k2 /3fk(nk)2
tk−1(n).

Lemma 6.1 will be proved in the remaining sections of this paper. We will now use it to derive
Theorem 1.1.

Proof of Theorem 1.1. Let n0 ∈ N be as in Lemma 4.9, let C ∈ N be as in Lemma 6.1, let n1 ∈ N
satisfy 1/n1 � 1/k, let n ∈ N with n ≥ max{n0, n1}, and let Q be the set of all ordered (k − 1)-
partitions of [n]. Since T (n, k) ⊆ F (n, k) and TQ(n, k) ⊆ FQ(n, k) for every Q ∈ Q, Lemma 6.1
implies that

|F (n, k)| − |T (n, k)| = |F (n, k)\T (n, k)| ≤
∑
Q∈Q
|FQ(n, k) \ TQ(n, k)|

=
∑
Q∈Q

(|FQ(n, k)| − |TQ(n, k)|) ≤ 5C(k − 1)n2−n
1

2k2 /3fk(nk)2
tk−1(n)

≤ C2−n
1

2k2 /4 (k − 1)n

2(k − 2)!nk
fk(nk)2

tk−1(n).

The final inequality holds since n is sufficiently large. This together with Lemma 4.9 implies that

|F (n, k)| − |T (n, k)| ≤ C2−n
1

2k2 /4|T (n, k)| = o(|T (n, k)|),

where we use the little o notation with respect to n. So |F (n, k)| = (1 + o(1))|T (n, k)|, as required.
�

7. Estimation of |FQ(n, k, η, µ)|

Sections 7–8 are devoted to proving Lemma 6.1 by an inductive argument. For the remainder of
the paper we fix constants C, k, n0 ∈ N with k ≥ 6 and ε, η, µ, γ, β, α > 0 such that

(7.1)
1

C
� 1

n0
� ε� η � µ� γ � β � α� 1

k
.

We also set M := R2k−2(d 1γ e) + 1, fix an arbitrary integer n ≥ n0, and fix an arbitrary ordered

(k − 1)-partition Q = (Q0, {Q1, . . . , Qk−2}) of [n].
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We make the following inductive assumption in Section 7: for every n′ ≤ n−1, and every ordered
(k − 1)-partition Q′ = (Q′0, {Q′1, . . . , Q′k−2}) of [n′],

|FQ′(n′, k) \ TQ(n′, k)| ≤ 5C2−(n
′)

1
2k2 /3fk

(
n′k
)

2tk−1(n
′).

Note that this together with Lemma 4.7 implies that

(7.2) |FQ′(n′, k)| ≤ 6C26(logn
′)2fk

(
n′k
)

2tk−1(n
′).

We now give a number of definitions that will be used in the remaining sections. Given an index
i ∈ {0, 1, . . . , k − 2}, we call a vertex x of a graph G i-light if at least one of the following holds.

(A1) diG,Q(x) ≤ αn.

(A2) d
i
G,Q(x) ≤ αn.

(A3) There exists z ∈ V (G) such that |N∗i (x, z)|+ |N∗i (z, x)| ≤ αn.

(Intuitively, the neighbourhood in Qi of an i-light vertex is ‘atypical’, and this is unlikely to happen.)
Given ψ > 0 and an index i ∈ {0, 1, . . . , k − 2}, we call {x, y1, y2, y3} ⊆ V (G) a (k, x, i, ψ)-

configuration if it satisfies the following.

(C1) G[{x, y1, y2, y3}] is a linear forest.

(C2) d
j
G,Q(x) ≥ 13 · 6kψn for all j ∈ {0, 1, . . . , k − 2} \ {i}.

(C3) There exists i′ 6= i such that djG,Q(x) ≥ 13 · 6kψn for all j ∈ {0, 1, . . . , k − 2} \ {i, i′}.
(C4) min{diG,Q(yj), d

i
G,Q(yj)} ≤ ψ2n for all j ∈ [3].

(Intuitively, (C1)–(C3) of the definition of (k, x, i, ψ)-configurations are useful for ‘building’ induced
copies of C2k, so the existence of a (k, x, i, ψ)-configuration in an induced-C2k-free graph G severely
constrains the choices for the remaining edge set of G. The bounds arising from this are still not
sufficiently strong though; we also need (C4), which gives further constraints on the choices for the
remaining edge set of G.)

We partition FQ(n, k, η, µ) into the sets TQ, F
1
Q, F

2
Q, F

3
Q defined as follows.

(D0) TQ := TQ(n, k) ∩ FQ(n, k, η, µ).
(D1) F 1

Q ⊆ FQ(n, k, η, µ)\TQ is the set of all remaining graphs G which satisfy one of the following.

(i) G contains a (k, x, i, ψ)-configuration for some i ∈ {0, 1, . . . , k − 2}, some x ∈ V (G) and

some ψ ∈ {β1/2, β2}.
(ii) G contains a vertex x which is both i-light and j-light for some distinct indices i, j ∈
{0, 1, . . . , k − 2}.

(D2) F 2
Q ⊆ FQ(n, k, η, µ)\(TQ∪F 1

Q) is the set of all remaining graphs that for some i ∈ {0, 1, . . . , k−
2} contain a vertex x ∈ Qi that satisfies d

i
G,Q(x), diG,Q(x) ≥ βn.

(D3) F 3
Q := FQ(n, k, η, µ) \ (TQ ∪ F 1

Q ∪ F 2
Q) is the set of all remaining graphs.

Sections 7.1–7.3 are devoted to proving upper bounds on |F 1
Q|, |F 2

Q| and |F 3
Q| respectively. If Q

does not satisfy (F2)µ, then we have |FQ(n, k, η, µ)| = |F 1
Q| = |F 2

Q| = |F 3
Q| = 0, thus we assume

that Q satisfies (F2)µ throughout the remainder of this section. As mentioned earlier, it turns out
that F 3

Q consists of induced-C2k-free graphs which are ‘extremely close’ to being k-templates (see

Proposition 7.11). In Section 8 we will use the bounds on |F 1
Q|, |F 2

Q| and |F 3
Q| to complete the proof

of Lemma 6.1.

7.1. Estimation of |F 1
Q|. To estimate |F 1

Q| we will bound the number of graphs satisfying (D1)(i)

and (D1)(ii) separately. The main difficulty is in estimating those satisfying (D1)(i), i.e. the ones
containing a (k, x, i, ψ)-configuration. The idea here is that a (k, x, i, ψ)-configuration has many
potential extensions into an induced copy of C2k. More precisely, given a (k, x, i, ψ)-configuration
H we can find many disjoint ‘skeleton’ graphs L with the same number of components as H such



20 JAEHOON KIM, DANIELA KÜHN, DERYK OSTHUS, TIMOTHY TOWNSEND

that H∪L is a linear forest on 2k vertices (i.e. H∪L has a potential extension into an induced C2k).
Thus each skeleton induces a restriction on further edges that can be added. Since the skeletons
are disjoint we obtain many edge restrictions in total, and thus a good bound on the number of
graphs containing a (k, x, i, ψ)-configuration. The next two propositions are used to formalise the
notion of extendibility into an induced C2k. (Roughly, in these propositions one can consider L1 as
a (k, x, i, ψ)-configuration and L2 as an associated skeleton.)

Proposition 7.1. Let c ≥ 1 and let L1, L2 be disjoint linear forests, each with exactly c components,
such that |V (L1)| + |V (L2)| = 2k. Then there exists a set E′ of edges between V (L1) and V (L2)
such that the graph (V (L1) ∪ V (L2), E

′ ∪ E(L1) ∪ E(L2)) is isomorphic to C2k.

The proof of Proposition 7.1 is trivial, and is omitted. Proposition 7.2 follows from an easy
application of Proposition 7.1, and we give only a brief sketch of the proof.

Proposition 7.2. Let c ≥ 1 and let L1, L2 be linear forests that satisfy the following.

• V (L1) ∩ V (L2) = {x}.
• |V (L1)|, |V (L2)| > 1.
• dL1(x) + dL2(x) = 2.
• L1 and L2 − {x} both have exactly c components.
• |V (L1) ∪ V (L2)| = 2k.

Then there exists a set E′ of edges between V (L1)\{x} and V (L2)\{x} such that the graph (V (L1)∪
V (L2), E

′ ∪ E(L1) ∪ E(L2)) is isomorphic to C2k.

Proof. If dL1(x) = 0 we apply Proposition 7.1 to L1−x, L2; if dL2(x) = 0 we apply Proposition 7.1
to L1, L2 − x. If dL1(x) = dL2(x) = 1 one can easily find E′ directly. �

Lemma 7.3. |F 1
Q| ≤ C2

−β
2n

14k fk(nk)2
tk−1(n).

Proof. Let F 1
Q,(i) denote the set of all graphs in F 1

Q that satisfy (D1)(i). Similarly let F 1
Q,(ii)

denote the set of all graphs in F 1
Q that satisfy (D1)(ii). Clearly,

(7.3) |F 1
Q| ≤ |F 1

Q,(i)|+ |F
1
Q,(ii)|.

