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Abstract  

The zinc-finger protein tristetraprolin (TTP) binds to AU-rich elements present in the 3’ untranslated 

regions of transcripts that mainly encode proteins of the inflammatory response. TTP-bound mRNAs 

are targeted for destruction via recruitment of the eight-subunit deadenylase complex ‘carbon 

catabolite repressor protein 4 (CCR4) -negative on TATA-less (NOT)’ which catalyzes the removal 

of mRNA poly-(A) tails, the first obligatory step in mRNA decay. Here we show that a novel 

interaction between TTP and the CCR4-NOT subunit, CNOT9, is required for recruitment of the 

deadenylase complex. In addition to CNOT1, CNOT9 is now included in the identified CCR4-NOT 

subunits shown to interact with TTP. We find that both the N- and C-terminal domains of TTP are 

involved in an interaction with CNOT9. Through a combination of SPOT peptide array, site-directed 

mutagenesis and bio-layer interferometry, we identified several conserved tryptophan (Trp) residues 

in TTP that serve as major sites of interaction with two Trp-binding pockets of CNOT9, previously 

found to interact with another modulator GW182. We further demonstrate that these interactions are 

also required for recruitment of the CCR4-NOT complex and TTP-directed decay of an mRNA 

containing an AU-rich element in its 3’-untranslated region. Together the results reveal new 

molecular details for the TTP-CNOT interaction that shape an emerging mechanism whereby TTP 

targets inflammatory mRNAs for deadenylation and decay.  

 

Key words 

Deadenylation; inflammatory; mRNA; AU-rich elements; post-translational control 

 

Introduction 

Tristetraprolin (TTP) is a 34 kDa RNA-binding zinc-finger protein that is expressed in a wide range 

of cell types including macrophages, dendritic cells, T-cells, endothelial cells, and fibroblasts [1]. TTP 

has been shown to be important for the induction and resolution of the expression of mRNAs of the 

inflammatory response and the proteins they encode. TTP binds to AU-rich elements (ARE) present in 

the 3’-untranslated regions (UTR) of its target mRNAs, directing them for degradation by promoting 

removal or shortening of poly-(A) tails, a process known as deadenylation, via the carbon catabolite 
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repressor protein 4 (CCR4) -negative on TATA-less (NOT) deadenylase complex [2, 3]. The 

importance of TTP in inflammation is demonstrated by the development of spontaneous inflammatory 

arthritis in TTP knockout (TTP
-/-

) mice, which is primarily due to overexpression of tumor necrosis 

factor (TNF)-α [4]. Several hundreds of putative TTP-targeted mRNAs have been identified, mostly 

containing overlapping AUUUA repeats. Key TTP targets include mRNAs encoding TNF-α, 

cyclooxygenase-2, chemokine (C-X-C motif) ligand (CXCL)-1, CXCL-2, interleukin (IL)-1, IL-1 

and IL-10 as well as recently identified tissue factor [5-11].  

 

The mechanism whereby TTP controls both the induction and resolution of inflammatory gene 

expression operates as follows. In cells that receive an inflammatory stimulus, or in chronic 

inflammation, the p38 mitogen-activated protein kinase (MAPK) pathway is activated, resulting in the 

induction of TTP mRNA and protein [12]. TTP protein is then phosphorylated by MAPK-activated 

protein kinase (MK2) [12, 13] at two major phosphorylation sites Ser-52 and Ser-178 (murine 

numbering) [13]. The consequence of TTP phosphorylation is two-fold: (i) it stabilizes TTP protein 

[14, 15] and promotes the binding of 14-3-3 to TTP [16], thereby localizing TTP in the cytoplasm [17, 

18]; (ii) it prevents TTP from recruiting the CCR4-NOT deadenylase complex [2, 3], thereby 

inhibiting deadenylation, stabilizing inflammatory mRNAs, and increasing the translation of the 

proteins they encode. When signaling dissipates, TTP protein becomes dephosphorylated and 

activated, recruiting the CCR4-NOT complex to the mRNA which undergoes rapid deadenylation, 

and subsequent degradation [2, 3]. Dephosphorylation of TTP also expedites its proteasome-mediated 

decay [14], creating a window of time in which inflammatory mRNAs undergo decay before TTP 

protein itself is degraded. Thus, TTP not only participates in the induction and resolution of 

inflammatory gene expression, but the expression of TTP protein is also resolved, returning the cells 

to the resting state.   

 

The function of TTP acting downstream of p38 MAPK and MK2 has been recently investigated using 

a murine knock-in (ZFP36aa) in which the two major MK2 phosphorylation sites in TTP, Ser-52 and 

Ser-178, were removed by serine to alanine mutagenesis [9]. The mice and macrophages isolated 
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from them display a profound impairment in the expression of not only TNF-α, but also several other 

inflammatory mRNAs and proteins, underscoring the importance of TTP and its phosphorylation in 

inflammation [9].  

 

The CCR4-NOT deadenylase complex has a key function in the first obligatory step of mammalian 

mRNA decay, which triggers subsequent rapid degradation of the mRNA body. Therefore it controls 

the stability of a wide range of transcripts throughout the life cycle of mRNA. The human CCR4-

NOT complex consists of eight stably-associated subunits [19] (Fig. 1). The core of the complex is the 

large scaffold protein CNOT1, decorated by six subunits that include a CNOT2:CNOT3 hetero-dimer 

[20], a CNOT10:CNOT11 hetero-dimer [21, 22], and a six-armadillo-repeat protein CNOT9. Two 

subunits with deadenylase activity are also bound by CNOT1, one being either CNOT6 (also called 

CCR4a) or CNOT6L (CCR4b), and the other being CNOT7 (CAF1a) or CNOT8 (CAF1b) [19]. In 

addition to the above eight subunits, an ubiquitin-dependent E3 ligase CNOT4 is weakly associated 

with the complex [19].  

