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Abstract
1.	 To infer genuine patterns of biodiversity change in the fossil record, we must be 
able to accurately estimate relative differences in numbers of taxa (richness) de-
spite considerable variation in sampling between time intervals. Popular subsam-
pling (=interpolation) methods aim to standardise diversity samples by rarefying 
the data to equal sample size or equal sample completeness (=coverage). 
Standardising by sample size is misleading because it compresses richness ratios, 
thereby flattening diversity curves. However, standardising by coverage recon-
structs relative richness ratios with high accuracy. Asymptotic richness extrapola-
tors are widely used in ecology, but rarely applied to fossil data. However, a 
recently developed parametric extrapolation method, TRiPS (True Richness esti-
mation using Poisson Sampling), specifically aims to estimate the true richness of 
fossil assemblages.

2.	 Here, we examine the suitability of a range of richness estimators (both interpola-
tors and extrapolators) for fossil datasets, using simulations and a novel method 
for comparing the performance of richness estimators with empirical data. We 
constructed sampling-standardised discovery curves (SSDCs) for two datasets, 
each spanning 150 years of palaeontological research: Mesozoic dinosaurs at 
global scale, and Mesozoic–early Cenozoic tetrapods from North America. These 
approaches reveal how each richness estimator responds to both simulated best-
case and empirical real-world accumulation of fossil occurrences.

3.	 We find that extrapolators can only truly standardise diversity data once sampling 
is sufficient for richness estimates to have asymptoted. Below this point, directly 
comparing extrapolated estimates derived from samples of different sizes may 
not accurately reconstruct relative richness ratios. When abundance distributions 
are not perfectly flat and sampling is moderate to good, but not perfect, TRiPS 
does not extrapolate, because it overestimates binomial sampling probabilities. 
Coverage-based interpolators, by contrast, generally yield more stable subsam-
pled diversity estimates, even in the face of dramatic increases in face-value 
counts of species richness. Richness estimators that standardise by coverage are 
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1  | INTRODUC TION

Early studies of taxonomic richness through deep time (e.g. Benton, 
1985; Sepkoski, Bambach, Raup, & Valentine, 1981; Valentine, 1969) 
interpreted the fossil record literally using face-value (=raw or ob-
served) counts of taxa. However, because fossil record sampling varies 
considerably among clades, geological time-intervals and geographic 
regions, direct comparisons of face-value richness can be misleading 
(e.g. Alroy et al., 2001, 2010a, 2010b; Peters, 2005; Raup, 1972; Smith 
& McGowan, 2011). To infer genuine patterns of deep-time biodiver-
sity, we need methods that successfully standardise samples of unequal 
sizes and permit direct comparisons of richness among assemblages.

An early approach was to standardise samples by size, drawing 
down samples to equal numbers of specimens, individuals or localities 
(classical rarefaction [CR]; Sanders, 1968). However, item-quota stan-
dardisation methods such as CR under-sample more diverse assem-
blages, compressing relative richness ratios and artificially flattening 
diversity curves (Alroy, 2010b,c; Chao & Jost, 2012). The solution to 
this problem is to standardise samples to equal levels of complete-
ness, or “coverage” of the species’ underlying frequency distribution 
(Alroy, 2010a; Chao & Jost, 2012; Jost, 2010). This approach is known 
among palaeobiologists as shareholder quorum subsampling (SQS), 
and among ecologists as coverage-based rarefaction (CBR). It recon-
structs richness ratios with high accuracy, provided that the shape of 
the abundance distribution does not vary substantially between as-
semblages (Alroy, 2010a–2010c; Chao & Jost, 2012).

Asymptotic richness extrapolators use relative frequencies of rare 
species to analytically estimate undetected species from limited sam-
ples (e.g. Chao1/2, Chao, 1984, 1987; ACE, Chao, 2005; and jackknife, 
Burnham & Overton, 1978). Extrapolators are widely used in ecology 
(Chao & Chiu, 2016; Gotelli & Chao, 2013), but only rarely for fossil 
data (e.g. Vavrek & Larsson, 2010). However, a parametric extrapo-
lator, TRiPS (True Richness estimation using Poisson Sampling), was 
recently proposed for fossil data (Starrfelt & Liow, 2016a).

Here, we describe a new approach for examining the real-world 
performance of richness estimators when confronted with new data. 
We evaluate the ability of both interpolators and extrapolators to 
successfully standardise diversity data and accurately reconstruct 
relative magnitudes of richness between assemblages. We con-
struct sampling-standardised discovery curves (SSDCs; also known 
as species-accumulation or collector curves) spanning 150 years of 
palaeontological exploration for (1) Mesozoic–early Cenozoic ter-
restrial tetrapods, and (2) Mesozoic dinosaurs. This novel historical 

dimension reveals how the potentially biased accumulation of new 
fossil data affects richness estimates generated by different meth-
ods. We interpret empirical patterns in light of results from simu-
lated datasets, in which richness and evenness are precisely and 
independently varied and sampling is unbiased. Although we focus 
on fossil datasets, many of our conclusions are equally applicable to 
modern-day ecological studies.

2  | MATERIAL S AND METHODS

2.1 | Richness estimators

2.1.1 | Interpolators

We evaluated two interpolation methods, CR and SQS. CR is flawed 
because it artificially compresses richness ratios (Alroy, 2010b, 
2010c; Chao & Jost, 2012), and we implemented it in our simula-
tions for illustrative reasons only (using the r package iNEXT; Hsieh, 
Ma, & Chao, 2016). The alternative approach of standardising data 
to equal coverage (=“quorum” level) was proposed and implemented 
algorithmically by Alroy (2009, 2010a, 2010b, 2010c) under the 
name SQS, and independently described by Jost (2010). Chao and 
Jost (2012) described the analytical solutions and expanded the ap-
proach to permit extrapolation, calling it coverage-based rarefaction 
(CBR). The names SQS and CBR refer to the same broad approach 
of standardising diversity samples by coverage, and do not uniquely 
map onto any method of implementation (algorithmic or analytical) 
or piece of software (e.g. J. alroy’s SQS Perl and r scripts, and iNEXT 
[Hsieh et al., 2016]; see Appendix S1 for detailed discussion of SQS).