We will first estimate the number of graphs in F 1
Q,(i). Any graph G ∈ F 1

Q,(i) can be constructed as

follows. We first choose ψ ∈ {β2, β1/2}, and then perform the following steps.

• We choose an index i ∈ {0, 1, . . . , k− 2}, a set of three (labelled) vertices Y = {y1, y2, y3} in
[n], a vertex x ∈ [n]\Y , and a set E of edges between these four vertices such that Y ∪ {x}
spans a linear forest. Let b1 denote the number of such choices. The choices in the next
steps will be made such that Y ∪ {x} is a (k, x, i, ψ)-configuration in G.
• Next we choose the graph G′ on vertex set [n]\Y such that G[[n]\Y ] = G′. Let b2 denote

the number of possibilities for G′.
• Next we choose the set E′ of edges in G between Y and Qi\(Y ∪ {x}) such that E′ is

compatible with our previous choices. Let b3 denote the number of possibilities for E′.
• Finally we choose the set E′′ of edges in G between Y and [n]\(Qi ∪ Y ∪ {x}) such that E′′

is compatible with our previous choices. Let b4 denote the number of possibilities for E′′.

Hence,

(7.4) |F 1
Q,(i)| ≤ 2 max

ψ∈{β2,β1/2}
{b1 · b2 · b3 · b4} .

We then estimate the number of graphs in F 1
Q,(ii). Any graph G ∈ F 1

Q,(ii) can be constructed as

follows.
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• We first choose a single vertex x from [n] and distinct indices i, j ∈ {0, 1, . . . , k− 2}. Let c1
denote the number of such choices. The choices in the next steps will be made such that x
is both i-light and j-light in G.
• Next we choose the graph G′ on vertex set [n]\{x} such that G[[n]\{x}] = G′. Let c2 denote

the number of possibilities for G′.
• Next we choose the set E of edges in G between {x} and (Qi ∪ Qj)\{x} such that E is

compatible with our previous choices. Let c3 denote the number of possibilities for E.
• Finally we choose the set E′ of edges in G between {x} and [n]\(Qi ∪ Qj ∪ {x}). Let c4

denote the number of possibilities for E′.

Hence,

(7.5) |F 1
Q,(ii)| ≤ c1 · c2 · c3 · c4.

The following series of claims will give upper bounds for the quantities b1, . . . , b4, c1, . . . , c4. Claims 1
and 5 are trivial, while the proof of Claim 6 is almost identical to that of Claim 2; we give proofs
of Claims 2,3,4,7 and 8.

Claim 1: b1 ≤ 26kn4.

Claim 2: b2 ≤ C2µ
1/2nfk(nk)2

tk−1(n−3).

Indeed, note that for every graph G̃ ∈ F 1
Q,(i), Corollary 5.7 together with (5.3) implies that every

optimal ordered (k − 1)-partition of G̃[[n]\Y ] is contained in some set P of size at most 2µn. Since
G[[n]\Y ] is clearly induced-C2k-free, this together with (7.2) implies that

b2 ≤
∑
Q′∈P

|FQ′(n− 3, k)| ≤ 6C2µn26(logn)
2
fk(d(n− 3)/(k − 1)e)2tk−1(n−3)

≤ C2µ
1/2nfk(nk)2

tk−1(n−3),

as required.

Claim 3: b3 ≤ 24ψ
3/2n.

Indeed, for every graph G̃ ∈ F 1
Q,(i) for which {x, y1, y2, y3} is a (k, x, i, ψ)-configuration we have that

min{di
G̃,Q

(yj), d
i
G̃,Q(yj)} ≤ ψ2n for all j ∈ [3]. So b3 ≤

∏3
j=1 h(j) where h(j) denotes the number of

possibilities for a set of edges between {yj} and Qi\(Y ∪ {x}) such that either diG,Q(yj) ≤ ψ2n or

d
i
G,Q(yj) ≤ ψ2n. Note that by (2.1), h(j) ≤ 2

(
n
≤ψ2n

)
≤ 2ξ(ψ

2)n+1. Hence,

b3 ≤
3∏
j=1

h(j) ≤ (2ξ(ψ
2)n+1)3

(2.2)

≤ 24ψ
3/2n,

as required.

Claim 4: b4 ≤ 23(k−2)n/(k−1)2µ
1/2n2−ψn/11

k
.

Indeed, first define L to be the graph on vertex set Y ∪ {x} with edge set E. We say an induced
subgraph H of G′ − x is an L-compatible skeleton if it satisfies the following.

• |V (H)| = 2k − 4.
• G′[V (H) ∪ {x}] is a linear forest.
• In G′, x has 2− dL(x) neighbours in V (H).
• L and H have the same number of components.

Given an L-compatible skeleton H, note that Proposition 7.2, applied with L,G′[V (H) ∪ {x}]
playing the roles of L1, L2 respectively, implies that there exists a set EL,H of possible edges between
Y and V (H) such that (Y ∪ {x} ∪ V (H), E ∪ E(H) ∪ EL,H) is isomorphic to C2k.
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Q0 Q1 Q2 Q3 Q4

NG(x)

NG(x)

x

e

f

k = 6, i = 0, s = 1, t = 2, L = e ∪ f

Figure 2. L together with a copy of an L-compatible skeleton constructed in Case 2,
where `a = a for all a ∈ [4]

We will show that there exist a large number of disjoint L-compatible skeletons in G′ − x. Since
there are a limited number of ways to choose edges between Y and each of these L-compatible
skeletons so as not to create an induced copy of C2k, this will imply the claim.

For every index j 6= i, letN1
j (x), N2

j (x) ⊆ NQj (x) be disjoint with |N1
j (x)|, |N2

j (x)| ≥ b12 |NQj (x)|c.
Similarly, let N

1
j (x), N

2
j (x) ⊆ NQj (x) be disjoint with |N1

j (x)|, |N2
j (x)| ≥ b12 |NQj (x)|c.

Note that we may assume that there exists an index i′ ∈ {0, 1, . . . , k − 2}\{i} such that in
G′, |NQj (x)| ≥ 12 · 6kψn for all j ∈ {0, 1, . . . , k − 2}\{i} and |NQj (x)| ≥ 12 · 6kψn for all j ∈
{0, 1, . . . , k − 2}\{i, i′}, since otherwise {x, y1, y2, y3} cannot be a (k, x, i, ψ)-configuration. Define
`1, . . . , `k−2 such that {`1, . . . , `k−2} = {0, 1, . . . , k− 2}\{i} and `k−2 = i′. Thus the following hold.

(a) |N1
`j

(x)|, |N2
`j

(x)|, |N1
`j (x)|, |N2

`j (x)| ≥ 6 · 6kψn for all j ∈ {1, . . . , k − 3}.
(b) |N1

`k−2
(x)|, |N2

`k−2
(x)| ≥ 6 · 6kψn.

Recall that given a path P = p1 . . . pm and a sequence A1, . . . , Am of sets of vertices, we say that
P has type A1, . . . , Am if p` ∈ A` for every ` ∈ [m].

We now show that G′ − x contains at least 5 · 6kψn disjoint L-compatible skeletons. Define t
to be the number of components of L, and define s := dL(x). Then 1 ≤ t ≤ 4 and 0 ≤ s ≤ 2.
Note that t+ s ≥ 2, since a 4-vertex linear forest with one component contains no isolated vertices.
We consider two cases. In each case we will describe the length and type of t path components,
P 1, . . . , P t, each with an even number of vertices. Proposition 5.5 (applied repeatedly) together
with (a),(b) will then imply that G′ − x contains at least 5 · 6kψn disjoint L-compatible skeletons,
each consisting exactly of t components isomorphic to P 1, . . . , P t as in Figure 2. (We can apply
Proposition 5.5 to find an L-compatible skeleton here since in each case P 1 ∪ · · · ∪ P t will contain
a perfect matching. Each of the sets Ai, Bi in Proposition 5.5 will be a subset of some Na

`j
(x) or

some N
a
`j (x) which is obtained by deleting all vertices in previously built L-compatible skeletons

(for some a ∈ [2] and j ∈ [k − 2] determined by the type of the t path components).)

Case 1: s = 2.
• For 1 ≤ r ≤ t− 1, P r is a K2 of type N

1
`r(x), N

2
`r(x).

• P t is a P2k−2t−2 of type N
1
`t(x), N

2
`t(x), N

1
`t+1

(x), N
2
`t+1

(x), . . . , N
1
`k−2

(x), N
2
`k−2

(x).
Case 2: Either s = 1 or s = 0, t > 1.

• For 1 ≤ r ≤ 1− s, P r is a K2 of type N1
`r

(x), N
1
`r(x).

• P 2−s is a P2k−2t−2 of type N1
`2−s

(x), N
2
`2−s(x), N

1
`3−s(x), N

2
`3−s(x), . . . , N

1
`k−t−s

(x),

N
2
`k−t−s

(x).

