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A B S T R A C T  
 
Since multiple failure events associated with derailments could not be identified and derailment probability could not be 

reached quantitatively by event tree and fault tree analysis for safety assessment in railway systems, applications of Bayesian 

network (BN) were introduced over the last few years. The applications were often aimed at understanding safety and 

reliability of railway systems through various basic principles and unique inference algorithms focusing on particular railway 

infrastructures. One of the most critical engineering infra-structure, railway turnouts (RTs) have been investigated and 

analysed critically in order to develop a new BN-based model with unique algorithm. This unprecedented study reveals the 

causal relations between primary causes and the subsystem failures, resulting in derailment, as a result of extreme weather-

related conditions. In addition, the model, which is designed for rare events, has been proposed to identify the probability and 

un-derlying root cause of derailment. Consequently, it is expected that various weather-related causes of derailment at RTs, 

one such undesirable event, which can result, albeit rarely, damaging rolling stock, railway infrastructure and disrupting 

service, and having the potential to cause casualties and even loss of life, are identified to allow for smooth railway operation 

by rail industry itself. The insight into this weather-derailment will help the in-dustry to better manage railway operation 

under climate uncertainty.  
 
 
 
 
1. Introduction 

 
Railway transportation seems to be in an upward trend in demand, being 

not only particularly sustainable, but also considerably cheaper than air 

operations and faster than shipping. According to the Association of 

American Railroads (Hamberger, 2015), although the USA has long been 

known to have the world’s longest railway network, its rail network is still 

being increased and is twice what it was in 80s. Whether developed or not, 

similar trends for the other countries have often been seen (Kaewunruen et al., 

2016). Such an increase gives rise to operational concerns due to a revealing 

lack of existing management strategies as well as partly understanding of 

causal relations in various critical railway systems. 

 
A railway turnout system, as one of the most critical systems in railway 

infrastructure, is manufactured and then installed to enable a rolling stock to 

divert from one direction to another. A railway has very complex geometry 

and demands an error-free railway operation since a large number of turnout 

components interrelate with each other. As a result, turnout railway systems 

are seen to be a significant railway  

 
 
 

 
engineering system quite vulnerable to accidents, e.g. collision, de-railment 

(Dindar and Kaewunruen, 2018). It is found that derailment accounts for 9% 

of all accidents types, and the majority of those de-railments occur on 

turnouts (Dindar et al., 2016a). A derailment is likely to take place on railway 

turnouts when a rolling stock, such as a train, experiences unauthorised 

movements, causing it to run off  turn-outs for a variety known reasons. The 

eff ects the extreme weather conditions, one of these reasons, have on 

derailment at railway turnout systems are identified to pose serious concern 

that need to be consider in risk management (Dindar et al., 2017; Sa’adin et 

al., 2017).  
The impact of weather conditions on railway turnout systems in the 

literature is a new and quite diverse topic followed by quite limited number of 

scholars within two categories: Conditional-Based Maintenance (CBM), 

which only suggests a prognostic attitude towards maintenance (Kaewunruen 

and Remennikov, 2005; Vale and Ribeiro, 2014), and Risk-Based 

Maintenance (RBM), which suggests an alter-native or complementary 

strategy to minimise the risk resulting from any kind of failures and accidents 

or errors in breakdown of manage-ment (Ishak et al., 2016; Sa’adin et al., 

2016). The advances in the 
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former starts with a simple state-based prognostic method simply aiming at 

predicting railway turnout failures (Eker et al., 2011). This study is followed 

by a precipitate statistical investigation showing that a significant number of 

turnout component failures might be caused by weather conditions 

(Hassankiadeh, 2011). Also, it is found that sea-sonal changes have a 

considerable impact on prognostics involving railway turnouts. Mahboob et 

al. (2012) summarised a number of Component Importance Measures (CIM), 

deriving the computation of the CIM using Bayesian Networks (BNs) and 

Fault Tree Analysis (FTA). It has recently been presented that the eff ect of 

weather on railway turnouts can be evaluated through a failure prediction 

model based on Bayesian Networks (Guang et al., 2017). However, all these 

attempts require the railway industry to understand the link between only 

components failures with weather conditions on railway turnouts. 

 

As regards Risk-Based studies, it can be stressed that this seems to present 

a huge gap in the related literature, as these studies often aim to fill the gap 

associated with derailment events. A probabilistic model was developed to 

forecast rail breaks and controlling risk of derailment (Zhao et al., 2007). Risk 

categorisation and prioritisation are achieved for geometry restoration of 

railway turnout systems in various opera-tional environments (Ishak et al., 

2016). Dindar et al. showed how a turnout can be aff ected by the diversity of 

risks arising from natural hazards and global warming (Dindar et al., 2016b). 

This study has been the first investigation to reveal a significant relationship 

between de-railment and weather/climate conditions. Turnout component 

failures by several weather patterns are investigated (Wanga et al., 2017). 

This research is limited to component failures considering only precipitation 

on a particular location and particular rail lines regardless of con-sequences of 

such failures, e.g. Derailment. Finally, Dindar and Kaewunruen (2016) 

developed a risk-based maintenance strategy for geometry problems of 

turnouts, considering various failures in order to minimise the risk of 

derailment on them. 

 

In this paper, a risk analysis based on railway turnout systems under 

uncertainty of all weather and environmental conditions is proposed for  
a systemic decision support to dealing with derailment. Buckley’s confidence 

interval-based method is used to reach the proposed ap-proach, which is 

capable of modelling both statistical uncertainty or randomness and linguistic 

vagueness. The confidence intervals are nested into Fuzzy Bayesian Networks 

(FBN) to investigate causal re-lationships between weather patterns and 

derailments on the systems. Sensitivity analysis is implemented into a detailed 

fuzzy-based in-ference procedure to reduce limitation by scarce data 

environment and to ensure solid estimate. 