Coverage is an objective measure of diversity-sample complete-
ness that can be efficiently estimated from the frequencies of rare 
species in a sufficiently large sample (Esty, 1986; see Appendix S4). 
The simplest and most commonly used coverage estimator is Good’s 
u (Good, 1953). Good’s u ranges between 0 and 1, and is equal to one 
minus the number of singletons (species only observed once) divided 
by the total number of sampling units (specimens, individuals or occur-
rences). Sampling is poor when there are many singletons, and good 
when there are few. Coverage indicates what percentage of individu-
als in the original population belong to species included in the sample. 
Conversely, the complement of coverage, the ‘coverage deficit’, indi-
cates the fraction of individuals in the source population belonging 
to unsampled species. The coverage deficit at any particular level of 
sample completeness is proportional to the slope at that point on a 

among the best currently available methods for reconstructing deep-time biodi-
versity patterns. However, we recommend the use of sampling-standardised dis-
covery curves to understand how biased reporting of fossil occurrences may 
affect sampling-standardised diversity estimates.

K E Y W O R D S

Dinosauria, diversity, extrapolation, fossil record, interpolation, sample coverage, shareholder 
quorum subsampling, species accumulation curve
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rarefaction curve; this also corresponds to the probability that a new 
species will be observed by adding one more individual to the sample 
(Chao & Jost, 2012). For example, if coverage is estimated to be 0.9, 
the species in the sample account for 90% of the individuals in the 
focal assemblage, and there is a 10% chance that a new species will be 
discovered if the sample size is increased by one (Chao & Jost, 2012).

Shareholder quorum subsampling has been implemented using 
two subsampling algorithms (Alroy, 2009, 2010a, 2010b, 2010c, 
2014) and one set of analytical equations (Chao & Jost, 2012; see 
Appendix S1). Unlike the original approximate algorithm, the exact 
algorithm (Alroy, 2014) used here consistently imposes the target 
quorum. During each subsampling trial, all occurrences are drawn 
sequentially and randomly, continually tracking the value of Good’s 
u. As occurrences are drawn, u may either rise or fall. Each time u 
crosses the target quorum, richness is recorded, and the median 
of these values from all subsampling trials represents the overall 
estimate. The exact algorithm produces results that are identical 
to the analytical equations of Chao and Jost (2012, implemented 
in iNEXT; see Figure S1). Importantly, the exact algorithm lets us 
implement additional protocols to address biases affecting fossil 
occurrence datasets (Alroy, 2009, 2010a, 2010b, 2010c, 2014; see 
Appendix S1).

For the simulations, we used a combination of the analytical 
equations and the exact algorithm, newly implemented here in the r 
language. SQS richness estimates for fossil datasets were calculated, 
using iNEXT and the exact algorithm implemented in JA’s Perl script 
version 4.3. The latter allows us to apply the three-collections-per-
reference protocol necessary to account for the reference effect 
(see Appendix S1).

2.1.2 | Extrapolators

We evaluated three extrapolators: TRiPS (Starrfelt & Liow, 2016a), 
Chao1 (Chao, 1984) and λ5 (“lambda-5”; Alroy, 2017). TRiPS aims 
to estimate true richness by modelling per-interval sampling rates 
for extinct lineages as a homogeneous Poisson process. Maximum 
likelihood is used to infer a single sampling rate for all taxa present 
in each interval, using observed taxon occurrence frequencies and 
interval durations. Sampling rates are then used to estimate a single 
per-lineage binomial probability per interval: the odds that a species 
would be sampled given that it was extant during that interval. The 
richness estimated by TRiPS is that which maximises the binomial 
likelihood given that binomial sampling probability and the observed 
number of species. We implemented TRiPS using the r scripts pro-
vided by Starrfelt and Liow (2016a, 2016b).

Chao1 is an asymptotic richness extrapolator widely used in 
ecology (Colwell & Coddington, 1994; Gotelli & Chao, 2013) that 
uses information about rare species (singletons and doubletons) to 
estimate a lower bound for true species richness. Chao1 assumes 
that singletons, doubletons and undetected species have equal un-
derlying frequencies, and that the sample size is large enough that 
the mean abundances of singletons and undetected species are 
similar (Chao & Chiu, 2016). Estimates should therefore be more 

downward-biased as communities become more uneven and sam-
ple sizes are smaller.

To address this, Alroy (2017) proposed λ5, which reformulates 
Chao1 in terms of Poisson sampling, and incorporates information 
about the number of observed species, singletons and total indi-
viduals sampled. The λ5 equation is solved via a simple hill-climbing 
algorithm. Although λ5 also assumes a flat abundance distribution, 
it incorporates information about sample size to reduce the down-
ward bias when abundance distributions are uneven.

2.2 | Simulation experiments

We performed three simulation experiments to show how richness es-
timators perform under ideal conditions, when true richness and even-
ness are known and sampling is unbiased. The first two experiments 
(SE1 and SE2) precisely and independently varied sampling effort, true 
richness and evenness, while the third (SE3) varied sampling effort 
systematically, but varied true richness and evenness stochastically.

For SE1 and SE2, we simulated communities with all combina-
tions of four values of true richness (50, 100, 200 and 400 species) 
and four levels of underlying evenness (one perfectly even/flat, and 
three lognormally distributed, with standard deviations [SDs] of 1, 
1.5 and 2). The simulations in SE1 are directly analogous to sampling-
standardised discovery curves derived from empirical datasets. For 
each simulated community, samples were drawn progressively at 
sample sizes ranging from 1 to 10,000 individuals. At each sample 
size, we recorded face-value species counts and richness estimates 
from SQS, CR, TRiPS, Chao1 and λ5. This procedure produces a sin-
gle simulated discovery curve (face-value species counts) and set 
of SSDCs (extrapolated richness estimates). The procedure was re-
peated 1,000 times and the curves averaged to produce rarefaction 
curves for each richness estimator. For face-value species counts, 
this procedure yields an item-quota or size-based rarefaction curve 
(i.e. a CR curve). However, performing this procedure for other rich-
ness estimators yields sampling-standardised rarefaction curves 
(SSRCs), and allows point estimates using size-rarefied extrapolated 
richness estimates (e.g. size-rarefied Chao1, TRiPS or λ5 richness). 
Such curves reveal how each richness estimator is expected to 
respond to the progressive accumulation of data when sampling is 
entirely random and unbiased.