• For 3− s ≤ r ≤ t, P r is a K2 of type N
1
`r+k−t−2

(x), N
2
`r+k−t−2

(x).
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Since t+ s ≥ 2, this covers all cases. Now fix a set SK of 5 ·6kψn disjoint L-compatible skeletons
in G′−x, and let H ∈ SK. Let hH denote the number of possibilities for a set E∗ of edges between
Y and V (H). Note that such a set E∗ cannot equal EL,H , since G needs to be induced-C2k-free.

Thus hH ≤ 2|Y ||V (H)| − 1 = 26(k−2) − 1. Note that by (F2)µ the number of vertices outside Qi that

are not contained in some graph H ∈ SK is at most (k− 2)n/(k− 1) +µn− 10(k− 2)6kψn. Hence,

b4 ≤ 23(k−2)n/(k−1)−30(k−2)6
kψn+3µn

∏
H∈SK

hH

≤ 23(k−2)n/(k−1)−30(k−2)6
kψn+3µn

(
26(k−2)

(
1− 2−6(k−2)

))5·6kψn
≤ 23(k−2)n/(k−1)23µne−5·6

kψn/(26(k−2)) ≤ 23(k−2)n/(k−1)2µ
1/2n2−ψn/11

k
,

as required.

Claim 5: c1 ≤ k2n.

Claim 6: c2 ≤ C2µ
1/2nf(nk)2

tk−1(n−1).

Claim 7: c3 ≤ 27ξ(α)n.
Indeed, for every graph G̃ ∈ F 1

Q,(ii) for which x is both i-light and j-light, we have that, for every

` ∈ {i, j}, either min{|NQ`(x)|, |NQ`(x)|} ≤ αn or else there exists a vertex z 6= x such that
|N∗` (x, z)|+ |N∗` (z, x)| ≤ αn.

For ` ∈ {i, j}, let h(`, 1) denote the number possibilities for a set of edges in G between {x} and

Q`\{x} such that min{|NQ`(x)|, |NQ`(x)|} ≤ αn. Then h(`, 1) ≤ 2
(
n
≤αn
)
≤ 2ξ(α)n+1. For ` ∈ {i, j},

let h(`, 2) denote the number possibilities for a set of edges between {x} and Q`\{x} such that there

exists a vertex z 6= x such that |N∗` (x, z)|+ |N∗` (z, x)| ≤ αn. Then h(`, 2) ≤ n
(|NQ` (z)|
≤αn

)(|NQ`
(z)|

≤αn
)
≤

23ξ(α)n.
Hence

c3 ≤ (h(i, 1) + h(i, 2))(h(j, 1) + h(j, 2)) ≤ (2ξ(α)n+1 + 23ξ(α)n)2 ≤ 27ξ(α)n,

as required.

Claim 8: c4 ≤ 2(k−3)n/(k−1)22µn.
Indeed, since the number of possible edges between {x} and [n]\(Qi ∪ Qj ∪ {x}) is at most (k −
3)n/(k − 1) + 2µn, we have that c4 ≤ 2(k−3)n/(k−1)+2µn, as required.

Now (7.4) together with Claims 1–4 and Proposition 4.6(ii) implies that

|F 1
Q,(i)|(7.6)

≤ 2 max
ψ∈{β2,β1/2}

{
26kn4 · C2µ

1/2nfk (nk) 2tk−1(n−3) · 24ψ3/2n · 2
3(k−2)n
k−1 2µ

1/2n2
− ψn

11k

}
≤ max

ψ∈{β2,β1/2}

{
Cfk(nk)2

tk−1(n−3)+ 3(k−2)n
k−1 2

− ψn

12k

}
≤ Cfk(nk)2tk−1(n)2

−β
2n

13k .

Similarly, (7.5) together with Claims 5–8 and Proposition 4.6(ii) implies that

|F 1
Q,(ii)| ≤ k

2n · C2µ
1/2nfk (nk) 2tk−1(n−1) · 27ξ(α)n · 2

(k−3)n
k−1 22µn(7.7)

≤ C2µ
1/3nfk(nk)2

tk−1(n−1)+ (k−2)n
k−1 2−

n
k−1 27ξ(α)n ≤ Cfk(nk)2tk−1(n)2−

n
k .
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Now (7.3) together with (7.6) and (7.7) implies that

|F 1
Q| ≤ Cfk(nk)2tk−1(n)

(
2
−β

2n

13k + 2−
n
k

)
≤ Cfk(nk)2tk−1(n)2

−β
2n

14k ,

as required. �

7.2. Estimation of |F 2
Q|. Given G ∈ F 2

Q ∪ F 3
Q and i ∈ {0, 1, . . . , k − 2}, let

AiG := {x ∈ Qi : d
i
G,Q(x), diG,Q(x) ≥ βn}.

The key result of this section (Lemma 7.8) states that AiG has bounded size. To prepare for this, we
will classify the pairs of vertices in AiG according to their (non-)neighbourhood intersection pattern.
The fact that G /∈ F 1

Q allows us to observe some restrictions on these patterns (see Propositions 7.6

and 7.7). In the proof of Lemma 7.8 we use a Ramsey argument to restrict our view to one
abundant type of pattern. This quickly leads to a contradiction if |AiG| is large. Using the fact that
G /∈ F 1

Q we show that the remainder of each class (i.e. G[Qi\AiG]) induces a very simple structure

(Proposition 7.5). We translate this structural information into a sufficiently strong bound on the
number of graphs in F 2

G, in Lemma 7.10.
Let L denote the collection of all 4-vertex linear forests. The following proposition is an analogue

of Proposition 3.8(i) that can be applied to graphs rather than 2-coloured multigraphs. It follows
immediately from Proposition 3.8(i).

Proposition 7.4. Let G be a graph such that for every H ∈ L, G is induced H-free. Then G is a
disjoint union of stars and triangles.

Proposition 7.5. Let G ∈ F 2
Q ∪ F 3

Q and i ∈ {0, 1, . . . , k − 2}. Then G[Qi \AiG] is a disjoint union
of stars and triangles.

Proof. Suppose for a contradiction that G[Qi \AiG] is not a disjoint union of stars and triangles.

Then Proposition 7.4 implies that G[Qi \ AiG] contains an induced copy of a graph in L, with

vertex set {x, y1, y2, y3} say. We will show that {x, y1, y2, y3} is a (k, x, i, β1/2)-configuration, which
contradicts the fact that G /∈ F 1

Q. Note that G[{x, y1, y2, y3}] is a linear forest, and so {x, y1, y2, y3}
satisfies (C1). By the definition of AiG we have that min{diG,Q(yj), d

i
G,Q(yj)} ≤ βn for all j ∈ [3], and

so {x, y1, y2, y3} satisfies (C4). Since G /∈ F 1
Q, x is j-light for at most one index j ∈ {0, 1, . . . , k−2}.

Since x ∈ Qi \AiG, x is i-light. Thus for every j ∈ {0, 1, . . . , k− 2} with i 6= j we have that x is not

j-light, and hence djG,Q(x), d
j
G,Q(x) > αn > 13 · 6k · β1/2n, and so {x, y1, y2, y3} satisfies (C2) and

(C3). Therefore {x, y1, y2, y3} is a (k, x, i, β1/2)-configuration, as required. �

The following definitions will be useful in order to show that |AiG| is small. Suppose S is a star
or triangle. If S is a star on at least three vertices, we call the unique vertex in S of degree greater
than one the centre of S. Otherwise we call the vertex of S with the smallest label the centre of S.

Let G ∈ F 2
Q ∪ F 3

Q and i, j ∈ {0, 1, . . . , k − 2} and let x, y ∈ AiG.

• We say x, y are j-irregular if |N j({x, y})| ≤ γn.
• We say x, y are j-asymmetric if |N∗j (x, y)|+ |N∗j (y, x)| > 3γn and either |N∗j (x, y)| ≤ γn or

|N∗j (y, x)| ≤ γn.

• We say x, y are j-identical if |N∗j (x, y)|+ |N∗j (y, x)| ≤ 3γn.

Roughly speaking, if one of the above holds then the neighbourhoods of x, y do not behave in a
‘random’ like way (thus constraining the number of possibilities for choosing the neighbourhoods).
The following statement follows immediately from the above definitions and the fact that γ � α.

(7.8) If x, y are j-identical then x, y are both j-light.
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Proposition 7.6. Let G ∈ F 2
Q ∪ F 3

Q and i ∈ {0, 1, . . . , k − 2} and let x, y ∈ AiG. Then x, y are

j-identical for at most one index j ∈ {0, 1, . . . , k − 2}.