 

The relative arrangement and exact purpose of the CCR4-NOT subunits within the complex only 

begins to emerge from recent data, and remains unclear. CNOT2:CNOT3 interacts with CNOT1 via 

NOT boxes in the C-terminus of the proteins [20] [20]. CNOT10:CNOT11 have been suggested to 

bind to the N-terminal domain of CNOT1 [22], but little is known of their function. The armadillo 

repeats of CNOT9 fold into a crescent-shaped surface that binds to the middle domain of CNOT1 [23, 

24]. How TTP recruits the deadenylase complex is also unclear. The 326-amino-acid human protein 

comprises three domains; both the N-terminal domain (NTD, aa 1-100) and C-terminal domain (CTD, 

aa 174-326) are largely unordered regions, shown to direct deadenylation and mRNA decay [25]. The 

central zing-finger domain (ZFD, aa 98-171) contains two zinc fingers for binding mRNA [26]. 

Recently, the TTP CTD [16] or the sequence spanning Ala-312 to Glu-326 of human TTP [27] have 

been shown to bind the CNOT1 subunit. However, the reported weak binding [27] suggests that 

additional binding sites on TTP, or interactions with CCR4-NOT subunits other than CNOT1, are 

important for TTP-directed deadenylation.  
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To this end, we hypothesized that TTP may recruit the CCR4-NOT complex additionally via the 

CNOT9 subunit. We predicted an interaction between conserved tryptophan (Trp) residues in TTP and 

Trp-binding pockets of CNOT9, based on report that in microRNA-mediated mRNA decay, these 

Trp-binding pockets of CNOT9 bind another modulator protein TNRC6/GW182 for recruitment of 

the RNA-induced silencing complex, RISC [23, 28]. In this study, we confirm that TTP indeed forms 

previously unreported interactions with the CNOT9 subunit involving conserved Trp residues, and 

that the Trp-mediated interactions are required for the recruitment of CCR4-NOT and ARE-mediated 

mRNA decay.  

 

Results 

Recombinant CNOT9 protein interacts directly with TTP  

To understand how TTP recruits the CCR4-NOT complex, we aimed to determine if an analogous 

interaction to that occurring between GW182 of the RNA-induced silencing complex and the CNOT9 

subunit, is formed between TTP and CNOT9. Pull-down assays with recombinantly-expressed His-

CNOT9 (Fig. 2a) and GST-TTP were performed with immunodetection using anti-TTP and anti-His-

tag antibodies. Full-length (FL) CNOT9 bound directly to FL GST-TTP (Fig. 2b, left). As negative 

control, recombinant His-CNOT10 protein (Fig. 2a), which is not known to interact with TTP, did not 

display any interaction with GST-TTP (Fig. 2b, right). As an orthogonal method to detect direct 

binding, bio-layer interferometry (BLI) has been utilized to measure the binding of biotinylated TTP 

(aa 14-326) towards CNOT9 and CNOT10. TTP binds CNOT9 strongly with micromolar affinity 

whereas little binding is detected against CNOT10 (Figure 2c). 

 

Multiple regions of TTP are used to interact with CNOT9 protein 

We next mapped the regions or domains of TTP involved in binding the CNOT9 subunit. Several 

truncated forms of human TTP encompassing different construct boundaries, all incorporated with an 

N-terminal His-tag for affinity purification and a C-terminal sequence for biotinylation in E. coli (Fig. 

3a) were recombinantly produced. Each truncated TTP protein (Fig. 3c) was immobilized on 
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streptavidin sensors, and their binding to purified FL His-CNOT9 protein was analyzed by BLI (Fig. 

3b, d). Near-FL TTP (aa 14-326) bound CNOT9 with a Kd of 5.5 + 0.6 M (Fig. 3b). The TTP 

NTD+ZFD protein without CTD (aa 14-171) also bound CNOT9 and displayed a similar Kd of 5.8 + 

1.2 M. The TTP ZFD+CTD protein without NTD (aa 98-326) bound CNOT9 with a Kd of 9.6 ± 1.8 

µM. Lastly, the ZFD-only TTP protein without NTD and CTD (aa 98-171) bound most weakly with a 

Kd of 17.3 ± 2.4 µM. BLI results therefore suggest that the entirety of the TTP sequence is involved in 

binding CNOT9, with the NTD contributing most to the interaction.  

 

Tryptophan residues in TTP mediate CNOT9 binding 

Since multiple regions of TTP are employed to interact with CNOT9, we aimed to define more 

closely the various sequence motifs involved. A SPOT peptide array of 15-mer overlapping peptides, 

covering the entire human TTP ORF (Fig. S2), was incubated with purified His-CNOT9 and probed 

with anti-His antibody. The intensity of immunoblotting for each SPOT peptide, an indicator of the 

strength of its binding to CNOT9, was plotted (Fig. 4a). Five sequence regions of the array (blue 

arrows), each represented by the peptide sequence of the intensity peak (peptides A04, B02, C04, 

D06, I01; arrows in Fig. 4a), displayed maximal CNOT9 binding. Among the five peak sequences, 

three of them contain Trp residues from either the NTD (Trp-32 and Trp-38 from peptide B02, Trp-69 

from peptide C04) or the CTD (Trp-262 from peptide I01) (Fig. 4b). These Trp residues (Trp-32, Trp-

38, Trp-69 and Trp-262) are strictly conserved across eukaryotic TTP sequences (Fig. S3). The Trp 

residues are clustered in Gly-Trp (GW)-like sequence motifs that are commonly employed in 

Agonaute-mediated interactions of gene silencing complexes [29]. Given the sequence conservation, 

the role of Trp containing motifs towards CNOT9 binding was validated by BLI using biotinylated 

TTP peptides (Fig. 4c). The peptides A04, C04 (encompassing Trp-69) and D06 did not bind in BLI. 