The simulations in SE2 also generated rarefaction curves for the 
simulated communities. However, these simulations are not analo-
gous to empirical SSDCs, because the data were rarefied by cover-
age, not sample size. SE2 therefore demonstrates how each richness 
estimator is expected to respond to progressive increases in sample 
coverage (from 0.1 to 0.9999). Although the analytical equations of 
Chao and Jost (2012) permit Chao1 estimates at specific levels of 
coverage, we opted to use the exact algorithm because this allows us 
to standardise any estimator to equal coverage. We achieved this by 
modifying the code for the exact algorithm in r to calculate not only 
simple counts of species whenever the target quorum was crossed 
or reached, but also estimates from Chao1 and λ5, yielding coverage-
rarefied extrapolated richness estimates. The asymptotic richness 
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estimates from these extrapolators are derived from repeated 
subsamples of the data at specific levels of coverage.

We did not rarefy TRiPS to equal coverage because implement-
ing this method within the exact algorithm was too computation-
ally intensive. TRiPS runs approximately three orders of magnitude 
slower than other extrapolators, and the exact algorithm used to 
standardise richness estimators to equal coverage is also computa-
tionally demanding. However, results from size-based rarefaction of 
TRiPS richness estimates in SE1 demonstrate that coverage-based 
rarefaction of TRiPS would not be beneficial (see Section 3).

SE3 tested the sensitivity of richness estimators to stochas-
tic variation in richness and evenness. We generated sampling-
standardised richness estimates for many simulated communities 
in which true richness was sampled from a lognormal distribution 
(SD = 1 and M = 5 on a log scale), and the SD of the underlying log-
normal abundance distribution was randomly varied from 1 to 2 on 
a log scale. These were standardised at both a range of sample sizes 
and coverages.

We also used the simulation framework from SE1 to show ex-
pected counts of singletons, doubletons and multitons (species that 
have been sampled at least twice) with increasing sampling effort. 
Comparing curves of singletons, doubletons and multitons from 
empirical fossil datasets to expected patterns under entirely unbi-
ased sampling can shed light on the nature of reporting biases. For 
example, novelty biases (see Section 4) are expected to inflate the 
frequencies of singletons relative to multitons, and might therefore 
distort curves of counts as a function of sampling effort.

2.3 | Empirical sampling-standardised 
discovery curves

Full details of the fossil occurrence data are provided in Appendix 
S2. We downloaded Mesozoic–early Eocene occurrence data 
for Tetrapodomorpha, and Mesozoic occurrence data for 
Dinosauromorpha, from the Paleobiology Database (PaleoDB). 
Marine tetrapods and flying taxa were excluded, and the datasets 
were cleaned (see Appendix S2).

Our analyses focus on two partitions of these data. The first 
comprises North American data because this continent has the best 
sampled fossil record for much of this interval. The second parti-
tion comprises all global occurrences of Mesozoic dinosaurs. These 
data are exceptionally complete and well-vetted in the PaleoDB, and 
there has been intense interest in reconstructing dinosaur diversity 
patterns (e.g. Barrett, McGowan, & Page, 2009; Butler, Benson, 
Carrano, Mannion, & Upchurch, 2011; Starrfelt & Liow, 2016a; 
Tennant,   Chiarenza, & Baron, 2018; Upchurch, Mannion, Benson, 
Butler, & Carrano, 2011), including in the initial publication of TRiPS. 
Global diversity curves suffer from profound issues with highly-
variable sampling universes (Appendix S2), and here we only anal-
yse dinosaur data at global level to enable direct comparison with 
Starrfelt and Liow (2016a).

We reconstructed SSDCs for each geological stage-level time 
interval by subsetting our data to create 150 historical datasets, 

representing yearly timeslices through the history of palaeonto-
logical discovery, from 1866 to 2016. Each PaleoDB occurrence 
is associated with a published reference that corresponds to ei-
ther the original description or the latest accepted taxonomic re-
vision. This information was used to limit each historical timeslice 
to only those occurrences published prior to or during the year 
in question. Historical snapshots of the fossil record may include 
taxonomic opinions and identifications that were later rendered 
obsolete. This provides a more accurate picture of the history of 
palaeontological discovery, and is akin to using historical litera-
ture compilations (e.g. Alroy, 2000; Sepkoski, 1993; Tennant et al., 
2018). We did not construct SSDCs using CR because our simula-
tions provide further evidence that the method produces mislead-
ing results (see below).

Sampling-standardised discovery curves in which collection ef-
fort is quantified by time in years may be misleading if discovery 
rates are strongly heterogeneous. We therefore focus on SSDCs in 
which effort is quantified by the chronological addition of occur-
rences. Together with coverage estimates, these provide a much 
clearer view of sampling effort through collector-time.

To examine biases in the real-world accumulation of species in 
the fossil record, we compared empirical SSDCs to null distributions 
where the order in which occurrences are discovered is repeatedly 
randomised (these are equivalent to sampling-standardised rarefac-
tion curves). This is achieved by generating many replicate datasets in 
which publication years for occurrences are randomly assigned a year 
and SSDCs are calculated. These null distributions shed light on the 
performance of sampling-standardisation methods for constructing 
SSDCs in the absence of systematic collection and reporting biases 
(Alroy, 2010a, 2010b, 2010c), including the expansion of the sampling 
universe (e.g. when the empirical SSDC falls well above or below the 
range observed in the null). We calculated palaeogeographic spread 
(the spatial distribution of fossil localities within a time interval) in 
order to quantify the expansion of the geographic sampling universe 
through collector-time (Appendix S2). All analyses were conducted 
in r (version 3.2.2; R Development Core Team, 2015), unless other-
wise stated. All analysis code and data have been archived on Zenodo 
(https://doi.org/10.5281/zenodo.1167536; Close et al., 2018).