Proof. Suppose x, y are j-identical for some j ∈ {0, 1, . . . , k−2} and suppose j′ ∈ {0, 1, . . . , k−2}
with j′ 6= j. It suffices to show that x, y are not j′-identical. Note that x is j-light by (7.8). Since
G /∈ F 1

Q, x is j′′-light for at most one index j′′ ∈ {0, 1, . . . , k − 2}. Thus x is not j′-light, and hence

by (7.8) x, y are not j′-identical, as required. �

Proposition 7.7. Let G ∈ F 2
Q ∪ F 3

Q and i ∈ {0, 1, . . . , k − 2} and let x, y ∈ AiG. Then there exists

an index j ∈ {0, 1, . . . , k − 2} such that x, y are j-irregular or j-asymmetric (or both).

Proof. Suppose for a contradiction that for every index ` ∈ {0, 1, . . . , k − 2}, x, y are neither
`-irregular nor `-asymmetric. Since, by Proposition 7.6, x, y are j-identical for at most one index j,
and k ≥ 6, we may assume without loss of generality that x, y are not `-identical for ` ∈ {1, 2, 3}.
We consider the following two cases.

Case 1: x, y are adjacent.
In this case we define sets A`, B` for ` ∈ {0, 1, . . . , k−2} as follows. We will use these sets to extend
x, y into an induced copy of C2k.

• Let A1 := N∗1 (x, y) and B1 := N1({x, y}).
• Let A2 := N∗2 (y, x) and B2 := N2({x, y}).
• For every ` ∈ {0, 1, . . . , k − 2}\{1, 2}, let A`, B` ⊆ N `({x, y}) be disjoint and satisfy
|A`|, |B`| ≥ b|N `({x, y})|/2c.

Since for every ` ∈ {0, 1, . . . , k − 2} x, y are neither `-irregular nor `-asymmetric, and for every
` ∈ {1, 2} x, y are not `-identical, we have that |A`|, |B`| ≥ γn/3 for every ` ∈ {0, 1, . . . , k−2}. This
together with Proposition 5.5 and the fact that µ � γ implies that there exists in G an induced
copy of P2k−2 of type A1, B1, A0, B0, A3, B3, . . . , Ak−2, Bk−2, B2, A2. By the definition of the sets
A`, B`, the vertices of this P2k−2 together with x, y induce on G a copy of C2k. This contradicts the
fact that G ∈ FQ(n, k).

Case 2: x, y are not adjacent.
In this case we define sets A`, B` for ` ∈ {0, 1, . . . , k − 2} as follows. Similarly to the previous case,
we will find an induced C2k which contains x, y together with exactly one vertex from each of these
sets.

• Let A1 := N∗1 (x, y) and B1 := N∗1 (y, x).
• Let A2 := N∗2 (x, y) and B2 := N2({x, y}).
• Let A3 := N∗3 (y, x) and B3 := N3({x, y}).
• For every ` ∈ {0, 1, . . . , k − 2}\{1, 2, 3}, let A`, B` ⊆ N `({x, y}) be disjoint and satisfy
|A`|, |B`| ≥ b|N `({x, y})|/2c.

Since for every ` ∈ {0, 1, . . . , k − 2} x, y are neither `-irregular nor `-asymmetric, and for every
` ∈ {1, 2, 3} x, y are not `-identical, we have that |A`|, |B`| ≥ γn/3 for every ` ∈ {0, 1, . . . , k − 2}.
As before, this together with Proposition 5.5 implies that there exists in G an induced copy of the
graph H that consists of the following two components:

• One P2k−4 of type A2, B2, A0, B0, A4, B4, . . . , Ak−2, Bk−2, B3, A3.
• One K2 of type A1, B1.

By the definition of the sets A`, B`, the vertices of H together with x, y induce on G a copy of C2k.
This contradicts the fact that G ∈ FQ(n, k).

This covers all cases, and hence completes the proof. �
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Recall from Section 6 that M := R2k−2(d 1γ e) + 1.

Lemma 7.8. Let G ∈ F 2
Q ∪ F 3

Q and i ∈ {0, 1, . . . , k − 2}. Then |AiG| < M .

Proof. Suppose for a contradiction that |AiG| ≥M . Consider an auxiliary complete graph Hi with
V (Hi) = AiG. We define a (2k−2)-edge-colouring C of Hi with colours {a0, b0, a1, b1, . . . , ak−2, bk−2}
as follows.

• For every j ∈ {0, 1, . . . , k − 2}, an edge xy ∈ E(H) is coloured aj if x, y are j-irregular and
for every j′ ∈ {0, 1, . . . , k − 2} with j′ < j, x, y are not j′-irregular.
• An edge xy ∈ E(H) that was not coloured in the previous step is coloured bj if x, y are
j-asymmetric, and for every j′ ∈ {0, 1, . . . , k − 2} with j′ < j, x, y are not j′-asymmetric.

Note that by Proposition 7.7, every edge is coloured by a unique colour in C.
Now since M > R2k−2(d1/γe), Hi contains a monochromatic clique of size at least 1/γ. Let

X = {x1, x2, . . . , xd1/γe} be the vertex set of such a monochromatic clique. We consider the following
two cases.

Case 1: X has colour aj for some j ∈ {0, 1, . . . , k − 2}.
In this case every pair of vertices inX is j-irregular, by definition of C. LetX ′ := {x1, x2, . . . , xdβ/2γe}
and suppose z, z′ ∈ X ′. By the definition of j-irregularity, |N j(z) ∩ N j(z

′)| ≤ γn. Note also that

|N j(z)| ≥ βn by Proposition 5.2 and the fact that z ∈ AiG. So by the inclusion-exclusion principle,

2n/(k − 1) ≥ n/(k − 1) + µn ≥ |Qj | ≥
∑
z∈X′

|N j(z)| −
∑

z,z′∈X′
z 6=z′

|N j(z) ∩N j(z
′)|

≥ βdβ/2γen− dβ2/(4γ2)eγn ≥ β2n/5γ > 2n/(k − 1),

where the last inequality follows from the fact that γ � β. This is a contradiction.

Case 2: X has colour bj for some j ∈ {0, 1, . . . , k − 2}.
In this case every pair of vertices in X is j-asymmetric, by definition of C. Suppose `, `′ ∈ [d1/γe]
are distinct. By the definition of j-asymmetry, exactly one of the following holds.

(a) |N∗j (x`, x`′)| ≤ γn and |N∗j (x`′ , x`)| > 2γn.

(b) |N∗j (x`′ , x`)| ≤ γn and |N∗j (x`, x`′)| > 2γn.

Consider the auxiliary tournament T with V (T ) = X and E(T ) = {−−−→x`x`′ : `, `′ satisfy (a)}. By
Redei’s theorem every tournament contains a directed Hamilton path. So, by relabelling the indices
if necessary, we may assume that −−−−→x`x`+1 ∈ E(T ) for every ` ∈ [d1/γe − 1]. Thus for every ` ∈
[d1/γe − 1],

|N j(x`+1)| = |
(
N j(x`) \N∗j (x`+1, x`)

)
∪N∗j (x`, x`+1)| ≤ |N j(x`)| − 2γn+ γn ≤ |N j(x`)| − γn.

Hence,

|N j(xd1/γe)| ≤ |N j(x1)| −
(

1

γ
− 1

)
· γn ≤ |Qj | − (1− γ)n < 0,

which is a contradiction.

This covers all cases, and hence completes the proof. �

Suppose G ∈ F 2
Q and i ∈ {0, 1, . . . , k − 2}. By Proposition 7.5, G[Qi \ AiG] is a disjoint union

of stars and triangles. Let S be the set of components of G[Qi \ AiG] with the largest number of
vertices. Let S� be the component in S whose centre c has the smallest label. Define Yi = Yi(G,Q)
to be the set of all isolated vertices in G[Qi \AiG] together with all vertices in V (S�)\{c}.
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Lemma 7.9 shows that Yi is large. This guarantees a large set of vertices in each class Qi (namely
Yi) which have an extremely restricted (non-)neighbourhood. This will be the key idea in our
estimation of |F 2

Q| in the proof of Lemma 7.10.

Lemma 7.9. Let G ∈ F 2
Q and i ∈ {0, 1, . . . , k − 2}. Then |Yi| ≥ 10n/ log n.

Proof. Define s := d10n/ log ne. Suppose for a contradiction that |Yi| < s. Since G ∈ F 2
Q, there

exists an index i′ ∈ {0, 1, . . . , k− 2} such that |Ai′G| > 0. Let x ∈ Ai′G. The definition of Ai
′
G together

with Proposition 5.2 implies that |NQj (x)| ≥ βn for every j ∈ {0, 1, . . . , k− 2}. This together with

Lemma 7.8 implies that |NQi(x) \AiG| ≥ βn−M > 2s. Also, since |Yi| < s, at most s components

in G[Qi \ AiG] are isolated vertices and every component in G[Qi \ AiG] has order at most s. Thus

there are at least two non-trivial components S, S′ of G[Qi \AiG] that each contain a non-neighbour
of x.