The peptide B02 (encompassing Trp-32 and Trp-38) bound to FL His-CNOT9 with a Kd of 56.5 ± 

14.6 µM, while the peptide I01 (encompassing Trp-262) bound with a Kd of 9.3 ± 2.6 µM that 

represents a 5-fold increase in affinity compared to peptide B02 (Fig. 4c). Therefore, Trp-containing 

regions of TTP are important determinants for binding to CNOT9. 
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To confirm that the Trp residues in the TTP peptides directly contribute to interaction with CNOT9, 

an alanine-scanning array of peptides was generated where each amino acid in the peptides B02 and 

I01 was sequentially mutated to alanine (Fig. S3). This peptide array was probed with His-CNOT9 as 

before, and a drop in spot intensity of a mutated peptide, in comparison to the control wt spot, would 

indicate that the residue mutated is important for binding. As expected, peptides in which Trp-32, 

Trp-38, Trp-69 and Trp-262 were each substituted to alanine all exhibited reduced binding to CNOT9 

(Fig. 5). Other residues were also found to reduce CNOT9 binding when mutated to alanine including 

Tyr7, Leu10, Leu11 in peptide A04. These were further investigated using synthesized biotinylated 

peptide, which was found not to bind CNOT9, and using an in vivo TTP recruitment assay, where 

mutation of YLL in TTP did not affect the ability of TTP to recruit the CCR4-NOT complex. Alanine 

substitutions for the four Trp residues (Trp-32, Trp-38, Trp-69 and Trp-262) were further carried out 

in the context of recombinant near-FL TTP expressed with a C-terminal biotin tag, and tested for 

CNOT9 binding by BLI as before (Fig. S4). In addition to single mutants (TTP W32A, TTP W38A, 

TTP W69A, TTP W262A), a quadruple mutant plasmid (TTP-4WA) was also constructed in which 

all four Trp residues in TTP were replaced with alanine (Fig. S4). The single Trp-to-Ala substitutions 

(TTP W32A, TTP W38A, TTP W262A) had no effect on CNOT9 binding response (Fig. 6a,c), with 

their Kds similar to wt near-FL TTP (Fig. 6b). The W69A single mutant was not studied by BLI due 

to insoluble recombinant protein. Importantly, the TTP-4WA quadruple mutant displayed impaired 

binding for CNOT9 (Fig. 6a,c), which translated to an 8-fold higher Kd (81.4 ± 7.2 M) than wt (10.3 

± 2.1 M)(Fig. 6b). 

 

Two tryptophan-binding pockets in CNOT9 are needed for interaction with TTP 

We were interested in determining where in CNOT9 the TTP Trp residues bind. It is known that 

CNOT9 employs two Trp-binding pockets to interact with the GW motifs from other binding partners 

(e.g. GW182) [23, 28]. To investigate if a similar mechanism is also involved in interaction with TTP, 

key amino acid changes were made in either Trp-binding pocket 1 (CNOT9 P1; R205D, H208D) or 2 
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(CNOT9 P2; R244E, A248L) or in both pockets (CNOT9 P1+P2) of FL His-CNOT9 (Fig. S4). These 

residues were previously shown to form direct interactions with GW182 [23]. The wt and mutant 

CNOT9 proteins were assessed for binding biotinylated near-FL TTP in BLI (Fig. 7). Compared to wt 

CNOT9, mutations of either Trp-binding pocket (P1 or P2) or both (P1+P2) strongly interfered with 

the ability of CNOT9 protein to interact with near-FL TTP (Fig. 7). This effect is unlikely due to 

impairment of CNOT9 folding, as the mutant proteins behaved similarly to wt in size exclusion 

chromatography (Fig. S5) and have similar melting temperatures, as determined by differential 

scanning fluorimetry (DSF) (Fig. S6) [28], but instead likely due to the disruption of key interactions 

for the TTP Trp residues.  

   

TTP-CNOT9 interaction is required for recruitment of the CCR4-NOT complex 

We next determined if the TTP-CNOT9 interaction is relevant for recruitment of the intact CCR4-

NOT complex. For this, mRNA for the CNOT9 subunit of the CCR4-NOT complex was efficiently 

depleted from HeLa cells (qRT-PCR, Fig. 8a) separately using two different siRNAs (CNOT9i and 

CNOT9ii) to control for off-target effects. Interactions between FL GST-mTTP or GST-alone control 

and the CCR4-NOT complex were assessed by pull-down assay. Interactions with CCR4-NOT were 

detected by immunoblotting for the CNOT2 subunit, thought to be stably associated with the CCR4-

NOT complex and to not interact directly with the depleted CNOT9 subunit. Separate transfection of 

HeLa cells with the two different siRNAs targeting CNOT9 resulted in a reduction in TTP-bound 

CNOT2 subunit protein in GST-mTTP pull-downs (Fig. 8b), consistent with an interaction between 

CNOT9 and TTP. 

 

FLAG-tagged TTP proteins corresponding to wt and the quadruple TTP-4WA mutant were expressed 

in HeLa tet-off cells, and immunoprecipitation was performed with anti-FLAG antibody agarose. 

CNOT2 and CNOT3 subunits were used for western analysis to assess recruitment of the entire 

CCR4-NOT complex to TTP. wt TTP co-immunoprecipitated with both CNOT2 and CNOT3 

proteins, but interactions were not detected for the TTP-4WA mutant (Fig. 8c), and this was not due 
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to altered expression of CNOT2 and CNOT3 proteins in cells transfected with expression plasmid 

(Fig 8c). Therefore, Trp residues in TTP are required not only for its binding of CNOT9 using 

purified recombinant proteins, but also for the recruitment of intact CCR4-NOT complex in a crude 

cell extract.  