 

To reach more appropriate, realistic and reliable results than con-

ventional and fuzzy methods, which are based only on one source of 

knowledge, this paper uses data information of 50 states, having dif-ferent 

climate patterns, through real accident reports over the last ten years. The 

structure of this paper is as follows: in Section 2, a brief introduction of 

Bayesian networks is given. Then, in Section 3, fuzzy probability using 

Buckley’s approach is explained in detail. In Section 4, possible weather 

patterns inducing derailment risk on railway turnout systems are discussed. 

Then, the proposed model and its learning al-gorithm are discussed and 

shown. In Section 6, the model is applied on a railway turnout and its results 

are presented. Finally, Section 7 con-cludes this paper. 

 

 

2. Bayesian Networks 

 

BNs, also known as belief networks, Bayes network or Bayes nets, belong 

to the family of probabilistic graphical models (PGM), which enable 

representation and reasoning about an uncertain domain. The nodes in PGM, 

specifically referred to in BNs as directed acyclic graph (DAG), represent a 

set of random variables, V = X1,…Xi,…,Xn, from the domain, while the 

edges between the nodes represent their probabilistic dependencies among the 

corresponding random variables. Statistical and computational methods allow 

for estimation of these conditional 
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dependencies in the graph. Thus, BNs utilise from various principles, 

including graph theory, probability theory, computer science and sta-tistics. 

 
BNs are a set of all parameters in the network. A conditional probability 

as a parameter in the network is defined through  

Θ Xi |πi = PBN (Xi |πi) for each xi state of Xi, given the parent set πi. With a 

conditional probability and a DAG, a BN defines a joint probability distribution 

(JPD), also known as “chain rule”, for V, which is acquired by the following 

equation, Eq. (1) (Nielsen and Jensen, 2009): 
 

n 

P(V ) = P(X1 ,… ,Xn ) = ∏ P (Xi |πi)  

i=1 (1) 
 
Any node in BNs is likely not to be any parent in the chain. Thus, the node 

has only marginal distribution, P (Xi), as being independent of the other 

variables. Additionally, each node in a BN is associated with a conditional 

probability, P (Xi |πi), of any variable Xi whose parent set, πi, is present. This 

conditional probability is calculated by following equation, Eq. (2) (Nielsen 

and Jensen, 2009).  

P(Xi |πi) = 

P(X
i 

∩
 

π
i

) 

(2) P (πi)  
Considering the BN in Fig. 1, the full joint probability distribution of this BN 

might be simplified as  

P (A,B ,C ,D ,E ) = P (A ) P (B ) P (C ) P (D |A,B ) P (E |C ,D) (3) 
 
Conditional and marginal probability distributions of these variables are 

presented in Tables 1–5. A, B and C are classified only in Marginal 

Probability Tables as they do not have a parent node. On the other hand, 

conditional probability distributions of D and E are generated in Table 3 and 

4.  
The joint probability of this BN is calculated with the following Eq.:  

P (a i bj c k dl en ) P (A = a i ,B = bj ,C = c k ,D = dl ,E = en)  

=
 

p
ai 

p
 bj 

p
ck 

pa p b pd   p p 
dl 

p  
i j  l   ck  

e
n  

p p 

bj 

  p p 

dl  (4)  ai     ck  
This determination of marginal and conditional probability tables en-ables 

probabilities for these variables, e.g. P (A|B ),P (A|D), to be calcu-lated. 

 
 
3. Fuzzy probability 

 
3.1. Preliminaries 

 
This section sets up the terminology and notation that is not part of the 

technical contribution, but is needed to delineate material of the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A BN for variables A, B, C, D, E. 
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Table 1  
Marginal probability table for A.  

 P (A = a1) P (A = a2) 
     

 pa1 pa2 
     

 Table 2    
 Marginal probability table for B.    
    

 
 P (B = b1) P (B = b2) 
     

 pb1 pb2 
     

 Table 3    
 Marginal probability table for C.    
   

 
 P (C = c1) P (C = c2) 
    

 pc1 pc2 
      

 
Table 4  
Conditional probability table for D. 
 

A B P ((D = d1)|A,B ) P ((D = d2 )|A,B) 
            

a1 b1 
p

a1,b1,d1 
p

b1,b1,d2 
  

p
a1,b1     

p
b1,b1     

a2 
b

1 
p

a2,b1,d1 
p

a2,b1,d2 
  

p
a2,b1    

p
a2,b1    

a1 
b

2 
p

a1,b 2,d1 
p

a1,b 2,d2 

  
p

a1,b2   
p

a1,b2   

a2 b2 
p

a2,b 2,d1 
p

a2,b 2,d2 

  
p

a2,b2  
p

a2,b2   
 
Table 5  
Conditional probability table for E.  

C D P ((E = e 1)|C ,D) P ((E = e 2 )|C ,D) 
           

c1 d1 
p

c1,d1,e1 
p

c1,d1,e2 
  

p
c1,d1    

p
c1,d1     

c2 
d

1 
p

c 2,d1,e1 
p

c 2,d1,e2 
  

p
c 2,d1   

p
c 2,d1   

c
1 

d
2 

p
c1,d2,e1 

p
c1,d2,e2 

  
p

c1,d2   
p

c1,d2   

c2 d2 
p

c 2,d2,e1 
p

c 2,d2,e2 

  
p

c 2,d2  
p

c 2,d2   
 
paper.  
Definition 1. the membership function of an element, x, is μ∼A (x ). The 

∼ 

element belongs to a fuzzy set A , where each element of x is always mapped 

to a value between 0 and 1, i.e. 0 μ ∼A (x ) 1 (Dubois and Prade, 1980). 
 