3  | RESULTS

3.1 | Simulation experiments

Rarefying face-value species counts by sample size, as in SE1, pro-
duces a “classical” rarefaction curve (i.e. one showing how CR esti-
mates change with sample size), while rarefying face-value species 
counts by coverage, as in SE2, yields a coverage-based rarefaction 
curve (i.e. showing how SQS estimates change with coverage). When 
sampling is unbiased, interpolated SQS and CR estimates are—by 
their very nature—relatively insensitive to sheer sample-size: the 
data is either sufficient to provide an estimate at the desired stand-
ardisation level, or it is not (Figures 1 [i.e. CR], 2 and S2 [i.e. SQS]). 
As a result, SSRCs for SQS and CR are simply flat lines extending out 

https://doi.org/10.5281/zenodo.1167536
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from the point at which the sample size or coverage is sufficient to 
obtain an estimate (Figure S3).

However, although it is relatively insensitive to raw sample size, 
CR artificially compresses richness ratios by progressively under-
estimating relative richnesses of more diverse communities (Alroy, 
2010b, 2010c; Chao & Jost, 2012). This results in a nonlinear re-
lationship between true and estimated richness (especially when 
evenness is high; Figure 3). In contrast, standardising by coverage 
yields perfectly accurate relative richnesses provided that the shape 

of the abundance distribution does not vary among communities 
(Figures S2, 2 and S3). As a result, coverage-standardised richness 
scales linearly with true richness (Figure 4).

By contrast, sampling-standardised rarefaction curves from SE1 
(Figures 1, S3 and S4) show that below a threshold sampling level, 
extrapolated estimates from Chao1, λ5 and TRiPS depend strongly 
on sample size. Richness estimates only asymptote on true richness 
and become insensitive to sample size once a threshold level of 
coverage has been met.

F IGURE  1 Size-based rarefaction curves for face-value counts (=CR), Chao1 and λ5, analysing communities from Simulation Experiment 
1. Columns represent true evenness values. Until they asymptote, extrapolated richness estimates are strongly sample-size dependent. 
Extrapolators converge on true richness rapidly when communities are perfectly even, but take progressively longer as evenness decreases. 
When communities are not perfectly even, TRiPS ceases to extrapolate above a certain sample size. λ5 performs better than other methods 
tested when communities are uneven
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The sampling level required for extrapolators to asymptote be-
comes greater as true richness increases or evenness decreases. 
When communities are perfectly even—i.e. when the species abun-
dance distribution is perfectly flat—sampling-standardised rarefac-
tion curves for Chao1, TRiPS and λ5 stabilise at very small sample sizes 

(Figure S3). For a perfectly even community with 400 species, these 
extrapolators asymptote on true richness after sample sizes reach 
100 individuals, or when sample coverage is <0.5 (Figures S3 and 2). 
By contrast, face-value counts of species only asymptote on true rich-
ness after at least 1,000 individuals have been sampled, the point at 

F IGURE  3 Relationship between true and estimated richness for estimators standardised by sample size (face-value counts [=CR], 
TRiPS, Chao1 and λ5), analysing communities from Simulation Experiment 3. Standardising to equal sample size causes estimators to scale 
nonlinearly with true richness, particularly when sampling is limited. Standardising Chao1 and λ5 to equal sample size yields a tighter 
relationship, but the nonlinear pattern remains
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which coverage is total. Confidence intervals are large at small sample 
sizes, with an upper bound that peaks sharply (greatly exceeding true 
richness) before shrinking, then disappearing as the coverage deficit 
diminishes to zero (Figure S4). Chao1 yields the most conservative es-
timate, but converges on true richness slightly later than TRiPS and λ5.

As evenness decreases, extrapolators require progressively more 
data in order to converge on true richness (Figures S3–2). For com-
munities with lognormal frequency distributions, λ5 converges on 
true richness earlier than Chao1 (SD = 1–1.5), but initially overshoots 
true richness when evenness is very low (SD = 2). As evenness 

F IGURE  4 Relationship between true and estimated richness when standardising face-value counts (=SQS), Chao1 or λ5 estimates to 
equal coverage, analysing communities from Simulation Experiment 3. Coverage-standardised estimators scale linearly with true richness. 
Variation in evenness (SD of underlying lognormal distribution) causes a looser relationship at lower levels of coverage, but the effect 
diminishes as coverage increases. Standardising extrapolators (especially λ5) to equal coverage yields a visibly tighter relationship
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decreases, upper confidence interval bounds for Chao1 and λ5 (but 
not TRiPS) usually approach or encompass true richness (Figure S4).

TRiPS, however, ceases to extrapolate (simply returning face-
value counts of species) when the underlying frequency distribution 
is not perfectly flat and sample sizes are moderate to large (Figures 1 
and S3). Once TRiPS ceases to extrapolate, confidence intervals 
shrink to negligible sizes (Figure S4). This even occurs when the 
underlying lognormal frequency distribution is comparatively even 
(SD = 1; Figure S3). When evenness is very low (SD = 2) and sample 
sizes are large, TRiPS ceases to yield richness estimates altogether.

If sampling is limited relative to true richness, all richness estima-
tors tested here are biased by low evenness. Regardless of whether 
samples are rarefied by size (CR) or coverage (SQS), richness esti-
mates drop as evenness diminishes (compare Figures 5 and S5). 
When sampling is comparatively limited, substantial among-sample 
differences in evenness can severely confound estimates of relative 
richness: even at a quorum of 0.9, the coverage-standardised esti-
mate for a community with 400 species and low evenness (SD = 2) is 
substantially less that for a perfectly even community with 200 spe-
cies (Figure 5). As communities diverge in evenness, progressively 
greater coverage is required in order to accurately infer relative rich-
ness for communities as a whole, since it becomes ever harder to 
detect the rarest species. When sampling is very poor, standardising 
by coverage produces richness estimates that are slightly more bi-
ased by differences in evenness than standardising by sample size. 