Since S is a non-trivial component of G[Qi \AiG] there exist vertices y, y′ ∈ S such that xy, yy′ /∈
E(G[Qi]). Let y′′ ∈ S′ be such that xy′′ /∈ E(G[Qi]). Since y′′ belongs to a different component of
G[Qi \AiG] to y and y′, it follows that yy′′, y′y′′ ∈ E(G[Qi]). Thus,

(7.9) E(G[{x, y, y′, y′′}]) ∈ {{yy′′, y′y′′}, {xy′, yy′′, y′y′′}}.

Claim: {x, y, y′, y′′} is a (k, x, i, β2)-configuration.
Indeed, by (7.9), G[{x, y, y′, y′′}] is a linear forest and so {x, y, y′, y′′} satisfies (C1). As observed

above, d
j
G,Q(x) ≥ βn > 13 · 6kβ2n for every j ∈ {0, 1, . . . , k − 2}, and so {x, y, y′, y′′} satisfies (C2).

Since G /∈ F 1
Q, there do not exist distinct j, j′ ∈ {0, 1, . . . , k − 2} such that x is both j-light and

j′-light. So there exists j ∈ {0, 1, . . . , k − 2} such that for every j′ ∈ {0, 1, . . . , k − 2} with j′ 6= j,

dj
′

G,Q(x) > αn > 13 · 6kβ2n, and so {x, y, y′, y′′} satisfies (C3). Since S, S′ each contain at most s

vertices, y, y′, y′′ each have at most s non-neighbours in G[Qi \AiG]. This together with Lemma 7.8
implies that y, y′, y′′ each have at most s+M ≤ β4n non-neighbours in G[Qi], and so {x, y, y′, y′′}
satisfies (C4). Hence {x, y, y′, y′′} is a (k, x, i, β2)-configuration, as required.

The above claim contradicts the fact that G /∈ F 1
Q, and hence completes the proof. �

We can now combine the previous observations and bounds to estimate |F 2
Q|.

Lemma 7.10. |F 2
Q| ≤ C2−nfk(nk)2

tk−1(n).

Proof. Define s := d10n/ log ne. Since by Lemma 7.9 |Yi(G,Q)| ≥ s for every graph G ∈ F 2
Q, any

graph G ∈ F 2
Q can be constructed as follows.

• First we choose sets S` ⊆ Q` such that |S`| = s, for every ` ∈ {0, 1, . . . , k−2}. Let b1 denote
the number of such choices.
• Next we choose the graph G′ on [n]\

⋃
`∈{0,1,...,k−2} S` such that G[[n]\

⋃
`∈{0,1,...,k−2} S`] =

G′. Let b2 denote the number of possibilities for G′.
• Next we choose the set E′ of internal edges of G that are incident to at least one vertex

in
⋃
`∈{0,1,...,k−2} S` in such a way that the resulting graph G will satisfy S` ⊆ Y`(G,Q) for

every ` ∈ {0, 1, . . . , k − 2}. Let b3 denote the number of possibilities for E′.
• Finally we choose the set E′′ of crossing edges of G that are incident to at least one vertex

in
⋃
`∈{0,1,...,k−2} S`. Let b4 denote the number of possibilities for E′′.

Hence,

(7.10) |F 2
Q| ≤ b1 · b2 · b3 · b4.

The following series of claims will give upper bounds for the quantities b1, . . . , b4. The proof of
Claim 2 is almost identical to that of Claim 2 in Lemma 7.3; we give proofs of the others.
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Claim 1: b1 ≤ 2n.
Indeed,

b1 ≤
(

n⌈
10n
logn

⌉)k−1 ≤ ((e log n

10

) 10n
logn

)k−1
≤ 2n,

as required.

Claim 2: b2 ≤ C2µ
1/2nfk(dn/(k − 1)− se)2tk−1(n−(k−1)s).

Claim 3: b3 ≤ 2n.
Indeed, for every graph G∗ ∈ F 2

Q for which S` ⊆ Y`(G
∗, Q) for every ` ∈ {0, 1, . . . , k − 2}, let

G∗B,` := G∗[Q`\A`G∗ ]. Then each S` consists of isolated vertices in G∗B,` as well as non-centre

vertices of a single component C̃ of G∗B,`. (Note that C̃ is a star or triangle in G∗B,`, with some

centre u ∈ Q` \ (A`G∗ ∪ S`).) By Lemma 7.8, we also have that |A`G∗ | ≤M .

Hence b3 ≤
∏k−2
`=0

∏3
j=1 h(`, j), where the quantities h(`, j) are defined as follows. Let h(`, 1)

denote the number of ways to choose a set Ã` ⊆ Q`\S` of size at most M . (In what follows Ã` will

play the role of AiG.) Then h(`, 1) ≤ nM . Given such a set Ã`, let h(`, 2) denote the number of ways

to choose C̃. Then h(`, 2) ≤ n2|S`| + n3 ≤ n2s+1. (Indeed, if C̃ is a star we have at most n choices

for the centre u, and for every vertex v ∈ S` we can choose whether v is adjacent to u or not; if C̃
is a triangle we have at most n3 choices for its vertices.) Given a set Ã` as above, let h(`, 3) denote

the number of possible sets of edges between S` and Ã`. Then h(`, 3) ≤ 2|S`||Ã
`| ≤ 2sM . Hence

b3 ≤
k−2∏
`=0

3∏
j=1

h(`, j) ≤ (nM · n2s+1 · 2sM )k−1 ≤ 2n,

as required.

Claim 4: b4 ≤ 2(k−2)sn−(k−1
2 )s2 .

Indeed, note that, for a fixed index ` ∈ {0, 1, . . . , k− 2}, the number h` of possible crossing edges in
G that are incident to a vertex in S` is at most s(n− |Q`|). Also, the number of possible crossing

edges in G that are incident to two vertices in
⋃
`∈{0,1,...,k−2} S` is exactly

(
k−1
2

)
s2. Hence,

b4 ≤ 2
∑k−2
`=0 h`2−(k−1

2 )s2 ≤ 2(k−2)sn−(k−1
2 )s2 ,

as required.

Note that tk−1(s(k − 1)) =
(
k−1
2

)
s2 and that by Lemma 4.5, fk(nk) ≥ ss/2fk(dn/(k − 1) − se) ≥

24nfk(dn/(k− 1)− se). These observations together with (7.10), Claims 1–4 and Proposition 4.6(ii)
imply that

|F 2
Q| ≤ 2n · C2µ

1/2nfk(dn/(k − 1)− se)2tk−1(n−(k−1)s) · 2n · 2(k−2)sn−(k−1
2 )s2

≤ C23n2−4nfk(nk)2
tk−1(n−(k−1)s)+(k−2)sn−s(k−1)(k−2)−tk−1(s(k−1))

≤ C2−nfk(nk)2
tk−1(n),

as required. �

7.3. Estimation of |F 3
Q|. The information we have gained so far allows us to easily deduce that

every G ∈ F 3
Q is extremely close to being a k-template (see Proposition 7.11). One advantage of

this is that it allows us to use more precise estimates when applying induction (see Corollary 7.12).

Proposition 7.11. Let G ∈ F 3
Q and i ∈ {0, 1, . . . , k − 2}. Then the following hold.
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(i) G[Qi] is a disjoint union of stars and triangles.
(ii) G contains at most n internal non-edges.

(iii) Every vertex x ∈ Qi satisfies d
i
G,Q(x) < βn.

Proof.

(i) Since G /∈ F 2
Q, every vertex x ∈ Qi satisfies min{diG,Q(x), d

i
G,Q(x)} < βn. Thus AiG = ∅, and

so by Proposition 7.5, G[Qi] is a disjoint union of stars and triangles.
(ii) This follows immediately from (i).

(iii) Let x ∈ Qi. Let us first show that diG,Q(x) ≥ βn. Suppose not. Then d
i
G,Q(x) = |Qi| −

diG,Q(x)− 1 > |Qi| − βn− 1 ≥ n/(k− 1)− µn− βn− 1 since Q satisfies (F2)µ. Thus for every

j ∈ {0, 1, . . . , k − 2} with j 6= i, Proposition 5.2 implies that

djG,Q(x) = |Qj | − d
j
G,Q(x) ≤ |Qj | − d

i
G,Q(x) <

(
n

k − 1
+ µn

)
−
(

n

k − 1
− µn− βn− 1

)
= βn+ 2µn+ 1 < αn,

where the last inequality follows from the fact that µ, β � α. Thus x is both i-light and
j-light, which contradicts the fact that G /∈ F 1

Q. Thus diG,Q(x) ≥ βn. This together with the

fact (observed in the proof of (i), above) that AiG = ∅ implies that d
i
G,Q(x) < βn, as required.

�

Recall the definition of property (F1)ν in Section 5. We define T ∗Q(n, k) ⊆ F 3
Q to be the set

of all (labelled) graphs in F 3
Q that satisfy property (F1)(40n logn)1/2/n with respect to Q. Proposi-

tion 7.11(ii) together with Lemma 5.3(i) applied with (40n log n)1/2/n, n playing the roles of ν,m
respectively implies that

(7.11) |F 3
Q \ T ∗Q(n, k)| ≤ 2tk−1(n)−n logn/5.