∼ 

Definition 2. A fuzzy number A is a fuzzy set on . μ∼A (x ) is its membership 

function (Dubois and Prade, 1980) such that  
   ∼     

i. The α-cut of a fuzzy set A is closed intervals of   and denoted as the 

 crisp set A∝ given by A ∝ = { x ∈ X : μ ∼ (x )   ∝} where 0   ∝ < 1. 
  ∼   A   

ii. A fuzzy set A is said to be convex due to   

μ∼ (λx + (1−λ ) x )   min(μ ∼ (x ),μ ∼ (x )) for λ ∈ [0,1]   
A 1 2 A 1 A   

2 
  

     ∼ ∼ 
= a1,a2 ,a3 Definition 3. α−cutFN is a fuzzy number A by the triplet A 

with the shape of concave function if its membership function μ∼A (x ) is 
given by Buckley (2004): 
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 0 for x < a1 
x

 
−

 
a

1  

< x < a2  a2 − a1 for a1 μ
∼A 

(x
 
)
 
=

  a3 − x  

< x < a3  a3 − a2 for a2 
 

0 for a3 < x    

Definition 4. 
    ∼ 

(α ) = [a1,b1] The mathematical operations of two TFNs, X 
 ∼       

and Y (α ) = [a2 ,b 2] are as follows(Dubois and Prade, 1980; Buckley, 

2004):       

o 
∼ ∼ 

(α ) = [a1,b1] + [a2 ,b 2 ] = [a1 + a2 ,b1 + b2] 
 

X (α ) + Y  

o  
∼ 

      
∼        

X (α )· Y (α ) = [a1,b1]·[a2 ,b 2 ] = [min(a1 · a2 ,a1 · b 2 ,b1 · a2 ,b1 · b 2 ),max(a1 · a2 ,a1· 

o 
∼    ∼ b 2 ,b1 · a2 ,b1 · b 2)]  
X (α )−Y (α ) = [a1,b1]−[a2 ,b 2 ] = [a1−b 2 ,b1−a2]  

 ∼ ∼ 1  1   

o X (α )/ Y (α ) = [a1,b1]/[a2 ,b 2 ] = [a1,b1]·[ 

 

 

 

] 

 

b
 2 

a
2  

 
3.2. Probability of fuzzy events 

 
A random variable x is in a sample space X. Then, a crisp event is defined 

as a subset of A, and its unconditional probability Pr (A) is calculated by the 

following Eq.:  

Pr (A ) = ∫ f (x ) dx = ∫+∞
 XA (x ) f (x ) dx 

(5) x ∈ A −∞ 

where XA (x ) is membership of an element in a subset A of X, a binary 

indicator function with the value 0 for all elements of X not in A and the 
value 1 for all elements of A.  

On the other hand, it has been expressed in previous section that the 

indicator functions XA (x ) of fuzzy events are their membership func-tions, 

μ∼A (x ). Thus, XA (x ) in the Eq. can be replaced with 

μ ∼A (x ): X → [0,1], as such:  

Pr (A ) = ∫+∞
 μ ∼A (x ) f (x ) dx 

(6) −∞  
Eq. (6), that is, estimates a fuzzy probability density function through the 

product μ∼A (x ) f (x) 

 
3.3. Fuzzy estimation based on Buckley’s method 

 
The method is quite new application to the BN in risk calculation of 

engineering systems, but it is proposed that Buckley’s approach might be one 

of the best solution to rare events within a scarce data en-vironment (Ersel 

and İçen, 2016). To calculate probability on the basis of fuzzy knowledge, 

Buckley proposes two approaches defining the probability as a triangular-

shaped fuzzy number. The diff erences be-tween the two relates to the source 

of knowledge from which the sta-tistical model for probability estimate is 

utilised. In the first approach, a1, a2 and a3 values are defined in accordance 

with expert opinion, while the other deals with data, considering suitable 

confidence inter-vals to uncertainness in the clusters. 

 
This approach has long been used by various scholars interested in only 

two possible outcomes, labelled success and failure. Let p be the probability 

of a success and x be the number of times we had a success in n independent 

repetitions of this experiment. Therefore, if we want to estimate the value of 

probability p based on this approach, then a random sample, which, here, is 

running the experiment ‘n’ independent times, i.e. X1, X2, …, Xn, should be 

gathered. The probability density function of this experiment is defined as f (x 

,p).  
Based on this experiment, p, as a single unknown parameter, is calculated 

with interval cuts. We make 100(1−∝ )%,0 ∝ 1, confidence intervals for p. 

These confidence intervals are donated [p1 (∝ ),p2 (∝ )]. Moreover, these 

confidence intervals are nested. The confidence inter-vals are then placed on 

top of one another in the way of ∝ =0 to ∝ =1 
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in order to create a fuzzy number p, whose ∝ - cuts are the confidence 

intervals. The mathematical progress of a fuzzy number is explained as 

follows:  
It is known that p −̂p = p−( 

1
 
−

n 
p
 ) , where p ,̂equals to x/n, donates the 

point of estimation and also n donates the number of independent repetitions, 

roughly N (0,1) if n is sufficiently large. Thus, 
 
P (p −̂z β /2  p (1−̂p )/ n ̂p p ̂+ z β /2  p (p ̂(1−p̂)/ n ) ) ≈̂(1−β)  
 
The equation above leads to the (1-β)100% approximate confidence interval 

for p  

[p −̂z β /2  p (1−p )/ n, p ̂ p + ̂zβ /2  p (1−p )/ n ] (7)  
Therefore, (1−β)100% confidence intervals for each β might be found. This 

gives p, and β is suggested to be between 0.01 and 1. In accordance with this 

range, these intervals can be presented as [p 
L
 (β ),p

U
 (β )]. 

 
To produce a triangular-shaped fuzzy number p whose ∝ – cuts are the 

confidence intervals, we can place these confidence intervals in the way of one 

over another with the following equation for 0.01 β 1.  
∼ 

(∝ ) = [p 
L
 (∝ ),p

U
 (∝ )] (8) P 

 
This allows for gathering more information in p than just a single confidence 

interval or just a point estimate. Thus, p , which is a trian-gular-shaped fuzzy 

number, will be the fuzzy estimator for p. 
 