However, when sampling is very good, the situation is reversed, and 
CR becomes more sensitive to evenness than SQS (Figure S6; see 
Discussion). The influence of evenness diminishes as sample size or 
coverage level increases (Figures 5, S5 and S7). Crucially, however, 
only standardising by coverage yields a linear relationship between 
true and estimated richness (Figures 3 and 4).

Downward biases to richness estimates caused by low even-
ness are substantially reduced by using coverage-based rarefaction 
of extrapolated richness estimates, rather than coverage-based 
rarefaction of simple face-value counts of species (=SQS/CBR). 
Coverage-rarefied λ5 richness estimates are the least affected by 
evenness (compare richness estimates at a coverage of 0.99 for face-
value counts, Chao1 and λ5 in Figure 5; coverage-rarefied λ5 is nearly 
unaffected by differences in evenness).

We were not able to coverage-rarefy TRiPS richness estimates 
because of computational issues (see Section 2). However, the 
results of simulations standardising TRiPS to equal sample size 
(Figures 1 and S3) show that the method only extrapolates when 
abundance distributions are flat or sampling is limited. Coverage-
based rarefaction of TRiPS richness estimates would not alter this 
fact: with increasing sampling effort, coverage-rarefied TRiPS esti-
mates for less-than-perfectly-even assemblages would simply con-
verge on those from SQS.

Plotting counts of singletons, doubletons, tripletons and multi-
tons obtained via simulation against sampling intensity (Figure S8) 

F IGURE  5 Effect of evenness on 
estimated richness when standardising 
face-value counts (=SQS), Chao1 or λ5 
estimates to equal coverage, analysing 
communities from Simulation Experiment 
1. Estimators are superimposed to 
emphasise disparities in their response 
to evenness. Standardising extrapolators 
(especially λ5) to equal coverage reduces 
the downward bias that results from low 
evenness
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F IGURE  6 Face-value (unstandardised) and sampling-standardised discovery curves for global dinosaur species during the Tithonian, 
Campanian and Maastrichtian. All variables visualised against chronologically added occurrences for reasons explained in Section 2. (a–c) 
SQS, using fossil-dataset protocols (see Appendix S1 for details). (d–f) SQS without fossil-dataset protocols. (g–i) SQS (iNEXT). (j-l) TRiPS 
(juxtaposed with face-value discovery curve). (m–o) Chao1 and λ5. (p–r) TRiPS sampling rate. (s–u) TRiPS binomial sampling probability and 
Good’s u (sampling rates are not expected to show a predictable relationship with sampling probabilities or coverage, but are shown in 
the same panels to allow easier comparison of patterns). (v–x) Counts of singleton and multiton species through collector-time (note that 
singletons generally accumulate faster than multitons due to reporting biases). (y-aa) Changes in palaeogeographic spread (summed minimum 
spanning tree length, occupancy of grid-cells of 2-degree latitude/longitude and maximum great circle distance)
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reveals the patterns that should be expected if sampling is unbiased. 
Empirical patterns can be compared against these to assess the 
strength of the reporting biases (see below).

3.2 | Empirical sampling-standardised 
discovery curves

Empirical SSDCs using extrapolators show little sign of asymptoting 
(Figures S9j–o, 6j–o; Figures S10kk–hhh and S11y–nn). As our simu-
lations predicted, TRiPS frequently tracks unstandardised discovery 
curves, particularly in well-sampled intervals (e.g. NAm tetrapods 
in the Maastrichtian, Danian and Ypresian, Figure S9j–l; and global 
dinosaurs during the Maastrichtian, Figure 6l). TRiPS stops extrapo-
lating when the estimated per-lineage binomial sampling probability 
reaches 1, which should indicate that every lineage alive within the 
interval has been sampled. However, TRiPS often infers binomial 
sampling probabilities of 1 even when the coverage deficit is sub-
stantial, indicating that many species remain undetected. For exam-
ple, in Ypresian tetrapods (Figure S9l), TRiPS sampling probability 
reached 1 in the early 1980s, yet face-value counts of species—and 
thus TRiPS richness—continued to climb.

Chao1 and λ5 do consistently extrapolate, but estimates gen-
erally rise in step with new discoveries (Figures S9m–o and 6m–o). 
This suggests that fossil sampling is often insufficient for apply-
ing extrapolators to unstandardised data. One exception is in the 
Ypresian from 1996 to 2006, when numerous tetrapod occurrences 
containing few novel species were added (Figure S9o); here, only λ5 
increases. However, both Chao1 and λ5 continue to rise from 2006 
to 2016.

By contrast, subsampled richness does not consistently rise in 
step with new discoveries. We focus on SQS results using the three-
collections-per-reference protocol and subsampled by collection 
(“V1”), but highlight how these protocols alter results. Provided a 
sufficient level of sampling has been achieved, SQS SSDCs are often 
remarkably stable despite substantial additions of data (Figures S9a–
c, 6a–c). However, extrapolated estimates for North American tetra-
pods rise with new discoveries during the Maastrichtian, Danian and 
Ypresian, SQS richness changes little (Figure S9a–c). Similar patterns 
are evident in the global dinosaur dataset (Figures 6a–c, 7b–c and 
f–g). The stability of SQS SSDCs for Tithonian and Maastrichtian 
dinosaurs (Figure 6a,c) are especially worthy of note, as they are in 
stark contrast to the steep rises in unstandardised (face-value) and 
extrapolated curves.