     

Tryptophan to alanine substitutions in TTP inhibit TTP-directed ARE-mediated mRNA decay 

We further investigated if the TTP-CNOT9 interaction is also functionally relevant for ARE-mediated 

mRNA decay. To do this, a HeLa cell line stably transfected with a plasmid bearing a tetracycline-

sensitive transcription factor (HeLa tet-off) was used [30, 31]. These cells were transiently transfected 

with a plasmid expressing a reporter mRNA (BBB: rabbit beta-globin 5’UTR, beta-globin ORF, beta-

globin 3’UTR) carrying 44 nucleotides of the TNF-α ARE inserted in its 3’UTR (BBB-TNF-ARE 

mRNA) [31]. The system allows transcription of the reporter mRNA in the absence of tetracycline. In 

control cells transfected with the reporter plasmid and carrier DNA (pBS), BBB-TNF-ARE mRNA 

was readily detected (Fig. 8d). Co-transfection of a wt TTP expression plasmid resulted in a reduction 

in BBB-TNF-ARE/GAPDH mRNA (Fig. 8d). On the contrary, the BBB-TNF-ARE/GAPDH mRNA 

level for co-transfected FLAG-TTP-4WA expression plasmid was 1.8-fold greater than that for wt 

TTP (Fig. 8d). Western blotting of cell lysates confirmed similar expression of FLAG-TTP-4WA and 

FLAG-TTP wt proteins (Fig. 8e). Therefore the Trp-to-Ala substitutions directly impacted on BBB-

TNF-ARE steady-state levels. 

 

Discussion 

The CCR4-NOT deadenylase complex is a highly intricate, multi-protein machine that plays 

important roles in controlling gene expression, both by catalyzing the deadenylation of mRNAs 

leading to their subsequent degradation and also by controlling mRNA translation. Despite emerging 

details of the constituent subunits in the CCR4-NOT complex, its molecular architecture and protein-

protein interactions, the mechanism of how it is recruited by TTP and how this interaction is regulated 

for the control of inflammatory gene expression remains poorly understood. To this end, we 

undertook a study aimed at identifying whether the CNOT9 subunit of the CCR4-NOT complex 
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directly interacts with TTP. Determining how such an interaction is formed may explain how TTP 

recruits the complex for control of inflammatory gene expression.  

 

A GST pull-down assay identified CNOT9 as a novel interactor for the recruitment of TTP. siRNA-

mediated depletion of the CNOT9 subunit corroborated this interaction using endogenous proteins. 

Using BLI and SPOT array analyses, the regions involved in the interaction with CNOT9 were 

mapped to multiple Trp residues present in the sequence of TTP. Crucially, alanine substitution of the 

four Trp residues in TTP significantly inhibited its ability to co-immunoprecipitate with the CCR4-

NOT complex and impaired TTP-directed decay of an ARE-containing reporter mRNA. These results 

can be explained by the TTP-4WA mutant protein exhibiting an 8-fold weaker Kd for CNOT9 protein 

than wt TTP. Recruitment of the CCR4-NOT complex via Trp residues may therefore be a general 

mechanism, akin to the Trp residues in GW182 needed to bind CNOT9, for recruitment of the 

complex and miRNA-mediated control of gene expression [23, 28]. Thus, TTP-mediated mRNA 

decay and microRNA-mediated mRNA decay appear to utilize similar modes of protein-protein 

interactions. 

 

Previous studies suggest the involvement of Trp residues in GW182 for recruitment of CNOT9 and 

the structures of CNOT9 soaked with Trp have identified two Trp-binding sites per CNOT9 subunit 

[23, 28]. We show here that the same two Trp-binding pockets in CNOT9 perform a similar binding 

function for four Trp residues in TTP. Only one CNOT9 subunit is present in the CCR4-NOT 

complex [23, 28] but CNOT9 also exists as a dimer when it is not associated with the complex [24]. 

Therefore one explanation may be that as many as four Trp residues in TTP may bind to the free 

CNOT9 dimer, but only two Trp residues to the single CNOT9 subunit found within the complex. 

Thus, the mode of TTP binding to CNOT9 may change following its recruitment to the complex. 

However, although human TTP contains four Trp residues, only three (Trp-32, Trp-38 and Trp-262) 

have been successfully validated here by mutational studies and BLI. Therefore, it may be that TTP is 

recruited to the CCR4-NOT complex by CNOT9 using Trp-32/38 and Trp-262 only.  
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Thus, in addition to the previously identified CNOT1 subunit [16, 27], CNOT9 also plays a key 

function in binding the CCR4-NOT complex for subsequent deadenylation of TTP-bound mRNA. At 

present, it is not entirely clear why two different CCR4-NOT subunits are needed for TTP to recruit 

the complex. One possible reason is that individual CNOT subunits bind TTP quite weakly. The 

extreme C-terminal sequence of TTP binds CNOT1 with a ~1 M dissociation constant [27] and the 

TTP NTD and CTD constructs bind CNOT9 with a similar dissociation constant (for near-FL TTP Kd 

= 5.5 M). It is also possible that TTP may interact with additional subunits of the CCR4-NOT 

complex, since multiple concerted interactions may promote formation of a sufficiently stable 

complex for deadenylation of TTP-bound target mRNAs. As TTP is known to have intrinsically 

disordered N- and C-termini, binding of one protein partner in the complex may induce secondary 

structure formation in a proximal domain of TTP, thus allowing another partner to bind. Binding of 

TTP to multiple subunits of the complex could therefore be co-operative to promote tighter binding. 

Multiple interactions may also be needed to correctly position TTP within the complex, in order for 

its cargo mRNA to be efficiently deadenylated.  

 

In summary, we present a new interaction between TTP and the CCR4-NOT complex via CNOT9. 

We determine that TTP binds CNOT9 in a conserved Trp-mediated manner common to other CNOT9 

binding partners. Given TTP’s low affinity for CNOT9/CNOT1, it will be interesting to further 

explore the subunits for further TTP interactors. It will also be of interest in the future to design an 

artificial means of recruiting the CCR4-NOT complex that may offer an alternative to siRNA for the 

degradation of specific mRNAs in order to block gene expression, for use in the laboratory, or in a 

clinical setting. 