 
4. Weather-related derailments 

 
Weather-related derailments continue to account for a significant 

proportion of general railway accidents. Unlike other kind of derail-ment 

causes, weather-related derailments are not often given due consideration 

because, firstly, the occurrence of such derailments is not considerably high 

and, secondly, there still presents a gap in the lit-erature to understand 

precisely the fundamental impacts of weather patterns on turnout-related 

derailments. Therefore, risk management strategies for railway turnout 

systems in particular might be said to lag behind what the industry currently 

requires, which leads to a decrease in the asset reliability and efficiency, and, 

as a result, loss of lives as well as financial burden through the asset failures 

 

 
4.1. Accident codes 

 
In this study, weather-related derailments are defined as accidents the 

causes of which primarily refer to any adverse weather patterns or undesirable 

environment-related condition on the turnout. In other words, extreme 

environmental conditions, i.e. extremely strong wind might be a reason for 

derailments. Those happenings cannot be pre-vented, but can generally be 

predicted based on events in the past. The other causes, e.g. icing track, are 

assumed to be turnout-related failures, but their primary reasons are weather 

conditions. This could be re-medied through various engineering methods. 

Whether it is predictable or remediable, both groups are handled in this study. 

Accident de-scriptions in the official reports of the U.S. Federal Railroad 

Administration have been investigated through such a consideration. 

 
Table 6 illustrates a group of codes and its primary causes, ex-plaining 

why a derailment occurs. The codes are limited as to whether the 

environmental relation can be matched with derailment cases. As a result, it 

has been identified that some track alignment irregularities need attention. As 

seen, some codes, e.g. M101, entail a cluster of primary causes, which are 

diff erent from one another. Thus, it is not possible to use the raw codes as 

nodes to establish a Bayes Network, as the nodes should be probabilistically 

related by some sort of causal dependency. It is also worth noting that, 

although M199 is used to determine the accidents with any cause out of M101 

to M105, low temperature or water flow are seen as primary causes. 
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Table 6  
FRA codes most used in the study.  
 

Code Situation Primary cause 
   

M101 Changes in condition of a turnout Snow, ice and mud on track 

M102 Extreme environmental condition Tornado, high wind 

M103 Extreme environmental condition Flood 

M104 Extreme environmental condition Dense fog 

M105 Extreme environmental condition Extreme wind velocity 

M199 Other extreme environmental Rarely seen, such as low 

 conditions temperature, water flow 

T109 Track alignment irregularity Buckling 
   

 
4.2. Causes and risk factors 

 
Although the codes allow for capturing every detail associated with the 

causes and resulting consequences of each accident, it is necessary to find 

what fundamentally gives rise to derailment. Additionally, it is vital to 

categorise similar reasons to manage and mitigate well. Considering the 

primary causes in Table 6, various risk factors driving derailment on railway 

turnout systems can be stressed as following. 

 
4.2.1. Floods, rains and saturated soil  

High waters from persistent heavy rains, flash floods, have been identified 

to be one of the conspicuous weather-related concerns of the railway industry. 

Washouts, the consequence of a natural disaster where the track-bed is eroded 

away by flowing water, have the po-tential to weaken chair and ballast, which 

might be determined as a serious geometry problem. Although they are 

mostly seen to occur on plain track, turnouts might be exposed to them in 

sidings and yards, particularly in the countryside. It was shown that turnouts 

are quite vulnerable mechanical installations to geometry problems, and those 

with such problems are highly likely to give rise to derailment accidents 

(Ishak et al., 2016). Aside from runoff  and washout, snowmelt too might 

result in similar saturation problems on railway turnout bed. 

 

 
4.2.2. High wind and tornadoes  

High winds are frequently seen as a cause of derailment on main lines, 

blowing rolling stock off  tracks. The winds might be more ef-fective in 

moving rolling stock on railway turnouts as the running safety regarding 

crosswind stability of the vehicles tends to decrease on curved and moving 

track systems (Hosoi and Tanifuji, 2012). 

 
4.2.3. Snow and icing  

Rail switches, crossing and check rail flangeway are likely to be often 

exposed to snow and ice accumulations in winter seasons, thereby reducing 

control of vehicles and increasing the risk of derailments on railway turnouts. 

In addition to this, the surface of stock and running rail, switch blades might 

be coated with ice or frost. This gives rise to weakening the friction force 

between the wheel and rail, and, thus, poses a risk associated with slipping, 

sliding and loss of control on turnouts. On the other hand, harsh winter 

conditions, e.g. icing, could make turnout infrastructures, such as signal 

systems, switch the motor out-of-service. 

 

 
4.2.4. Temperature  

Rail neutral temperature is the operational temperature range at which the 

rail has no longitudinal stress. Any significant deviation below or above rail 

neutral temperature might be one of the most disruptive weather events for 

turnout systems. Extreme high tempera-ture leads to formation of large lateral 

misalignments in stock and running rails, often resulting in derailments. On 

the other hand, ex-treme cold also might bring about derailment, not only 

inducing brittle tracks and separated or broken rail, but freezing moisture 

often pre-sented on the surface of the rail as well. 
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Table 7  
Derailment-related nodes, their description and relevant situation for railway turnouts.  
 

Node Description Relevant situation 
   

R1 Extreme wind Interaction problems, blockage 

R2 Snowfall Slipping, blockage, vision loss 

R3 Fog Vision loss 

R4 Rainfall Slipping, vision loss, track bed problems, geometry 

  problems 

R5 Flood Track bed problems, blockage, mechanical/electrical 

  based errors 

R6 High temperature Geometry problems 

R7 Low temperature Embrittlement 
   

 
4.2.5. Slides of mud and rocks  

The safety and efficiency of turnout operations can be threatened by slides 

of weather-caused hazards such as snow, mud and rocks. These hazards 

induce derailment risk when the ground under or around a turnout moves as a 

result of freeze-thaw cycles, heavy rains or high wind. 