Simulations show that SSDCs using subsampling methods will 
follow a perfectly flat trajectory if (1) sampling is random and un-
biased, and (2) the size of the underlying sampling universe is static 
(Figure S3). However, idiosyncratic sampling of the fossil record may 
cause subsampled diversity estimates to fluctuate. Firstly, SQS rich-
ness may decline as new occurrences are added. This is most evi-
dent for global dinosaurs during the Maastrichtian (Figures 6c, 7b,f), 
where SQS richness for a quorum of 0.4 almost halves from 1976 to 
2006 (when c. 1,000 occurrences were added). However, this de-
cline disappears at a quorum of 0.5 (Figure 7c,g), and SQS richness 

stabilises at all quorum levels when 200–300 occurrences had 
accumulated (a level of sampling reached around 1980). Over the 
next three decades, the number of global Maastrichtian dinosaur 
occurrences doubled without affecting SQS richness. We attribute 
such declines to systematic biases in the reporting of fossil occur-
rences (see Section 4). Secondly, SQS SSDCs may rise after a period 
of stability (e.g. North American tetrapods at higher quorum levels 
during the Maastrichtian, Ypresian and Danian in the last two de-
cades; Figure S9a–c). Coincident increases in the palaeogeographic 
spread of localities and in counts of singleton taxa (Figure S9v–x,  
y–aa) suggest that such rises are likely due to expansion of the 
sampling universe via exploration of previously unsampled regions 
(see Section 4).

Steep rises in SQS SSDCs are also common in the early 
phases of exploration (Figure 7b–c and f–g). For global dinosaurs 
at a quorum of 0.4, SQS SSDCs for most intervals rise steeply at 
first, only stabilising after over 200 occurrences have accrued 
(Figure 7b,f). This is most likely because coverage cannot be effi-
ciently estimated with Good’s u below this range of sample sizes. 
This is why a quality threshold of 20 references is commonly 
applied to filter unreliable SQS richness estimates (e.g. Benson 
et al., 2016), but SSDCs directly show when curves standardised 
estimates have stabilised.

The SQS Perl script with all fossil-dataset protocols disabled (“V2”) 
produces nearly identical results to iNEXT (interpolated estimates 
only; Figures S9d–i and 6d–i). However, fossil-dataset protocols 
have a variable impact on SSDCs. Firstly, the three-collections-per-
reference protocol often reduces the maximum obtainable quorum 
due to the concentration of occurrence data within monographic 
publications. Because the protocol limits the number of collections 
that may be drawn per subsampling trial to three per reference, it ef-
fectively caps the number of occurrences that can be drawn if some 
references contain many collections. This may lower the maximum 
attainable coverage. Secondly, the fossil-dataset protocols may alter 
SSDC patterns. In some intervals, these protocols have little effect 
(e.g. Maastrichtian dinosaurs; Figure 6c,f). However, curves for most 
intervals differ (e.g. Ypresian tetrapods, where the protocol elimi-
nates a decline through 1996–2006 coincident with the addition of 
a monograph listing many new mammal occurrences, but few new 
taxa; Figure S9c,f).

Null distributions reveal the range of patterns SSDCs would 
take if all currently-known occurrences had been discovered in 
random order, and thus shed light on systematic reporting bi-
ases, such as a preference for reporting novel taxa, or systematic 
expansion of the sampling universe through collector-time (see 
Section 4). When the sampling universe is expanded late in col-
lection history, the empirical SQS SSDC lies below the range of 
randomised collection histories (e.g. North American tetrapods 
during the Danian and Ypresian above quorum 0.1; Figure S12b,c). 
Progressively better sampling of the same universe causes the 
empirical curve to lie within the range of the null (e.g. for global 
dinosaurs during the Tithonian; Figure S13). Maastrichtian tetra-
pods exhibit both patterns depending on the quorum level (Figure 
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S12c): a late, steep rise is evident at a quorum of 0.6, causing 
the empirical curve to fall below the null. However, the empiri-
cal curves overlap with the null for quorums of 0.1–0.5. This may 
be because later collecting efforts do little to alter the species 
sampled at low quorum levels (the most common taxa). Diversity 
curves constructed using all the estimators we test are shown in 
Figures S14 and S15.

4  | DISCUSSION

Both our simulations (Figures 1, S3 and 2) and SSDCs for fossil data-
sets (Figures   S9 and 6) demonstrate that although interpolators 
consistently standardise diversity samples of differing sizes, extrap-
olators should no more be expected to yield fair results from such 
samples than direct comparisons of face-value counts of species 
(unless coverage for all assemblages is sufficient for extrapolators to 
have reached an asymptote). Extrapolators yield a minimum bound 
for true richness (Chao, 1984). However, true richness may substan-
tially exceed this when sample sizes are insufficient (Chao, Colwell, 
Lin, & Gotelli, 2009). The sample-size dependency of extrapolators 
is well-known (Chao et al., 2009; Colwell & Coddington, 1994) but 
perhaps not widely appreciated.

By their very nature, richness estimates obtained from SQS and 
CR are relatively sample-size invariant, and our empirical SSDC results 
broadly reflect this. However, extrapolated SSDCs for empirical fossil 
data show few signs of asymptoting (Figures 6 and S9). This suggests 
that sampling in the tetrapod fossil record is generally not yet good 
enough to use extrapolators unless they are applied within a rarefy-
and-extrapolate protocol of the kind used in our simulation experi-
ments. Our simulations show that rarefying Chao1 or λ5 estimates to 
equal coverage produces the best results (particularly λ5; Figures 5 
and S5). In particular, rarefying extrapolators to equal coverage is the 
best way to remove confounding effects of among-sample variation 
in evenness, a problem that affects all richness estimators when sam-
pling is comparatively limited (see below). A similar approach is advo-
cated by Colwell et al. (2012) and Chao and Jost (2012). iNEXT (Hsieh 
et al., 2016) implements this for Chao1, but analytical solutions for 
adjusting λ5 to particular levels of coverage do not yet exist.

