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THE PRICE IMPACT OF EXTREME WEATHER IN DEVELOPING COUN-

TRIES1

Andréas Heinen, Jeetendra Khadan and Eric Strobl

Abstract

We examine the impact of extreme weather on consumer prices in develop-

ing countries by constructing a monthly data set of potential hurricane and

flood destruction indices and linking these with consumer price data for 15

Caribbean islands. Our econometric model shows that the price impact of ex-

treme weather events can be large. To illustrate potential welfare losses due

to these price effects we combine our estimates with price elasticities obtained

from a demand system and with event probabilities for Jamaica. Our results

show that while expected monthly losses are small, rare events can cause large

falls in monthly welfare due to price increases.

Extreme weather is estimated to have caused nearly US$3 trillion worth of damages

globally over the last 35 years, and the rate of growth of such losses is predicted to

increase in the future due to climate change (see World Bank, 2013). Not surpris-

ingly, there is hence a rising interest in understanding the economic implications of

these potentially large negative shocks. The majority of the relevant academic liter-

ature tends to focus on the consequences of extreme events for economic growth, see

Cavallo and Noy (2011) and Klomp and Valckx (2014) for recent reviews. However,

a driving factor behind the extent and duration of any longer term outcome, such

as growth, is the nature of the adjustment process in the immediate aftermath of

the event. More specifically, the physical losses and subsequent economic disrup-

tions are likely to create at least temporary shortages of many goods and services.

Amongst other things, these shortages can in turn translate into higher prices. Im-

portantly, if the price hikes are sufficiently large and last long enough, they could
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0023-01). Andréas Heinen acknowledges acknowledge the support of the French Agence Nationale
de la Recherche (ANR), under grant ANR-17-CE26-0001 (project Breakrisk). The usual dis-
claimers apply.
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further increase the hardship of those already directly affected, as well as result

in larger costs for other consumers. Such costs could then further exacerbate any

long-term consequences, particularly affecting the poor (see, for instance, Easterly

and Fischer, 2001; Dessus et al., 2008).

From a policy maker’s perspective, being able to predict price changes and their

impact due to extreme weather events can arguably aid in optimizing relief efforts,

as well as in choosing the appropriate policies to limit any longer term effects. This

may particularly be relevant for developing countries where prices tend to increase

much faster than in the developed word. However, as to date there is essentially no

quantitative assessment of the price impact of natural disasters.2 The only exception

is the study by Cavallo, Cavallo and Rigobon (2014), which examines the impacts of

the 2010 Chile and the 2011 Japan earthquakes on product availability and prices.

More specifically, using daily nationwide price and product listings collected from the

websites of a large international supermarket retailer in each country and comparing

these before and after the events, the authors find that there were sharp falls in the

availability of goods immediately ex-post, amounting to 32% in Chile and 17% in

Japan. However, these shortages did not translate into higher prices.

The finding of price stickiness after a natural disaster seems to run counter-intuitive

to the common perception that extreme events go hand in hand with price increases,

at least in many developing countries.3 In this paper we thus take a different ap-

proach from Cavallo, Cavallo and Rigobon (2014). More precisely, we construct time

series of potential destructiveness for two types of extreme weather phenomena - hur-

2As a matter of fact, as noted by Cavallo and Noy (2011) in their literature review on the
economics of natural disasters, the monetary aspects of disaster dynamics have been generally
neglected. Notable exceptions include Keen and Pakko (2011) who evaluate the optimal response of
monetary policy in a dynamic stochastic equilibrium model and Ramcharan (2007) who empirically
examines the role of exchange rate policy in the degree of damages due to natural disasters.

3Internet searches on terms like “prices” or “inflation” and “storms” and/or “floods”
quickly reveal the extent of this view across countries typically subject to extreme weather
events; see, for instance, concerns by the Central Bank of the Philippines over Ty-
phoon Lando (http://www.philstar.com:8080/business/2015/10/22/1513320/bsp-weighs-typhoon-
impact-inflation) and concerns in the Cayman Islands before the 2014 hurricane season
(http://www.ieyenews.com/wordpress/caribbean-risk-outlook-hurricane-season-has-arrived/)

This article is protected by copyright. All rights reserved. 
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ricanes and floods - for a large number of Caribbean islands over time. Compared

to focusing on a single event, like an earthquake, this gives a larger amount of vari-

ation and ensures that we are not just capturing the effect of other confounding

events. In line with Felbermayr and Gröschl (2014), when building our potential

destruction indices we consider not only the physical features of the events, but also

take account of their localised nature and the local heterogeneity in exposure to

them, which is shown by Strobl (2012) to be important. We combine these indices

with country specific monthly time series on prices to construct a large panel data

set, allowing us to examine whether econometrically extreme weather affects prices.

Using Jamaica as a case study, we then calculate the potential loss in consumer

welfare in terms of compensating variation. To do so we estimate price elasticities

from a Quadratic Almost Ideal Demand System (QUAIDS) using household budget

survey data and model the probabilities of extreme weather events using Peak Over

Threshold (POT) models.