 
 
4.2.6. Dense fog  

Where the railway signalling systems are used at turnouts, drivers are 

advised of the status of the section of track ahead. As dense fog is highly 

likely to reduce visibility, whereby not only might drivers not properly detect 

such systems, but they also may not even notice turn-outs in time to stop or 

slow down. This may cause the train to be de-railed, and prevent keeping 

passengers and goods safe. 

 
4.3. Categorisation 

 
In the light of the many causes and risk factors discussed in the previous 

section, the situations leading to derailment on turnouts have been categorised 

in Table 7. The nodes 1–5 have been addressed to extreme conditions. For 

instance, the node R1 stands for the occurrence of extreme wind, including 

high wind and tornadoes, while snowfall, resulting in icing on track, or 

blocking movable parts of turnouts, or vision loss due to high density in the 

precipitation, is assigned as R2.  
On the other hand, nodes 6 and 7 refer to two variations of tem-perature 

phenomena as, firstly, temperature entails two extreme var-iations, unlike the 

others in the table, and, secondly, it is noticed, when investigating the data on 

weather-related turnout failures, that there has been considerable number of 

derailments occurred at turnouts on high/low temperatures days. 

 
 
5. Bayesian Network model and probability assessment 

 
5.1. FBN-based probability assessment frame 

 
There is a long record of weather-caused derailments at turnouts, which 

has enhanced the knowledge of what causes most give rise to derailment. 

However, we have no idea regarding the interaction of these causes or about 

what the probability distribution is going to be like in a situation in which one 

of these causes is impossible to happen, e.g. tornado in areas with mild 

climate. Hence, there is a need for a generic BN-based weather-caused flow 

diagram to be developed.  
For the implementation of weather-related derailment estimates at 

turnouts, a systematic Bayesian Network is developed, as seen in Fig. 2. In 

this proposed approach, the following three steps are adopted: 

 

• Step (1) Problem definition: Carry out a search of available data-bases 
which refer to all kinds of weather-related derailments; judge data in order 

to identify all anticipated weather-based causes/fac-tors to potential 

derailment accidents at turnouts; pay attention to causal relationships 
among those causes/factors. Step 1 is revealed in detail in Section 4. 
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• Step (2) BN module construction: Define both variables (nodes) having a 
finite set of mutually exclusive states as identified root nodes (RNs) or 

intermediate nodes (INs) to represent the identified hazards; develop 

failure logic through conditional probability dis-tribution (CPD); establish 
a network topology to describe condi-tional independence relationships of 
defined variables. Step 2 is archived in the following sub-headings in this 

section.  
• Step (3) Probability estimates and decision: Specify states and assign input 

values for probability estimation of RNs; calculate prob-abilities based 

upon Buckley’s alpha cut methods via Eq. (7); update the values of all 

nodes by calculating posterior probabilities; per-form sensitivity analysis 

to reveal the performance of each variable’s contribution to the occurrence 

of a derailment accidents at turnouts. Step 3 is discussed in Section 6. 

 
 
5.2. The Bayesian Network structure of weather-related derailments 

 
The failure-consequence scenarios from the top to bottom nodes using a 

directed acyclic graph (DAG) are created through the logic diagram in 

accordance with the accidents reports. Thus, a weather-re-lated derailment 

Bayesian Network (WRDBN) is established through steps 1 and 2 in Fig. 2. 

WRDBN, as seen in Fig. 3, is formed of 11 root nodes, which are addressed 

to intermediate nodes, contributing to the leaf node, derailment. Intermediate 

nodes have been described as re-levant stations in Table 7. Root nodes, 

intermediate nodes and the leaf node are encoloured into grey, orange and red 

in Fig. 3, respectively.  
The descriptions of all nodes illustrated in Fig. 3 are given in Table 8. The 

intermediate nodes are added in accordance with primary causes in the 

accident records. For instance, high wind (R1) is shown as a root cause giving 

rise to inadequacies in railway turnout management system that allow the 

immediate causes (I1, I2) to arise unchecked, leading to the accidents. The 

intermediate nodes and their relations to root causes are revealed as result of 

investigation of over 17,000 acci-dent reports between 2006 and 2015. 

Intermediate nodes firstly aim at identifying what kinds of areas are impacted 

by weather patterns at turnouts, and, secondly, to investigate to what degree 

the patterns ef-fect on the intermediate nodes in comparison with the other 

cases with non-environmental reasons. 

 

As an example, obstructions, I2, is determined to be one of the most 

common causes encountered at railway turnouts, and to be formed by not only 

frozen precipitation (R2), including snowfall, hail, etc., but also wind (R1), 

often blowing debris and trees from the trackside and from neighbouring land 

onto turnouts. To calculate conditional probabilities, the other cases, such as 

maintenance errors, vandalism, etc., as well as these two causes-related cases, 

are considered. In other words, even if either R1 or R2 does not present, 

derailment as the result of any ob-struction is likely to happen. Therefore, 

each accident report has been examined in detail to find absolute answers 

regarding the relation be-tween derailment and environmental eff ects, and to 

what degree these environmental eff ects take place in derailments at railway 

turnout systems. 