4.1 | TRiPS

Our results suggest that, as additional data is accumulated, TRiPS 
eventually stops extrapolating when evenness is less than perfect 
because it fits a single sampling rate for all species in each inter-
val (=“uniform” sampling rates in the parlance of Wagner & Marcot, 

F IGURE  7 Discovery curves of global dinosaur species for each Mesozoic stage, plotted against the chronological addition of 
occurrences. Curves are shown using both linear and log-log axes; the latter facilitate visualisation of changes at smaller sample sizes. (a, e) 
Raw (unstandardised), (b, f) SQS (quorum = 0.4), (c, g) SQS (quorum = 0.5), and (d, h) TRiPS sampling-standardised species-level collector-
curves
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2013). This parameter can be unduly influenced by common species: 
one species observed numerous times can vastly inflate the sampling 
rate. This appears to cause TRiPS’ binomial sampling probability to 
saturate before coverage is complete, and thus cease extrapolating 
even when many species remain undiscovered. This may be seen in 
the records of Maastrichtian and Ypresian tetrapods (Figure S9j,c): 
despite incomplete sample coverage, TRiPS’ richness estimates in-
crease in step with face-value counts of species. Per-lineage bino-
mial sampling probabilities may not have a simple relationship with 
frequency-distribution coverage.

Attempting to fit a single sampling rate and probability to all taxa 
in each sampling unit is unlikely to work on real-world data, because 
empirical species-abundance distributions tend to be heavily right-
skewed on an arithmetic scale (Preston, 1962a, 1962b). Modern 
species-abundance distributions are best described by double-
geometric distributions, but the lognormal is a reasonable alterna-
tive (Alroy, 2015). Although time-averaging could potentially alter 
these patterns, log-normal distributions of per-collection sampling 
rates among taxa have been shown to fit empirical fossil occurrence 
data much better than uniform rates (Wagner & Marcot, 2013). Even 
if the per-individual chance of preservation were identical for all 
species, ubiquitously right-skewed abundance distributions cause 
sampling rates and probabilities to be overestimated for rare taxa.

4.2 | Reporting biases and sampling-universe 
variability

Sampling-standardised discovery curves are valuable because the 
fossil record is not sampled in an unbiased and random manner, and 
because the nature of sampling may change through collector time. 
SQS SSDCs are considerably more stable than those for extrapola-
tors. However, in some instances SQS richness may rise or fall as 
data accrues. We attribute such fluctuations to two drivers: (1) non-
random reporting of fossil discoveries, and (2) sporadic expansion of 
the sampling universe through collector-time.

A key assumption of any richness estimator is that sampling is 
unbiased. However, palaeontological research probably exhibits a 
‘novelty bias’—a tendency to prioritise publication of new taxa over 
new occurrences of named taxa (Alroy, 2010c; Tennant et al., 2018). 
At least in the early phases of discovery, this bias results in inflated 
counts of singletons, which bias estimates of sample coverage down-
wards, and estimated richness upwards. When novel taxa become 
scarce, efforts may shift towards reporting additional occurrences of 
named taxa. This phenomenon may explain the decline in SQS rich-
ness of Maastrichtian tetrapods over the latter half of the twentieth 
century (see Figure S9a). The non-random nature of palaeontological 
reporting practices is underscored by the trajectories of singleton 
and multiton taxa through collector-time (Figure S9v–x). When sam-
pling is entirely random (Figure 8), the ratio of singleton to multiton 
taxa is expected to decline more or less monotonically, but seems 
to be invariant for Maastrichtian tetrapods: multitons are underre-
ported relative to singletons. This may explain why Good’s u often 
appears to asymptote well below 1 (Figure 6s–u).

SQS SSDCs may also fluctuate due to non-random expansion of 
the sampling universe (e.g. increases in sampled geographic area, 
palaeolatitudes or palaeoenvironments). Studies of regional-level 
diversity patterns (i.e. continental-scale or gamma diversity) im-
plicitly assume that fossil discoveries are a representative, random 
sample of that geographic region. However, fossil discoveries within 
continental regions have highly non-random spatial distributions, 
providing only a partial window into the intended geographic sam-
pling universe. Furthermore, the realised sampling universe tends to 
expand as new fossiliferous regions are discovered. Even the best 
richness estimators cannot correct for variability in the size of the 
underlying taxon pool. It is, therefore, important that the realised 
sampling universes within focal assemblages are comparable.

SSDCs provide valuable context for gauging the maturity of sam-
pling in focal assemblages. At the regional level, very few intervals of 
the dinosaur record have emerged from an early phase of discovery 
that tends to be characterised by volatile SQS SSDCs (Figure 7b–c 
and f–g). The Maastrichtian, Kimmeridgian and Tithonian of North 
America are likely exceptions (Figure 6). However, even the apparent 
stability of SQS richness in these intervals could change if produc-
tive new fossiliferous regions are discovered. This emphasises the 
need to recognise potential disconnects between the extent of the 
intended and realised sampling universes and tailor comparisons of 
diversity accordingly (Close, Benson, Upchurch, & Butler, 2017).

4.3 | Among-sample variation in evenness

SQS has recently been criticised for tracking evenness (Hannisdal, 
Haaga, Reitan, Diego, & Liow, 2017). In fact, among-sample varia-
tion in evenness will confound any richness estimator that implicitly 
or explicitly utilises information about relative frequencies of taxa 
(see also Kosnik & Wagner, 2006). This is simply because it becomes 
much harder to sample all of the species in a community when even-
ness is very low. We consider that any additional sensitivity SQS 
may have to differences in evenness at low coverage is a worth-
while tradeoff (Figures 3 and 4). The initial description of SQS (Alroy, 
2010a) acknowledged the potential for among-sample variation in 
evenness to confound SQS; indeed, the central assumption of SQS is 
that substitutions of taxa occur randomly with respect to their rela-
tive frequencies. In other words, SQS is only guaranteed to estimate 
richness ratios with perfect accuracy when evenness (or the shape 
of the species abundance distribution more generally) does not vary 
systematically between communities.