 

Materials and Methods 

Cloning 

pGEX-6P-3-TTP and pGEX-6P-3-TTP-AA plasmids for expression of wt and S52/178A murine 

glutathione S-transferase (GST)-tagged forms of TTP protein in E. coli have been described 
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previously [2]. pGEX-6P-3-hTTP was constructed by restriction digest and ligation of the human TTP 

open reading frame (ORF) ( (1-326) into the Not I site of pGEX-6P-3 (GE Healthcare). pNIC28-Bsa4-

CNOT9 for expression in E. coli of 6xHis-tagged (His-) full-length human CNOT9 (1-299), pNH-

TrxT-CNOT9 for 6xHis-thioredoxin (Trx)-tagged CNOT9 and pNIC28-Bsa4-CNOT3 for expression 

of His-CNOT3 (full-length human; 1-753) were constructed by ligation-independent cloning, using a 

high throughput PCR-based method utilizing the 3’  →  5’exonuclease activity of T4 DNA 

polymerase to create overhangs with complementarity between the vector and insert [32]. The same 

method was used to generate pGTVL2-CNOT9 for expression of full-length CNOT9 protein (1-299) 

with N-terminal 6xHis and GST-tag. TTP proteins (aa 14-326, 98-326, 14-171, 98-171) were sub-

cloned by ligation independent cloning into pNIC-Bio3, which provides an N-terminal 6xHis and a C-

terminal biotin acceptor site [33].  CNOT9 mutant expression plasmids (mut P1 (pocket 1; R205D, 

H208D), mut P2 (pocket2; R244E, A248L) and mut P1+P2 (pockets 1+2; R205D, H208D, R244E, 

A248L)) were constructed using internal mutagenic and LIC primers following a primer extension 

method and sub-cloned into pNIC28-Bsa4 vector. The resulting mutant proteins bear N-terminal 

6xHis-tags. TTP mutant protein expression plasmids encoding single mutants (TTP W32A, TTP 

W38A, TTP W69A, TTP W262A) or quadruple mutant TTP-4WA (W32A, W38A, W69A, W262A) 

were constructed as above. The mutants were sub-cloned into pNIC-Bio2 or pNIC28-Bio3 as to 

provide an N-terminal 6 or 10xHis-tag and a C-terminal biotin recognition sequence. 

 

pCMV-FLAG-TTP-WT mammalian TTP protein expression plasmid was constructed by inserting the 

human TTP ORF (1-326) into pCMV-FLAG3 at the Not I site. This was mutagenized (GenScript) to 

produce pCMV-FLAG-TTP-4WA. pTetBBB-TNF-ARE has been previously described [31]. All 

plasmids used were sequence verified (Eurofins MWG Operon or Source BioScience). 

 

Cell culture 

HeLa cells (gift of Yamanouchi, Oxford, UK) were cultured in DMEM supplemented with 10 % (v/v) 

FCS and 1 % (v/v) penicillin/streptomycin and maintained by passaging at 37 °C in the presence of 5 
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% (v/v) CO2. HeLa tet-Off cells (Clontech) were maintained as above but with the inclusion of 100 

ng/ml G-418 (Life Technologies) in culture medium. 

 

Transfection 

HeLa cells were transfected with dsRNA (at a final concentration in culture medium of 15 nM) twice 

with a 24 h interval using Oligofectamine (Invitrogen) as previously described [34]. siRNAs used 

were in the Silencer Select range (Ambion). Scrambled dsRNA (Scr) 5’-

CAGUCGCGUUUGCGACUGGdTdT-3’ was used as a control (Eurofins MWG Operon). For 

reporter mRNA assays, HeLa tet-Off cells were transfected with plasmid DNA using Superfect 

(Qiagen) as previously described [30] with 100 ng of pTetBBB-TNF(44)ARE, with or without 50 ng 

of pCMV-FLAG-TTP expression plasmids and pBluescript (pBS) carrier plasmid DNA to a total of 1 

µg of DNA per well of a six-well plate. For immunoprecipitations, each 10 cm dish was transfected 

with 0.4 g pCMV-FLAG TTP expression plasmids and 7.6 g pBS carrier DNA as above. 

 

Purification of recombinant GST fusion proteins 

This was performed as described previously [2] but using E. coli BL21(DE3)-R3-pRARE2 and 

expression of GST-fusion proteins was induced by addition of isopropyl 1-thio--D-

galactopyranoside (IPTG) to 0.5 mM (final concentration) and cultures were incubated at 20 °C for 3 

h before harvesting and purification.  

 

Purification of recombinant His-tagged proteins 

E. coli BL21(DE3)-R3-pRARE2 bacteria were transformed with expression plasmids by heat-shock. 

1 L of terrific broth containing kanamycin (50 µg/ml) was inoculated with overnight culture, 

incubated at 37 ºC with shaking and allowed to reach OD600 of 1.4. IPTG was added to 0.1 mM (final 

concentration) and the culture was further incubated overnight at 18 ºC. Bacteria were harvested and 

resuspended in lysis buffer (100 mM HEPES (pH 7.6), 300 mM NaCl, 10 % (v/v) glycerol, 10 mM 

imidazole, 0.16 U/ml Benzonase, protease inhibitor cocktail). Homogenization was performed by 
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sonication and the homogenate clarified by centrifugation at 36,000 x g for 30 min. The clarified 

lysate was incubated with 1 ml (50 % (v/v) slurry) of Nickel Sepharose 6 FF (GE Healthcare) per 1 L 

of culture medium, equilibrated with lysis buffer with rotation for 1 h at 4 ºC. The resin was washed 

binding buffer (100 mM HEPES (pH 7.5), 300 mM NaCl, 10% (v/v) glycerol containing 20 mM 

imidazole) and wash buffer (containing 40 mM imidazole). Proteins were eluted using buffer 

containing 250 mM imidazole. For peptide arrays and BLI, CNOT9 protein was purified further by 

size exclusion chromatography (S200 16/600 on an ÄKTA system (GE Healthcare)) in 50 mM 