So (7.11) allows us to restrict our attention to the class T ∗Q(n, k). In particular, this allows us to

apply property (F1)ν to much smaller vertex sets than in the preceding sections. This in turn gives
us a much better bound on the number of partitions that may arise after deleting a small number
of vertices. More precisely, Lemma 5.6 applied with (40n log n)1/2/n, n playing the roles of ν,m
respectively implies the following result. Recall that P(Q, s) was defined before (5.3).

Corollary 7.12. Let S ⊆ [n] with |S| ≤ n/k2. Then for every G ∈ T ∗Q(n, k), every optimal ordered

(k − 1)-partition of G− S is an element of P(Q− S, 40k4 log n).

In order to estimate |T ∗Q(n, k)| (and thus |F 3
Q|) we will further split T ∗Q(n, k) into four classes

A1, . . . ,A4. To define these classes we require some further notation. We say that G contains a
(6, 3)-forest with respect to Q if there exist distinct indices i, j ∈ {0, 1, . . . , k − 2} such that there
exist six vertices in Qi ∪ Qj that induce on G a linear forest with at most three components. A
(6, 3)-forest has potential extensions into an induced C2k, so its existence in every G ∈ A3 (see
below) constrains the possible edge sets for G (and thus the number of choices for G). To obtain
a significant constraint on the possible edge sets however, we first need to exclude the situations
that arise in the classes A1 and A2, described below. These involve the structure of the stars of the
complement graph inside the vertex classes, so to describe these classes of graphs recall that the
centres of stars and triangles were defined before Proposition 7.6. Given a graph G ∈ F 3

Q and an

index i ∈ {0, 1, . . . , k − 2} we define the following sets.

• Ci(G,Q) is the set of all centres of triangles and non-trivial stars in G[Qi].

• Cihigh(G,Q) is the set of all centres of stars in G[Qi] of order at least n1−
1

2k2 /200k2.
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y1

y2

y3

x

Qi Qj

Bi
low

C(N({y1, y2, y3}) ∩Bi
low)

Figure 3. An illustration of G for G ∈ A2. Note that (7.12) implies that at most
one of xy1, xy2 is an edge in G.

• Bi
high(G,Q) is the set of all vertices in Qi which have a non-neighbour in Cihigh.

• Cilow(G,Q) is the set of all centres of triangles and non-trivial stars in G[Qi] of order less

than n1−
1

2k2 /200k2.
• Bi

low(G,Q) is the set of all vertices in Qi which have a non-neighbour in Cilow.

• Ci0(G,Q) is the set of all isolated vertices in G[Qi].

We may sometimes write Ci for Ci(G,Q) when the graph G and ordered (k − 1)-partition Q
we consider are clear from the context (and similarly for Cihigh, B

i
high, C

i
low, B

i
low, C

i
0). Note that

Proposition 7.11(i) implies that Cihigh, B
i
high, C

i
low, B

i
low, C

i
0 form a partition of Qi. Given a subset

B ⊆ Bi
low, we denote by C(B) the set of all vertices in Cilow that have a non-neighbour in B.

We partition T ∗Q(n, k) into the sets A1, . . . ,A4 defined as follows.

• A1 is the set of all graphs G ∈ T ∗Q(n, k) for which there exist distinct indices i, j ∈
{0, 1, . . . , k − 2} such that |Bi

low| ≥ n/2k2 and there exist distinct vertices y1, y2, y3 ∈ Qj
that satisfy |N({y1, y2, y3}) ∩Bi

low| ≤ n/200k2.
• A2 is the set of all graphs G ∈ T ∗Q(n, k) \ A1 for which there exist distinct indices i, j ∈
{0, 1, . . . , k − 2} such that |Bi

low| ≥ n/2k2 and there exist distinct vertices y1, y2, y3 ∈ Qj
with y1, y2 /∈ Cj(G,Q) that satisfy

(7.12) C(N({y1, y2, y3}) ∩Bi
low) ∩N({y1, y2}) = ∅.

(See Figure 3.)
• A3 is the set of all graphs G ∈ T ∗Q(n, k) \ (A1 ∪A2) such that G contains a (6, 3)-forest with

respect to Q.
• A4 := T ∗Q(n, k) \ (A1 ∪ A2 ∪ A3) is the set of all remaining graphs.

We will estimate the sizes of A1, . . . ,A4 separately. Lemma 7.13 below gives a bound on |A1|. The
idea of the proof of Lemma 7.13 is that in this case the neighbourhoods of y1, y2, y3 are ‘atypical’,
and hence a Chernoff estimate (see Claim 4) shows that graphs in A1 are rare.

Lemma 7.13. |A1| ≤ C2−n/150k
2
fk(nk)2

tk−1(n).

Proof. Any graph G ∈ A1 can be constructed as follows.

• First we choose distinct indices i, j ∈ {0, 1, . . . , k−2}, distinct vertices y1, y2, y3 ∈ Qj , and a
set E of edges between y1, y2, y3. Let b1 denote the number of such choices. The choices in
the next steps will be made such thatG satisfies |Bi

low| ≥ n/2k2 and |N({y1, y2, y3})∩Bi
low| ≤

n/200k2.
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• Next we choose the graph G′ on vertex set [n]\{y1, y2, y3} such that G[[n]\{y1, y2, y3}] = G′.
Let b2 denote the number of possibilities for G′.
• Next we choose the set E′ of edges in G between {y1, y2, y3} and Qj\{y1, y2, y3}. Let b3

denote the number of possibilities for E′.
• Finally we choose the set E′′ of edges in G between {y1, y2, y3} and [n]\Qj such that E′′ is

compatible with our previous choices. Let b4 denote the number of possibilities for E′′.

Hence,

(7.13) |A1| ≤ b1 · b2 · b3 · b4.
The following series of claims will give upper bounds for the quantities b1, . . . , b4. Claim 1 is trivial;
we give proofs of the others.

Claim 1: b1 ≤ 23k2n3.

Claim 2: b2 ≤ C22(logn)
3
fk(nk)2

tk−1(n−3).

Indeed, note that for every graph G̃ ∈ A1, Corollary 7.12 together with (5.3) implies that every

optimal ordered (k − 1)-partition of G̃[[n]\{y1, y2, y3}] is contained in some set P of size at most

2(logn)
3
. Since G[[n]\{y1, y2, y3}] is clearly induced-C2k-free, this together with (7.2) implies that

b2 ≤
∑
Q′∈P

|FQ′(n− 3, k)| ≤ 6C2(logn)
3
26(logn)

2
fk(d(n− 3)/(k − 1)e)2tk−1(n−3)

≤ C22(logn)
3
fk(nk)2

tk−1(n−3),

as required.

Claim 3: b3 ≤ 23ξ(β)n.

Indeed, for every graph G̃ ∈ A1 and every ` ∈ [3], Proposition 7.11(iii) implies that d
j

G̃,Q
(y`) < βn.

Thus

b3 ≤
(

n

≤ βn

)3

≤ 23ξ(β)n,

as required.

Claim 4: b4 ≤ 23((k−2)n/(k−1)+µn)−n/128k
2
.

Consider the graph obtained by starting with the graph ([n], E(G′)∪E′) and adding edges between
{y1, y2, y3} and [n]\Qj randomly, independently, with probability 1/2. Note that the number of

graphs that this process can generate is at most 23((k−2)n/(k−1)+µn), with each such graph equally
likely to be generated. So an upper bound on b4 is given by

b4 ≤ 23((k−2)n/(k−1)+µn)P
(
|N({y1, y2, y3}) ∩Bi

low| ≤
n

200k2

)
.

Since G′ was chosen such that |Bi
low| ≥ n/2k2, we have that E(|N({y1, y2, y3}) ∩ Bi

low|) ≥ n/16k2.
So Lemma 2.1(ii) implies that

P
(
|N({y1, y2, y3}) ∩Bi

low| ≤
n

200k2

)
≤ exp

(
− n

128k2

)
≤ 2−

n
128k2 .

Hence b4 ≤ 23((k−2)n/(k−1)+µn)−n/128k
2
, as required.

Now (7.13) together with Claims 1–4 and Proposition 4.6(ii) implies that

|A1| ≤ 23k2n3 · C22(logn)
3
fk(nk)2

tk−1(n−3) · 23ξ(β)n · 23((k−2)n/(k−1)+µn)−n/128k2

≤ C2−n/150k
2
fk(nk)2

tk−1(n−3)+3(k−2)n/(k−1)−3(k−2)−3

≤ C2−n/150k
2
fk(nk)2

tk−1(n),
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as required. �

Lemma 7.14. |A2| ≤ C2−n
1/2k2/3fk(nk)2

tk−1(n).

Proof. Note that for every G ∈ A2 and every s ∈ {0, 1, . . . , k − 2} the definition of Cs(G,Q)
implies that |Qs\Cs(G,Q)| ≥ |Qs|/2. So any graph G ∈ A2 can be constructed as follows. We first
choose a ∈ N such that n/2k2 ≤ a ≤ n, and then perform the following steps.