 
 
6. Results 

 
6.1. Marginal and conditional probability assessment 

 
In contrast to utilising the subjective data by means of a review/ 

interview-based dataset, this research only relies on absolute data of 

derailment cases collected in the United States for the period between 2005 

and 2015. Marginal probabilities of the weather-based events are calculated, 

considering all accident cases occurring at railway turnout systems. Thus, a 

marginal probability of an event presents an idea of how likelihood a 

derailment happens in comparison to the other weather-based events. Table 9 

shows lower and upper marginal prob-abilities of three events, including R1, 

R2 and R5. The table is prepared in accordance with the recommended 

instructions in Section 2, while 
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Fig. 2. The frame of Bayes Network-based derailment prediction for railway turnouts. 

 
values against each alpha-cut are calculated by Eq. (7), and then ta-bulated 

through Eq. (8). These calculations are executed by MATLAB ver.2016b. 

 
As seen in Table 9, marginal probabilities in the network are binary 

∼ ∼ 

(R1 = r12 )(α ), respec- with true and false values e.g. P (R1 = r11 )(α), P 

tively. In order to make sure and present the behaviours of lower and upper 

probabilities, α-cuts are aligned with intervals of 0.2.  
Aside from marginal probability calculations, seven intermediate nodes 

and one leaf node are revealed to identify to what degree the notion of degree 

of belief in their occurrence was conditional on a body of knowledge in 

WRDBN. The calculation of all conditional prob-abilities is executed through 

Eq. (2) in compliance with the Bayes rules given in Section 2. Eqs. (7) and (8) 

are utilised to calculate and tabulate the probabilities. 

 
I1 and I4 out of those nodes are presented in Table 10. According to the 

nature of conditional probabilities, it is attempted to find all var-iations of the 

events. For instance, I1 responds to aerodynamic pro-blems and is composed 

of a root node (R1) (see Section 5.2). Ad-ditionally, a derailment is likely to 

take place, regardless of this rood node, through tornadoes (see Section 4.2). 

Therefore, the probability of an event’s occurrence given that another event 

has already happened or not happened is revealed through accident reports.  

 
Table 8  
Variables in WRDBN.  
 

Nodes Node kind Description 
   

R
1 Root Extreme wind 

R
2 Root Frozen precipitation 

R3 Root Fog 

R4 Root Liquid precipitation 

R5 Root Flood 

R6 Root High temperature 
R

7 Root Low temperature 

I1 Intermediate Aerodynamic problems 

I2 Intermediate Obstructions 

I3 Intermediate Slipping 

I4 Intermediate Vision loss 

I5 Intermediate Track bed problem 

I6 Intermediate Geometry problem 

I7 Intermediate Component failures 

Dt Leaf Derailment 
   

 
6.2. Prior and posterior probabilities for WRDBN 

 
Prior probabilities of nodes in WRDBN are the original probabilities of an 

outcome, which is only related to environmental-based, i.e. weather, 

derailments at railway turnout systems, and will be updated with new 

information to create posterior probabilities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Established BN model for WRDBN. 
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Table 9  
Marginal probabilities for ‘extreme wind’, ‘frozen precipitation’ and ‘flood’ causing de-railment 

at turnouts.  
 ∼    ∼    
  P (R1 = r11 )(α)    P (R1 = r12 )(α )   

Alpha-cuts  p
L 

(∝) p
U 

(∝)  pL (∝) pU (∝) 

  r11  r11   r12  r12  

0.00 0.24709 0.27077 0.72923 0.75291 

0.20 0.25304 0.26482 0.73518 0.74696 

0.40 0.25506 0.26280 0.73720 0.74494 

0.60 0.25652 0.26134 0.73866 0.74348 

0.80 0.25776 0.26009 0.73991 0.74224 
1.00 0.25893 0.25893 0.74107 0.74107 

 ∼    ∼    
  P (R2 = r21)(α )  

(∝) 

 P (R2 = r2 2 )(α)  

(∝) Alpha-Cuts  p
L 

(∝) p
U 

 p
L 

(∝) p
U 

  r21  r21   r22  r22  

0.00 0.46864 0.49565 0.50435 0.53136 

0.20 0.47542 0.48886 0.51114 0.52458 

0.40 0.47773 0.48655 0.51345 0.52227 

0.60 0.47939 0.48489 0.51511 0.52061 

0.80 0.48081 0.48347 0.51653 0.51919 
1.00 0.48214 0.48214 0.51786 0.51786 

 ∼    ∼    
  P (R5 = r51)(α )  

(∝) 

 P (R5 = r5 2 )(α)  

(∝) Alpha-Cuts  p
L 

(∝) p
U 

 pL (∝) pU 

  r51  r51   r52  r52  

0.00 0.07301 0.08770 0.91230 0.92699 

0.20 0.07670 0.08401 0.91599 0.92330 

0.40 0.07796 0.08276 0.91724 0.92204 

0.60 0.07886 0.08185 0.91815 0.92114 

0.80 0.07963 0.08108 0.91892 0.92037 

1.00 0.08036 0.08036 0.91964 0.91964 
            
 

To identify whether the unequal proportions across nodes present a real 

diff erence in the true population or whether the diff erence is a result of 

sampling error, prior probabilities that greatly aff ect the ac-curacy of results 

in WRDBN are specified and illustrated in Fig. 4. Red bars show the prior-

based likelihood of occurrence of a derailment in the nodes, while ∝- cuts 

equals to ‘1.00’. I2, obstructions, seems to be an intermediate node, causing 

mostly a weather-related derailment at railway turnout systems, followed by 

I3, slipping, and I5, trackbed problems. On the other hand, I4, vision loss, and 

I7, component fail-ures, are the rarest learned events in WRDBN. 