In fact, depending on the level of sampling, standardising to 
equal coverage is either more or less sensitive to evenness compared 
to methods that standardise to sample size (e.g. CR). When cover-
age is poor to moderate, richness estimates standardised to equal 
coverage are marginally more sensitive to evenness than those stan-
dardised to sample size. This is because SQS establishes how many 
species will be found, on average, by repeatedly sampling a fixed 
proportion of individuals in the community. We naturally expect to 
sample fewer species in a given fraction of the community if even-
ness is very low, and more species if evenness is very high.
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This is why, when sampling is comparatively limited, sample 
coverage (both true and estimated) actually increases as abun-
dance distributions become more uneven (Figure S16; note that this 
shows the coverage deficit in order to allow log-transformation of 
the y-axis). When evenness is very low, coverage at smaller sample 
sizes is relatively high (and the coverage deficit is therefore low): 
although very rare species are unlikely to be sampled even once, 
common species are easy to find, and they collectively account 
for a large fraction of individuals in the population. Conversely, 
when evenness is very high, coverage drops, because limited sam-
ples likely contain many singletons. However, because coverage 
increases and asymptotes more rapidly in very even communities 
than very uneven ones, this relationship reverses when sampling 
is very good. Eventually, coverage for a given sample size will be 
higher when communities are more even, and lower if they are less 
even (Figures S16 and S6). Thus, as coverage increases, problems 
arising from among-sample differences in evenness diminish and 
eventually disappear. The implication of this changing relationship 
between coverage, evenness and sample sizes is that SQS is more 
sensitive than CR to differences in evenness at low quorum levels, 
because it undersamples (relative to total species richness) when 
evenness is low. Conversely, SQS is less sensitive than CR to differ-
ences in evenness at very high levels of coverage, because SQS then 
samples harder when evenness is low.

From a theoretical perspective, total species richness and 
the shape of the abundance distribution are distinct properties. 
However, practicalities of sampling mean that it may be difficult 
to disentangle these two properties. As Chao and Jost (2012) ob-
serve, variation in the shape of the abundance distribution is the 
reason why size-based (CR) rarefaction curves for different assem-
blages can cross (signifying points where the rank-order richness of 
communities switches). Coverage-based rarefaction curves (plots 
of richness as a function of coverage; e.g. Figure 2) cross the same 
number of times as size-based rarefaction curves, but less data is 
required to detect where this occurs. The only way to correctly 
resolve true differences in ranked richness is by attaining sufficient 
coverage in each assemblage to have observed all the crossing 
points—but in reality, we can never know if we have surpassed this 
point (Chao & Jost, 2012). This is the main reason for using the 
highest quorum level possible, and for treating estimates from low 
quorum levels with scepticism. However, SQS does tell you how 
many species will be found, on average, in a random sample of a 
fixed percentage of individuals drawn from the population, infor-
mation that is biologically meaningful.

Another reason for preferring higher quorum levels—even if the 
shape of the abundance distribution does not vary between com-
munities—is that it is difficult to accurately estimate low levels of 
coverage from limited samples. All else being equal, SQS requires 
much less data than CR to accurately reconstruct richness ratios and, 
in theory, richness ratios can be accurately reconstructed from very 
small sample sizes provided that abundance distributions do not dif-
fer (Chao & Jost, 2012, Table 2). In practice, however, sample cover-
age must be estimated from the data. Our simulations demonstrate 

that coverage can be very accurately estimated when sample sizes 
are moderately large; precision increases with sample size (Figures 
S17 and S18). However, both accuracy and precision depend on true 
richness and evenness: coverage is more difficult to estimate from 
small samples when true richness and evenness are low, and easier 
to estimate when richness and evenness are high.

5  | CONCLUSIONS

Simulations and empirical sampling-standardised discovery curves 
(SSDCs) for fossil datasets show that standardising diversity data to 
equal coverage ensures fair comparisons of richness when sampling 
is limited. When sampling is unbiased and the shape of the abun-
dance distribution does not vary among communities, SQS yields 
perfectly accurate relative richness ratios, and standardised esti-
mates scale linearly with true richness. Empirical SSDCs using SQS 
are more stable than those using extrapolators. Richness estimators 
that standardise by coverage are among the best currently available 
methods for reconstructing deep-time biodiversity patterns.

Extrapolated richness estimates obtained from samples of un-
equal sizes may be almost as misleading as direct comparisons of 
unstandardised richness. Unless sampling is sufficiently complete 
for the estimator to have asymptoted, extrapolated estimates may 
strongly depend on sample size, yielding inaccurate relative rich-
ness ratios among assemblages. This is especially crucial for fossil 
occurrence data, because sample completeness varies substantially 
among time intervals and geographic regions. The sampling level re-
quired for extrapolators to asymptote increases with true richness 
and decreases with evenness. Of the extrapolators we tested, the λ5 
method performs best when evenness is low.

When abundance distributions are less than perfectly even and 
sampling is moderate to good but not complete, TRiPS stops extrap-
olating and instead returns face-value counts of taxa. This is because 
TRiPS fits a single sampling rate for all species in each interval, which 
causes the method to overestimate binomial sampling probabilities. 
Most assemblages of interest to palaeobiologists or ecologists are 
unlikely to have flat abundance distributions, and indeed SSDCs 
using TRiPS often closely track unstandardised discovery curves.

All richness estimators are biased by differences in evenness 
when sampling is comparatively limited. Richness estimates become 
downwardly biased as evenness diminishes, since it becomes ever 
harder to detect the rarest species. When overall sampling is very 
poor, standardising by coverage produces richness estimates that 
are slightly more biased by differences in evenness than standard-
ising by sample size. However, when sampling is very good, the sit-
uation is reversed.

Rarefying extrapolated richness estimators to equal sample 
coverage (i.e. using a coverage-based rarefaction algorithm to 
standardise extrapolated, rather than face-value counts of species) 
gives us the best of both worlds: it makes our samples effectively a 
little bigger, and therefore diminishes the impact of evenness while 
retaining the desirable properties of SQS (e.g. a linear relationship 
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between true and estimated richness). Coverage-based rarefac-
tion of extrapolators removes any potential sample-size depen-
dency, and effectively extends the maximum coverage obtainable 
from limited diversity samples.

Our empirical SSDCs reveal biases in the accumulation of palae-
obiological knowledge that may confound even the best richness 
estimators. We recommend constructing SSDCs for fossil datasets 
in order to shed light on these sources of bias, and to provide import-
ant historical context for understanding the reliability of present-day 
sampling-standardised richness estimates.
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