• We choose distinct indices i, j ∈ {0, 1, . . . , k − 2}, a set

W = {y1, y2} ∪ {ws` : ` ∈ [2], s ∈ {0, 1, . . . , k − 2}\{j}}

of vertices satisfying y1, y2 ∈ Qj and ws1, w
s
2 ∈ Qs for every s ∈ {0, 1, . . . , k − 2}\{j}, a

vertex y3 ∈ Qj\W , and a set E of edges between the vertices in W ∪{y3}. Let b1 denote the
number of such choices. The choices in this step and the next steps will be made such that
y1, y2 /∈ Cj(G,Q) and ws1, w

s
2 /∈ Cs(G,Q) for every s ∈ {0, 1, . . . , k − 2}\{j}, and |Bi

low| = a

and C(Y ) ∩N({y1, y2}) = ∅, where Y := N({y1, y2, y3}) ∩Bi
low(G,Q).

• Next we choose the graph G′ on vertex set [n]\W such that G[[n]\W ] = G′. Let b2 denote
the number of possibilities for G′.
• Next we choose the set E′ of internal edges in G with exactly one endpoint in W such that
E′ is compatible with our previous choices. Let b3 denote the number of possibilities for E′.
• Next we choose the set E′′ of crossing edges in G between W and Bi

low\W such that E′′ is
compatible with our previous choices. Let b4 denote the number of possibilities for E′′.
• Finally we choose the set E′′′ of crossing edges in G between W and [n]\(W ∪ Bi

low) such
that E′′′ is compatible with our previous choices. Let b5 denote the number of possibilities
for E′′′.

Hence

(7.14) |A2| ≤ n max
n/2k2≤a≤n

{b1 · b2 · b3 · b4 · b5}.

The main idea of the proof is that since Y is large for G ∈ A2, it follows that C(Y ) is also
large. So the assumption that every element of C(Y ) has at least one neighbour in {y1, y2} places
a significant restriction on the number of choices for G. The role of the ws` is to ‘balance out’ the
vertex classes, i.e. in the proof of Claim 5 it will be useful that W contains two vertices from each
vertex class.

The following series of claims will give upper bounds for the quantities b1, . . . , b5. Claims 1 and 4
are trivial, and the proof of Claim 2 proceeds in an almost identical way to that of Claim 2 in the
proof of Lemma 7.13; we give proofs of Claims 3 and 5.

Claim 1: b1 ≤ k2n2k−12(2k−1
2 ).

Claim 2: b2 ≤ C22(logn)
3
fk(nk)2

tk−1(n−(2k−2)).

Claim 3: b3 ≤ n4(k−1).
Indeed, for every graph G̃ ∈ A2 such that y1, y2 /∈ Cj(G̃,Q) and ws1, w

s
2 /∈ Cs(G̃,Q) for every

s ∈ {0, 1, . . . , k − 2}\{j}, Proposition 7.11(i) implies that d
j

G̃,Q
(y`), d

s
G̃,Q(ws`) ≤ 2 for every ` ∈ [2]

and every s ∈ {0, 1, . . . , k − 2}\{j}. Thus

b3 ≤ n2|W | ≤ n4(k−1),

as required.

Claim 4: b4 ≤ 2(2k−4)a.



FORBIDDING INDUCED EVEN CYCLES IN A GRAPH: TYPICAL STRUCTURE AND COUNTING 33

Claim 5: b5 ≤ 2(2k−4)(n−a)2−2n
1/2k2/5.

Indeed, suppose G satisfies C(Y )∩N({y1, y2}) = ∅. Since we choose G such that |Bi
low| = a ≥ n/2k2,

the fact that G /∈ A1 implies that |Y | > n/200k2. Now the definitions of Cilow, B
i
low imply that

|C(Y )| ≥ 200k2|Y |
n1−1/2k2

≥ n1/2k2 .

So since in G every vertex in C(Y ) must have at least one neighbour in {y1, y2},

b5 ≤ 22
∑
s∈{0,1,...,k−2}\{j} |[n]\(Qs∪Bilow)|22|[n]\(Qj∪B

i
low∪C(Y ))|3|C(Y )|(7.15)

≤ 2(2k−4)(n−a)2−2n
1/2k2/5,

as required. The second inequality of (7.15) is where it is important that W contains two vertices
from each vertex class.

Now (7.14) together with Claims 1–5 and Proposition 4.6(ii) implies that

|A2| ≤ n · k2n2k−12(2k−1
2 ) · C22(logn)

3
fk(nk)2

tk−1(n−(2k−2))

· n4(k−1) · max
n/2k2≤a≤n

{
2(2k−4)a · 2(2k−4)(n−a)2−2n1/2k2/5

}
≤ C2−n

1/2k2/3fk(nk) · 2tk−1(n−(2k−2))+(2k−2)(k−2)n/(k−1)−(2k−2)(k−2)−tk−1(2k−2)

≤ C2−n
1/2k2/3fk(nk)2

tk−1(n),

as required. �

As mentioned right after Corollary 7.12, a (6, 3)-forest (with edge set E say) is a useful building
block for constructing many induced copies of C2k. More precisely, in Lemma 7.15 we will show that
there are many ‘E-compatible’ linear forests H, which play a similar role to that of the skeletons
in the proof of Lemma 7.3. Each such E ∪E(H) gives us a non-trivial restriction on the remaining
edge set, resulting in an adequate bound on |A3|.

Lemma 7.15. |A3| ≤ C2
− n

214k fk(nk)2
tk−1(n).

Proof. Any graph G ∈ A3 can be constructed as follows.

• First we choose distinct indices i, j ∈ {0, 1, . . . , k−2}, a set X ⊆ Qi∪Qj of six vertices, and
a set E of edges between vertices in X such that the graph (X,E) is a linear forest with at
most three components (so E will be the edge set of a (6, 3)-forest in G). Let b1 denote the
number of such choices.
• Next we choose a graph G′ on vertex set [n]\X such that G[[n]\X] = G′. Let b2 denote the

number of possibilities for G′.
• Next we choose the set E′ of internal edges in G with exactly one endpoint in X. Let b3

denote the number of possibilities for E′.
• Finally we choose the set E′′ of crossing edges in G between X and [n]\X such that E′′ is

compatible with our previous choices. Let b4 denote the number of possibilities for E′′.

Hence,

(7.16) |A3| ≤ b1 · b2 · b3 · b4.
The following series of claims will give upper bounds for the quantities b1, . . . , b4. Claim 1 is trivial,
and the proofs of Claims 2 and 3 follow in an almost identical way to those of Claims 2 and 3 in
the proof of Lemma 7.13, so we give only a proof of Claim 4.

Claim 1: b1 ≤ 215k2n6.
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Claim 2: b2 ≤ C22(logn)
3
fk(nk)2

tk−1(n−6).

Claim 3: b3 ≤ 26ξ(β)n.

Claim 4: b4 ≤ 2
6(k−2)n
k−1 2µ

1/4n2
− n

213k .
Indeed, we define an E-compatible forest to be a linear forest H on 2k − 6 vertices, with the same
number of components as (X,E), such that V (H) ∩ Qs induces a clique on two vertices for every
s ∈ {0, 1, . . . , k − 2}\{i, j}. Note that an E-compatible forest exists since 2k − 6 ≥ 2 · 3 and (X,E)
has at most three components. Moreover, an E-compatible forest contains a perfect matching, so
Proposition 5.5 implies that for every graph G̃ ∈ A3, the number of disjoint E-compatible forests
in G̃ is at least ⌊

n/(k − 1)− µn− 2µ1/2n

2

⌋
≥ n

2(k − 1)
− 3µ1/2n.

Hence G′ contains at least n/2(k − 1) − 3µ1/2n disjoint E-compatible forests. Now fix a set CF
of n/2(k − 1) − 3µ1/2n disjoint E-compatible forests in G′, and let H ∈ CF . Let hH denote the
number of possibilities for a set E∗ of edges between X and V (H). By Proposition 7.1 there exists

at least one set Ẽ of edges between X and V (H) such that the graph (X ∪ V (H), E ∪ E(H) ∪ Ẽ)

is isomorphic to C2k. So since G must be induced-C2k-free, we must have that E∗ 6= Ẽ, and hence
hH ≤ 2|X||V (H)| − 1 = 212(k−3) − 1. Note that the number of vertices outside Qi ∪Qj that are not

contained in some graph H ∈ CF is at most (k−3)n/(k−1)+2µn−(2k−6)(n/2(k−1)−3µ1/2n) ≤
6kµ1/2n. Hence,

b4 ≤ 26·max{|Qi|,|Qj |}26(6kµ
1/2n)

∏
H∈CF

hH

≤ 26(n/(k−1)+µn)26(6kµ
1/2n)

(
212(k−3)

(
1− 2−12(k−3)

))n/(2(k−1))−3µ1/2n
≤ 2

6(k−2)n
k−1 240kµ

1/2ne
−n/(2(k−1))

212(k−3) ≤ 2
6(k−2)n
k−1 2µ

1/4n2
− n

213k ,

as required.