HEPES (pH 7.5), 300 mM NaCl, 0.5 mM TCEP, 5% (v/v) glycerol and concentrated to 4 mg/ml. His-

tagged biotinylated proteins were expressed and purified as above with the following exceptions: E. 

coli BL21(DE3)-R3-pRARE2-BirA cultures containing kanamycin (50 g/ml) and streptomycin (50 

g/ml) were grown to OD600 ~ 1.4 and induced as above with IPTG, but in the presence of 0.1 mM 

(final concentration) biotin and incubated overnight at 18 ºC. The final biotin concentration in the 

culture medium was increased to 0.2 mM and cultures incubated for a further hour before harvesting 

as above in lysis buffer containing 100 M biotin. All purified His-tagged proteins were used 

immediately, or stored in aliquots at -80 ºC. 

 

GST pull-down assay  

HeLa cells were transfected with dsRNA, then 24 h later rinsed with ice-cold PBS and lyzed in 200 µl 

of a solution containing 10 mM HEPES (pH 7.6), 40 mM KCl, 3 mM MgCl2, 2 mM DTT, 5 % (v/v) 

glycerol, 0.5 % (v/v) Igepal CA-630, 1 x Protease Inhibitor Cocktail (Calbiochem) for 10 min on ice 

and harvested by scraping. Samples were clarified by centrifugation at 100,000 x g at 4 ºC for 10 min. 

300 µg of HeLa cell extract was incubated with 2 µg of GST-TTP and 40 µl of a 50 % (v/v) slurry of 

Glutathione Sepharose 4B in 1 ml of binding buffer (10 mM HEPES (pH 7.6), 100 mM KCl, 6 mM 

MgCl2, 1 mM DTT, 1 % (v/v) Igepal CA-360) for 1 h at 4 °C with rotation. The glutathione-agarose 

beads were centrifuged at 6 200 x g for 1 min and washed three times with 1 ml of binding buffer, 

centrifuging at each stage as above. The beads were aspirated to dryness and incubated in 40 µl SDS-

PAGE sample buffer (60 mM Tris-HCl pH (6.8), 2 % (w/v) SDS, 10 % (v/v) glycerol, 0.025 % (w/v) 
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bromophenol blue) at 95 °C for 5 min. The supernatant was loaded on a SDS-polyacrylamide gel, and 

following electrophoresis, proteins were analyzed by western blotting. For GST pull-down assays 

using purified recombinant proteins, an identical procedure was followed except that binding was 

performed with 1 µg of GST-TTP and 1 µg of His-tagged recombinant protein. 

 

Bio-Layer Interferometry 

BLI experiments were performed on a 16-channel ForteBio Octet RED384 instrument at 25 °C.  

Measurements were performed in the same gel filtration buffers used to purify CNOT9 protein. C-

terminal biotinylated TTP protein or C- or N-terminal-biotinylated TTP-derived peptides were 

attached to streptavidin coated biosensors (super-streptavidin, SSA) by incubating for 6 min at a 

concentration of 3 μM. For measurements to determine Kd, His-CNOT9 sample was prepared in 

seven 2.0 fold dilutions starting from 20 μM (TTP NTD+ZFD) or 80 μM (near-FL TTP). Wild type 

His-CNOT9 protein and Trp pocket mutant forms were used at 20 μM in conjunction with TTP near-

FL protein. Measurements were performed using a 180 sec association step followed by a 180 sec 

dissociation step on a black 384-well plate with tilted bottom (ForteBio). The baseline was stabilized 

for 120 sec prior to association and signal from the reference sensors was subtracted prior to Kd 

calculations using GraphPad Prism (GraphPad Software). The change in wavelength (nm), measured 

for each concentration of CNOT9, was plotted against CNOT9 concentration. This plot was used to 

derive the Kd of CNOT9 for each TTP construct using GraphPad prism and the following equation 

for a one site total binding model.   

Y=     Bmax X    + NS*X + Background 

          (Kd+X)  

Where Bmax is the maximum specific binding in the same units as Y. Kd is the equilibrium binding 

constant. NS is the slope of non-specific binding in Y units divided by X units. Background is the 

amount of non-specific binding with no added substrate. 

 

SPOT Peptide Assays 
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Cellulose-bound peptide arrays were prepared according to standard protocols using a MultiPep-RSi-

Spotter (INTAVIS, Köln, Germany) employing Fmoc solid phase peptide SPOT synthesis according 

to the manufacturer’s instructions. Human TTP peptides (using UniProt accession code P26651) were 

synthesized on Amino-PEG500-UC540 Sheets optimized for use with the MultiPep instruments 

(INTAVIS); the presence of SPOTted peptides was confirmed by ultraviolet light (UV, λ = 280 nM). 

Membranes were blocked with 5 % (w/v) bovine serum albumin (Fisher Scientific) overnight then 

incubated overnight with His-tagged recombinant CNOT9 at 4 ˚C. After washing with PBS-T buffer 

(3.2 mM Na2HPO4, 0.5 mM KH2PO4, (pH7.4), 1.3 mM KCl, 135 mM NaCl and 0.1 % (v/v) Tween 

20) to remove any unbound material, bound protein was detected using horse radish peroxidase-

conjugated anti-His antibody (Novagene) and the Pierce® ECL Western blotting Substrate (Thermo 

Scientific). Chemiluminescence was detected with an image reader (Fujifilm LAS-4000 ver.2.0) 

typically using an incremental exposure time of 5 min for a total of 80 min (or until saturation was 

reached, in the case of very strong signal). Peptide locations on the array and their sequences are 

given in Supplementary Table 1. 