 
It is seen also from Fig. 4 that most of the weather-based causes have 

often resulted in derailments at turnouts. However, almost one-sixth of 

derailments happened as a result of those, since other causes except weather-

based ones could give rise to derailments as well. A posterior 

 
Table 10 
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probability is the probability of assigning observations to groups given the 

data, and is one of the underlined steps in the Bayes Network frame, as shown 

in Section 5. It might be significant to understand how the prior probabilities 

change when a new observation is added into the BN for leaf node. It is 

supposed that Dt∼,derailment at turnouts, is observed to take place, which is 

notated as P (Dt = 1)(α1.00).  
Fig. 5 illustrates how the alpha cuts responding to posterior prob- 

abilities  nodes  are  distributed through  all  intermediate  nodes. 
∼ (I

 

2
 

=
 

I
 

2
1 

|D
 

=
 

1)(α
[0,1.00] U [1.00,0] 

) 
is calculated to be the most common P 

weather failure types, ranging from 0.48059 to 0.70574, and followed by I3 

and I5. It is also found that each probability with diff erent α- cut values 

entails diff erent intervals. Considering such rare an occurrence of events, this 

distribution provides probability information with a wide perspective to 

railway operators. Therefore, the most likely value of 
∼ 

probability numbers P (I 2 = I 21 |D = 1)(∝ ) is 0.59304, whilst the most 
∼ 

likely value of probability number P (I 1 = I 11 |D = 1)(∝) is 0.01151. 

This also shows that the posterior probability changes significantly as a result 

of the existence of non-categorised weather-related accidents (see Sections 

4.1 and 4.3). That is, there might be two explanations for this pattern: the 

impact of a limited number of codes for environmental-related accidents in 

the FRA database, and the sensitivity of the node I2 and its roots to node D. 
 
 

Fig.   6 shows four   prior probabilities, 
∼  

∼ 
P (R1 = r 11 )(α), 

 ∼ ∼ 
(I 5 = i51)(α ), and posterior prob- P (R1 = r 21)(α), P (I 2 = i 21)(α ), P 

  ∼   ∼  ∼ 

abilities, P (R1 =∼r 11 |D = 1)(∝),  P (R 2 = R 21 |D = 1)(∝), P 

(I 2 = I 21 |D = 1)(∝), P (I 5 = I 51 |D = 1)(∝) in WRDBN. The prior prob-ability 

distribution is coloured in magenta, while the posterior prob-abilities are shown as 

blue lines in the figure. As marginal probabilities are prior probabilities in BNs, the 

distribution is matched with Table 9, given in Section 6.1. These nodes are found 

to be the most changing ones, given D equals to 1. The peak of lines occurs when 

α−cut is 1.00, which gives rise to 0 confidence interval. On the other hand, the 

higher the values of confidence intervals get, the less α-cuts are valued. This 

provides an opportunity to railway operators, when the uncertainty of any event in 

WRDBN is high, and the small values of α-cuts are taken. This is because 

probability intervals get larger and, as result, informa-tion loss is prevented. In 

contrast, when a database gives concrete in-formation on an event history, it will be 

better to opt for the high values of α-cuts, which makes probability intervals 

narrower and, so, results in a more realistic response to investigation. 

 
 

 
6.3. Sensitivity analysis 

 
In this study, a preliminary conclusion (i.e. node ‘derailment at 

 
Conditional probabilities for ‘Aerodynamic Problems’ and ‘Vision loss’ causing derailment at turnouts.  
 ∼  

|R1)(α ) 

     ∼  
|R1)(α ) 

      
  P (I 1 = I 11       P (I 1 = I 12       

Alpha-Cuts  p
L 

(∝) p
U 

(∝) p
L 

(∝) p
U 

(∝)  p
L 

(∝) p
U 

(∝) p
L 

(∝) p
U 

(∝)  
  I 11,R11  I 11,R11  I 11,R12  I 11,R12   I 12,R11  I 12,R11  I 12,R12  I 12,R12   

0.00 0.40048 0.4271 0.00646 0.01156 0.5729 0.59952 0.98844 0.99354  
0.20 0.40717 0.42041 0.00774 0.01028 0.57959 0.59283 0.98972 0.99226  

0.40 0.40945 0.41814 0.00817 0.00984 0.58186 0.59055 0.99016 0.99183  

0.60 0.41108 0.4165 0.00849 0.00953 0.5835 0.58892 0.99047 0.99151  

0.80 0.41248 0.4151 0.00876 0.00926 0.5849 0.58752 0.99074 0.99124  
1.00 0.41379 0.41379 0.00901 0.00901 0.58621 0.58621 0.99099 0.99099  

 ∼        ∼         
  P (I 4 = I 4 1|R 4)(α ) 

(∝) 

 

(∝) 

 

(∝) 

 P (I 4 = I 4 2 |R 4)(α ) 

(∝) 

 

(∝) 

 

(∝) Alpha-Cuts  p
L 

(∝) p
U 

p
L 

p
U 

 p
L 

(∝) p
U 

pL pU 

  I 41,R 41  I 41,R 41  I 41,R 42  I 41,R 42   I 42,R 41  I 42,R 41  I 42,R 42  I 42,R 42   

0.00 0.48649 0.51351 0.00646 0.01156 0.48649 0.51351 0.98844 0.99354  
0.20 0.49328 0.50672 0.00774 0.01028 0.49328 0.50672 0.98972 0.99226  

0.40 0.49559 0.50441 0.00818 0.00984 0.49559 0.50441 0.99016 0.99182  

0.60 0.49725 0.50275 0.00849 0.00953 0.49725 0.50275 0.99047 0.99151  

0.80 0.49867 0.50133 0.00876 0.00926 0.49867 0.50133 0.99074 0.99124  

1.00 0.50000 0.50000 0.00901 0.00901 0.50000 0.50000 0.99099 0.99099  
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Fig. 4. The distribution of P Prior (∝) of r the root, intermediate and leaf node in WRDBN towards ∝-cuts = 1. 