Now (7.16) together with Claims 1–4 and Proposition 4.6(ii) implies that

|A3| ≤ 215k2n6 · C22(logn)
3
fk(nk)2

tk−1(n−6) · 26ξ(β)n · 2
6(k−2)n
k−1 2µ

1/4n2
− n

213k

≤ C2
− n

214k fk(nk)2
tk−1(n−6)+6(k−2)n/(k−1)−6(k−2)−tk−1(6)

≤ C2
− n

214k fk(nk)2
tk−1(n),

as required. �

The next proposition shows that for every G ∈ A4, the small stars and triangles in G[Q0] do not
cover too many vertices.

Proposition 7.16. For every G ∈ A4 and index i ∈ {0, 1, . . . , k − 2}, |Bi
low| < n/2k2.

Proof. Suppose for a contradiction that there exists a graph G ∈ A4 such that |Bi
low| ≥ n/2k2

for some index i ∈ {0, 1, . . . , k − 2}. Since G ∈ A4 ⊆ F 3
Q, G is not a k-template. This fact together

with Proposition 7.11(i) implies that there exists an index j ∈ {0, 1, . . . , k− 2}\{i} and a non-edge
y1y3 inside Qj . At most one of y1, y3 can be in Cj (by definition of Cj), and so without loss of

generality we assume that y1 /∈ Cj . So Proposition 7.11(i) implies that d
j
G,Q(y1) ≤ 2. This together

with the observation that |Qj\Cj | ≥ |Qj |/2 (by definition of Cj) implies that there exists a vertex
y2 ∈ Qj \ Cj that is a neighbour of y1.
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Define Y := N({y1, y2, y3}) ∩ Bi
low. Since |Bi

low| ≥ n/2k2 and G /∈ A1, |Y | > n/200k2. Since

|Bi
low| ≥ n/2k2 and G /∈ A2, C(Y ) contains a vertex x3 ∈ N({y1, y2}). Since x3 ∈ C(Y ) there exists

a vertex x1 ∈ Y that is a non-neighbour of x3. By Proposition 7.11(iii), d
i
G,Q(x1), d

i
G,Q(x3) ≤ βn.

So since |Y | > n/200k2 ≥ 2βn, there exists a vertex x2 ∈ Y ∩N({x1, x3}).
Then E(G[{x1, x2, x3, y1, y2, y3}]) = {x1x2, x2x3, y1y2} ∪E′ with E′ ⊆ {y2y3, y3x3}. Thus the set

{x1, x2, x3, y1, y2, y3} ⊆ Qi ∪ Qj induces on G a linear forest with at most three components, and
so G contains a (6, 3)-forest with respect to Q. This contradicts the fact that G /∈ A3, and hence
completes the proof. �

We now have sufficient information about the set A4 of remaining graphs to count them directly
(i.e. A4 is the only class for which we do not use induction in our estimates). In particular, we now
know that in G every vertex class is the union of triangles and stars, where crucially the number of
triangles and small stars is not too large (see Proposition 7.16). This allows us to show by a direct
counting argument that |A4| is negligible.

Lemma 7.17. |A4| ≤ 2−
n logn

3k2 fk(nk)2
tk−1(n).

Proof. Any graph G ∈ A4 can be constructed as follows.

• First we choose a partition of Qi into five sets, Cih, B
i
h, C

i
`, B

i
`, C

i
z, for every i ∈ {0, 1, . . . , k−

2}. Let b1 denote the number of such choices.
• Next we choose the set E of crossing edges in G with respect to Q. Let b2 denote the number

of possibilities for E.
• Finally we choose the set E′ of internal edges in G with respect to Q such that G satisfies
Cih = Cihigh, Bi

h = Bi
high, Ci` = Cilow, Bi

` = Bi
low, and Ciz = Ci0 for every i ∈ {0, 1, . . . , k− 2}.

Let b3 denote the number of possibilities for E′.

Hence

(7.17) |A4| ≤ b1 · b2 · b3.
The following series of claims will give upper bounds for the quantities b1, b2, b3. Claims 1 and 2
are trivial; we give only a proof of Claim 3.

Claim 1: b1 ≤ 5n.

Claim 2: b2 ≤ 2tk−1(n).

Claim 3: b3 ≤ 2
(k−1/2)n logn

k2 .
For any given i ∈ {0, 1, . . . , k − 2} and any vertex x ∈ Bi

high, the number of possibilities for the

unique non-neighbour of x in Cihigh (namely the centre of the star in G containing x) is |Cihigh|. Now

consider x ∈ Bi
low. Then x has a unique non-neighbour y in Cilow, and has the possibility of either

being part of a triangle in G or a star in G. Note also that |Bi
low| < n/2k2 by Proposition 7.16, and

that by definition of Cihigh,

|Cihigh| ≤
200k2n

n1−1/2k2
≤ 200k2n1/2k

2
.

Hence,

b3 ≤
k−2∏
i=0

(2|Cilow|)|B
i
low||Cihigh|

|Bihigh| ≤
k−2∏
i=0

n
n

2k2 (200k2)n(n
1

2k2 )n = 2
(k−1)n logn

k2 (200k2)n(k−1)

≤ 2
(k−1/2)n logn

k2 ,

as required.
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Now (7.17) together with Claims 1–3 and Lemma 4.4 implies that

|A4| ≤ 5n · 2tk−1(n) · 2
(k−1/2)n logn

k2

≤ 5n2−
n logn

2k2 2nk lognk−enk log lognk2enk log lognk2tk−1(n) ≤ 2−
n logn

3k2 fk(nk)2
tk−1(n),

as required. �

Recall that F 3
Q = (F 3

Q\T ∗Q(n, k)) ∪ A1 ∪ A2 ∪ A3 ∪ A4. The following bound on |F 3
Q| follows

immediately from this observation together with (7.11) and Lemmas 7.13, 7.14, 7.15 and 7.17.

Lemma 7.18. |F 3
Q| ≤ 2C2−n

1
2k2 /3f(nk)2

tk−1(n).

8. Proof of Lemma 6.1

Proof of Lemma 6.1. Recall from Section 6 that we prove Lemma 6.1 by induction on n and that
we choose constants satisfying (7.1). The fact that 1/C � 1/n0, 1/k implies that the statement
of Lemma 6.1 holds for all n ≤ n0. So suppose that n > n0 and that the statement holds for all
n′ < n. Then we obtain the bounds in Lemmas 7.3, 7.10 and 7.18. These bounds together with the
fact that FQ(n, k, η, µ) = TQ ∪ F 1

Q ∪ F 2
Q ∪ F 3

Q and TQ ⊆ TQ(n, k) imply that

|FQ(n, k, η, µ) \ TQ(n, k)| ≤ C
(

2−β
2n/14k + 2−n + 2 · 2−n

1
2k2 /3

)
fk(nk)2

tk−1(n)

≤ 3C2−n
1

2k2 /3fk(nk)2
tk−1(n).

This together with Corollary 5.4 implies that

|FQ(n, k, η) \ TQ(n, k)| ≤ |FQ(n, k, η) \ FQ(n, k, η, µ)|+ |FQ(n, k, η, µ) \ TQ(n, k)|(8.1)

≤
(

2−
µ2n2

100 + 3C2−n
1

2k2 /3fk(nk)

)
2tk−1(n)

≤ 4C2−n
1

2k2 /3fk(nk)2
tk−1(n).

Note that Lemma 3.1 (applied with η/2 playing the role of η) together with (5.1) implies that

(8.2) |F (n, k) \ F (n, k, η)| ≤ 2−εn
2 |F (n, k, η)|.

Let Q denote the set of all ordered (k− 1)-partitions of [n], and recall that our choice of Q ∈ Q was
arbitrary. Now (8.1) together with (8.2) and Lemma 4.7 implies that

|F (n, k) \ F (n, k, η)| ≤ 2−εn
2
∑
Q′∈Q

(
|FQ′(n, k, η)\TQ′(n, k)|+ |TQ′(n, k)|

)
≤ 2−εn

2
(k − 1)n

(
4C2−n

1
2k2 /3 + 26(logn)

2

)
fk(nk)2

tk−1(n)

≤ C2−εn
2/2fk(nk)2

tk−1(n).

Now this together with (8.1) implies that

|FQ(n, k)| ≤ |FQ(n, k, η)|+ |F (n, k) \ F (n, k, η)|
≤ |TQ(n, k)|+ |FQ(n, k, η) \ TQ(n, k)|+ |F (n, k) \ F (n, k, η)|

≤ |TQ(n, k)|+
(

4 · 2−n
1

2k2 /3 + 2−εn
2/2

)
Cfk(nk)2

tk−1(n)

≤ |TQ(n, k)|+ 5C2−n
1

2k2 /3fk(nk)2
tk−1(n),
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which completes the inductive step, and hence the proof. �
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