 

Immunoprecipitation 

Cells were harvested 24 h post-transfection and lysed in 50 mM Tris-HCl (pH 7.5), 150 mM KCl, 3 

mM MgCl2, 5 % (v/v) glycerol, 0.5 % (v/v) Igepal CA-630, 1 x Protease Inhibitor cocktail and lysates 

were incubated with anti-FLAG M2 agarose (Sigma-Aldrich) for 16 h on a rotating wheel at 4 °C. 

The beads were washed five times with 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, boiled in SDS-

PAGE sample buffer for 5 min and eluted proteins analyzed by western blotting. 

 

qRT-PCR 

RNA was isolated using an RNeasy kit (Qiagen) and cDNA generated with a Reverse Transcription-

PCR kit (Ambion Life Technologies) according to the manufacturers’ instructions. cDNA was 

analyzed by real-time PCR using TaqMan primer-probe sets (Applied Biosystems). A ViiA 7 Real-

Time PCR system (Applied Biosystems) or a Rotor-Gene 6000 thermal cycler (Corbett) and 
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associated software for the ΔΔCt method of relative quantitation (with standard curves) were used to 

quantify mRNAs with normalization to GAPDH mRNA. 

 

BBB-ARE mRNA reporter assay 

24 h post-transfection cells were harvested and RNA was isolated as above but with an on-column 

DNase I (Qiagen) digestion step to remove plasmid DNA and qRT-PCR performed with -globin and 

GAPDH mRNA Taqman primer-probe sets (Applied Biosystems). 

 

SDS-PAGE and western blotting 

SDS-PAGE was performed according to standard procedures. For experiments employing siRNA or 

immunoprecipitation, proteins were separated on 10 % polyacrylamide-SDS gels using a Tris-glycine 

buffer system. For other experiments, pre-cast NuPAGE 4-12 % gradient gels (Novex) were used. For 

western blotting, proteins were transferred to a PVDF membrane, visualized with Coomassie Blue R-

250, destained with methanol, and detected with the following primary antibodies: SAK21 antibody 

raised in rabbits against a C-terminal TTP peptide [12]; anti-CNOT2 (Bethyl Laboratories); anti-

CNOT3 (Bethyl Laboratories); anti--tubulin (Sigma-Aldrich); anti-His-tag (Millipore); anti-GAPDH 

(Sigma Aldrich). Horse radish peroxidase-conjugated secondary antibodies (DAKO) were used in 

combination with the enhanced chemiluminescence system (GE Healthcare). 

 

Measurement of protein concentration 

Concentrations of purified recombinant proteins were determined by measuring A280 using a 

Nanodrop 1000 spectrophotometer (Thermoscientific) and using extinction coefficients calculated 

with ExPASy ProtParam tool (http://web.expasy.org/protparam/). Protein concentrations of HeLa cell 

lysates were estimated according to Bradford [35] using a BSA standard curve and a BioPhotometer 

(Eppendorf).  
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Figure Legends 

Figure 1. Diagram of the CCR4-NOT complex and interacting subunits.   

The CCR4-NOT complex is an eight-subunit multi-protein complex comprised of CNOT1, which 

forms the main scaffolding protein onto which docks CNOT2-11. CNOT6/6L and CNOT7/8 are 

mutually exclusive catalytic subunits which deadenylate mRNAs. TTP, an RNA-binding protein, 

recruits the complex which brings together inflammatory mRNAs bound by TTP and deadenylase 

subunits of the CCR4-NOT complex as a mechanism of mRNA decay. It is known that TTP is 

recruited to the complex by an interaction between the C-terminus of TTP and a central domain of 

CNOT1. It is unknown if there are further interactions between TTP and other CNOT subunits, 

highlighted by question marks. 

 

Figure 2. CNOT9 is a novel TTP-interacting subunit of the CCR4-NOT complex.   

a, Schematic depicting recombinant His-CNOT9 and His-CNOT3. The CNOT9 armadillo repeat 

(Arm Repeat) region is highlighted in pink, the CNOT3 NOT box is highlighted in orange, the His-tag 

is shown in green and additional regions of the ORFs are shown in grey. Amino acid boundaries are 

indicated. b, recombinant His-CNOT9 or His-CNOT10 proteins were incubated with GST-TTP or 

GST (control) and pulled-down proteins were analysed by western blot with anti-His and anti-TTP 

antibodies. Similar results were seen in three separate experiments.  Positions of markers (Mol. mass 

(kDa)) are shown. c. Concentration vs change in wavelength (Δ λ nm) plots from BLI experiment to 

determine interactions between TTP and CNOT9/CNOT10, over a range of CNOT9/CNOT10 

concentrations (µM). 

 

Figure 3.  Identification of domains in TTP that mediate CNOT9 protein binding 

a, Schematic showing truncated His- (dark green), Trx- (blue)  and biotin- (dark blue) TTP used to 

assess function of domains in CNOT9 binding (FL, full-length; near-FL, near full-length; NTD, N-

terminal domain (orange); ZFD, zinc finger domain (pink); CTD, C-terminal domain (green)). b, 

Table of dissociation constants (Kd, µM) of TTP near-FL, TTP NTD+ZFD, CTD+ZFD and ZFD 
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binding to CNOT9 protein. c, Left: Streptavidin-mediated affinity purification of TTP domains (aa 

14-171, aa 98-326 and aa 14-326); right: Post-affinity purification sample of TTP zinc-finger domain-

only protein (aa 98-171). d, Concentration vs change in wavelength (Δ λ nm) plots for TTP domains. 

Interactions between TTP domains and CNOT9 was measured using BLI at a range of CNOT9 

concentrations (µM). The change in wavelength, as measured by BLI, has been plotted against 

CNOT9 concentration using GraphPad prism. The plots were fitted using a one site total binding 

model and the binding affinities were calculated using GraphPad.  