 
Fig. 5. The distribution of P posterior (∝) of the in-

termediate nodes and the leaf node in WRDBN to-wards 

∝-cuts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
turnouts due to the reasons in Table 6’ is considerably sensitive to node 
‘frozen precipitation’) is drawn based on posterior probabilities, e.g. 
∼ 

P (R 2 = R 21 |D = 1)(∝). Therefore, the sensitivity analysis is performed, 

inputting the diff erent rational parameters values in order to monitor the impact of 

these changes on the posterior probabilities through a number of membership 

functions, μ∼R2(x). 
∼ 

In WRDBN, the marginal probability of this node, P (R2 = r21)(α), has 

been found as 0.48214. As a result, the range is kept as large as possible in 
order to give an idea as to how sensitive the model’s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
performance is to a large range of changes in the input parameters. To reach 

the results of nine diff erent values, an in-house developed MATLAB program 

has been implemented into the FBN inference.  
Fig. 7 illustrates these results, showing the confidence-based prob-ability 

distribution of R2 towards the various variations of node R2 from 0.1 to 0.9. 

As seen in the figure, each peaking curve indicates that 
∼ 

(R 2 = r 21 |D = 1)(α) clearly changes with 
∼ 

(R2 = r21)(α). It is also P P 
shown that there is a positively increasing trend in the posterior 

∼ 

probabilities of node R2 when P (R2 = r21)(α) steadily increases. Thus, 
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Fig. 6. Prior fuzzy probabilities and posterior fuzzy probability of R1, R2, I2 and I5 in WRDBN. 

 
the figure presents a reason to believe that the above conclusion is reliable. 

 
On the other hand, results match, in a sense, with the previous statement 

the ‘higher the values of confidence intervals get, the less α-cuts are valued’. 

As node R2 is inputted with higher values, the confidence intervals impact 

much higher on probability distribution towards alpha-cuts, which stresses 

how uncertain the node is. 

 
7. Discussion 

 
FBN is a quite prominent technology with huge potential for various 

applications across many engineering domains. This study discusses FBN and 

its application in railway turnout systems. The proposed FBN approach, 

namely WRDBN, uses the probabilities of environmental-re-lated causes of 

accidents to perform Bayesian inference, which is es-tablished by causal 

relationship through accident reports. Therefore, the BN provides the model 

structure of WRDBN, fuzzy prior probability and likelihood calculation, and 

inference and interpretation. Aside from BN, there have been many other 

techniques which are suggested to risk, occurrence or consequence analysis of 

any type of accident across railway systems. Fuzzy fault tree analysis (FFTA) 

currently seems to be one of the common methods for turnout, along with the 

other railway engineering systems (Jafarian and Razvani, 2012; Peng et al., 

2016; Huang et al., 2000; Ishak et al., 2016). One of the main diff erences 

 
between those FFTAs and this proposed FBN is that FBN might be better able 

to handle the causal relations in a complex environment, including many 

engineering works, e.g. trackbed, aerodynamic, adhesion, be-cause FFTAs are 

mainly comprised of simple Boolean functions such as AND-gate and OR-

gate while FBN is based on diff erent causal re-lationships, in particular 

considering its conditional probability calcu-lation. 

 
Derailments at railway turnouts yield quite serious consequences, 

including loss of life, operational shutdown and damage to railway assets. 

Although these derailments account for one-third of all derail-ments on lines, 

those that are weather-related are quite rare events. As a result, the research 

only focuses on weather-related accidents to un-derstand what types of causes 

are dominant in a particular scenario. Frozen precipitation is observed to be 

considerably responsible for such accidents, which gives rise mainly to 

preventing proper movement of switch blade. From the perspective of 

sensitivity analysis, the structure of the proposed WRDBN is observed to 

produce a reliable measure of performance of this node. The probabilities are 

extracted and calculated by means of official accident reports over the years 

between 2006 and 2015 across the US. WRDBN only gives an idea on the 

risk elements associated with weather and which lead to derailments at 

various types of railway turnout derailments. Due to the United States’ 9.9 

million km2 area and mid-continental placement, the country has a widely 

varying climate, which is unique to understand the impact of diff erent 
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 ∼ ∼ 

(R 2 = r 21 |D = 1)(α ). Fig. 7. Sensitivity analysis for μ∼
R2(x ) of P (R 2 = r 21)(α ) in WRDBN, corresponding to P 

 
climate patterns on railway turnouts. However, as climate varies on the basis 

of its prevailing geography, it should be expected that the weather 

characteristics of diff erent countries lead to diff erent marginal and 

conditional probabilities of the nodes although the structure of BN is 

established in the same way, as presented in Fig. 2. 

 
8. Conclusion 

 
In engineering operations, BN is considered to be one of the eff ec-tive 

tools of uncertain knowledge representation. This research reveals to what 

degree a weather pattern impacts on derailments on railway turnout systems, 

and what kind of causes lead to it. It is proposed to use Buckley’s probability 

calculation on the basis of confidence intervals to obtain marginal and 

conditional probabilities, and to reach prior and posterior conditional 

probabilities in the recommended WRDBN. Although data are obtained after 

the investigation of some 18,000 US-based reports, it is identified that this 

kind of derailment is a quite rare event. In contrast to conventional BN 

approaches, this confidence in-terval approach is seen likely to provide the 

flexibility to make deci-sions on the probabilities of failures resulting in 

derailments. In other words, it provides how to obtain probabilities in 

WRDBN as intervals instead of crisp values. Probability intervals using data 

are found through a theoretical basis of confidence intervals and probability. 

 
It is determined that there are seven root causes, R1 to 7, and seven 

intermediate nodes, I1 to 7, which are aff ected by weather patterns and drive 

derailment at turnouts. A few of those nodes, such as frozen precipitation, 

liquid precipitation and high wind, seem to draw the attention. The confidence 

probability intervals of these nodes are ob-served to be larger than the other 

nodes, as the eff ect of changing the prior/posterior probability of the leaf 

node (derailment) is considerably high. In summary, the paper proposes an 

alpha cut-based FBN model ensuring that its application is conducted in a 

well-managed, dis-ciplined and consistent manner that promotes the delivery 

of risk as-sessment results for railway turnouts. 
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