 

Figure 4. SPOT peptide array identifying tryptophan residues in TTP that mediate CNOT9 

binding  

TTP peptide array was probed with recombinant His-CNOT9 protein and binding detected using an 

anti-His antibody and chemiluminescence. a, Plot of Intensity (% of max.) of chemiluminescence 

signal for His-CNOT9 protein binding to TTP peptides. Blue arrows indicate peptides which show a 

peak of CNOT9 binding. b, The amino acid sequence of the TTP ORF is shown. Conserved 

tryptophan residues are shown in bold red type. The sequence of each peptide identified from the 

intensity plot is underlined and the peptide identifier (A04, B02, C04, D06, I01) is given above. The 

amino acid position of each tryptophan residue is shown in grey text underneath each peptide. c, 

Binding of peptides was validated using BLI. Table shows binding constants (Kd, µM) calculated 

using wavelength shift () response (nm) against time for binding and dissociation of biotin-tagged 

wt TTP peptides immobilised on the streptavidin sensor to wt CNOT9.  

 

Figure 5. Multiple tryptophan residues in TTP contribute to CNOT9 binding 

The intensities of the spots in the alanine scanning TTP peptide array were measured and calculated 

as a percentage of the intensity of the wt peptide in the series. The percentage intensities of each 

peptide in the series have been plotted in bar graphs and the corresponding spots overlaid above the 

graph. The identification of each peptide is listed above each graph. Each bar has been labelled with 

the residue and amino acid position number which has been mutated to alanine. A drop in percentage 
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intensity indicates the mutated residue is important for binding CNOT9. When mutated to alanine, a 

number of tryptophan residues show decreased binding (bold), indicating their importance.  

 

Figure 6. TTP tryptophan residues are involved in CNOT9 binding 

a, Plot showing responses in BLI (nm) against time for binding of immobilized near-FL wt and 

mutant TTP (W32A, W38A, W262A and 4WA) to wt CNOT9 protein. Results are representative of 

two independent experiments. b, Table shows binding constants (Kd, µM) calculated using 

wavelength shift () response (nm) against time for binding and dissociation of biotin-tagged wt 

TTP, W32A, W38A, W262A and TTP-4WA quadruple mutant immobilized on the streptavidin 

sensor to CNOT9 protein. c, Concentration vs change in wavelength (Δ λ nm) plots for TTP wt and 

mutants. Interactions between TTP wt/mutants and CNOT9 was measured using BLI at a range of 

CNOT9 concentrations (µM). The change in wavelength, as measured by BLI, has been plotted 

against CNOT9 concentration using GraphPad prism. The plots were fitted using a one site total-

binding model and the binding affinities were calculated using GraphPad. 

 

Figure 7. Tryptophan-binding pockets in CNOT9 are needed for TTP binding 

a, Plot showing responses in BLI (nm) against time for binding of immobilized TTP near-FL to wt 

CNOT9 protein and mutant forms (CNOT9 P1 (R205D, H208D), CNOT9 P2 (R244E, A248L) and 

CNOT9 P1+P2 (R205D, H208D, R244E, A248L). Results are representative of two independent 

experiments. b, Table shows binding constants (Kd, µM) calculated using wavelength shift () 

response (nm) against time for binding and dissociation of biotin-tagged wt TTP immobilized on the 

streptavidin sensor to wt CNOT9 and P1, P2 and P1+P2 mutant CNOT9 protein. c, Concentration vs 

change in wavelength (Δ λ nm) plots for CNOT9 wt and mutants. Interactions between CNOT9 

wt/mutants and TTP wt was measured using BLI at a range of CNOT9 concentrations (µM). The 

change in wavelength, as measured by BLI, has been plotted against CNOT9 concentration using 

GraphPad prism. The plots were fitted using a one site total-binding model and the binding affinities 

were calculated using GraphPad. 
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Figure 8. Tryptophan residues in TTP are needed for interactions with the CCR4-NOT complex 

and for TTP-directed mRNA decay. 

a, , HeLa cells were transfected separately with a scrambled control dsRNA (Scr) or two siRNAs 

targeting CNOT9 (CNOT9i and CNOT9ii). CNOT9 and GAPDH mRNAs were quantified by qRT-

PCR (as indicated) for duplicate wells of cells. Plots show mean (and SD) CNOT9/GAPDH mRNA 

(normalized to Scr) for 2 experiments performed in duplicate. B, Additional duplicates of cells 

transfected in (A) were lysed and pull-down performed with GST (as a control) or GST-mTTP 

protein. Pulled-down proteins and input lysates (INPUT) were analyzed by western blot for CNOT2, 

TTP and -tubulin (as a loading control) as indicated. Results shown are representative of two 

independent experiments. c, Western blot of anti-FLAG antibody immunoprecipitation. HeLa tet-off 

cells were transfected in 10 cm dishes with carrier pBluescript (pBS) DNA (as a control) or with 

pCMV-FLAG-TTP-WT (wt hTTP) or pCMV-FLAG-TTP-4WA (TTP with all four tryptophans 

substituted for alanines) expression plasmids. Western blot was performed with cell lysates (0.1 or 5% 

INPUT as indicated) or immunoprecipitated proteins for CNOT3, CNOT2, TTP and GAPDH. d, 

RNA from cells transfected as in (C) but in 6 well plates together with pTet-BBB-TNF-ARE was 

analyzed by qRT-PCR for -globin and GAPDH mRNAs. Graph shows mean and S.E.M. for BBB-

TNF-ARE/GAPDH mRNA from two independent experiments performed in duplicate (unpaired 

Student’s t test: **** P < 0.0001; *** P < 0.001; ** P < 0.01). e, Western blot of lysates from cells 

transfected in duplicate (1,2) in (D) showing expression levels of FLAG-TTP proteins and GAPDH 

protein.  
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Highlights 

 TTP targets inflammatory mRNA for degradation by interacting with CCR4-CNOT 

complex 

 We identified one subunit of the complex, CNOT9, as a novel interactor of TTP 

 TTP binds using conserved Trp residues to CNOT9 regions common to other 

modulators  

 Trp-mediated interactions with CNOT9 are essential to TTP-mediated decay 
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