Arguably, the Caribbean offers an interesting context within which to study the

impact of natural disasters in general, and their price impact in particular. Firstly,

the region is known to be subject to a large number and wide variety of potentially

disastrous natural events, including tropical storms, earthquakes, volcano outbreaks,

landslides, floods, and droughts.4 Secondly, as a set of mostly small island develop-

ing states these countries/territories are particularly vulnerable to such large nat-

ural shocks due to their small physical size, geographic isolation, limited natural

resources, high population densities, low economic diversification, and poorly devel-

oped infrastructure (see Meheux et al., 2007). Moreover, since they rely on imports

for a large part of their consumption goods, or at least cannot easily and quickly

substitute internationally produced goods for domestic ones, they are potentially

very sensitive to shortages after a natural disaster.

4For example, the Eastern Caribbean is considered the most disaster prone region globally, see
Acevedo, Cebotari and Turner-Jones (2013)

This article is protected by copyright. All rights reserved. 
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One should note that hurricanes and floods are the most common and damag-

ing natural shocks in the Caribbean, affecting some part of the region consistently

almost every year. Moreover, these events have often had disastrous impacts on

affected islands. For example, in 2004 Hurricane Ivan is estimated to have resulted

in losses of over 300% of Grenada’s annual GDP, while the recent heavy rains due

to a tropical trough system in St. Vincent and the Grenadines during Christmas

2013 are believed to have caused damages constituting nearly 15% of its economic

output. Worryingly, some studies estimate that rising risks from hurricanes and

other extreme weather events will cost Caribbean nations up to 9% of annual GDP

by 2030 (see Caribbean Catastrophe Risk Insurance Facility, 2010).

In contrast to Cavallo, Cavallo and Rigobon (2014), our results show that there

can be price increases due to natural disasters. This effect is reflected in aggregate

consumer price changes, as well as for subcategories of goods. More precisely, while

we find that expected monthly welfare effects due to extreme weather are minimal,

low probability but very damaging events can result in costs that are multiples of

estimated monthly household welfare.

The remainder of the paper is organised as follows. In the next section we describe

our data and provide some summary statistics. We discuss our econometric model

and results in Section 3. In Section 4, we conduct our welfare analysis using the

case study of Jamaica. The final section concludes.

1 Data and Summary Statistics

1.1 Potential Hurricane Destruction Index

Hurricanes are tropical cyclones that form in the North Atlantic and the North East

Pacific basins and can cause destruction in the form of strong winds, heavy rainfall,

and storm surge. The latter two aspects tend to be heavily correlated with the wind

of the hurricane, and thus wind is often used as a proxy for all types of damages (see

This article is protected by copyright. All rights reserved. 
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Emanuel, 2005). To capture the potential destruction due to hurricanes we use an

index in the spirit of Strobl (2012), which measures wind speed at a very localised

level and then uses exposure weights to arrive at an island specific proxy.5 More

precisely, for a set of hurricanes k = 1, . . . , K, and a set of locations i = 1, . . . , I, in

island j = 1, . . . , J , we define potential hurricane destruction during month t as:

Hj,t =
I∑
i=1

wi,t−1

Kt∑
k=1

(
Wmax
j,i,k,t

)3
1{Wmax

j,i,k,t≥W ∗}, (1)

where 1(.) is an indicator function, for location i in island j, at time t, Wmax
j,i,k,t is the

maximum measured wind speed during a storm k, W ∗ is a threshold above which

wind is damaging, Kt is the number of storms that hit in month t, and the wi,t−1 are

exposure weights in the previous month t− 1 at location i, which aggregate to 1 at

the level of island j. We allow local destruction to vary with wind speed in a cubic

manner, since, as noted by Emanuel (2011), kinetic energy from a storm dissipates

roughly to the cubic power with respect to wind speed and this energy release scales

with the wind pressure acting on a structure.6 W ∗ is set equal to 178 km/hr7, as

this threshold is shown by Strobl (2012) to be that above which hurricanes have an

economic impact in the Caribbean.

As can be seen from Equation (1), our hurricane destruction index Hj,t requires

local wind speed Wj,i,k,t and exposure weights wi,t−1 as inputs. In order to cal-

culate the wind speed, we use the Boose, Serrano and Foster (2004) version of

the well-known Holland (1980) wind field model, and hurricane track data from

HURDAT. Our exposure weights are based on nightlight imagery provided by the

Defense Meteorological Satellite Program (DMSP) satellites, which are now com-

5Strobl (2012) shows that not weighting for local exposure will substantially underestimate the
impact of hurricanes on economic growth.

6See Kantha (2008) and American Society of Civil Engineers (2006).
7This corresponds to Saffir-Simpson (SS) Category 3 (178-208km/hr) winds where “...well-built

framed homes may incur major damage or removal of roof decking and gable ends, many trees will
be snapped or uprooted, electricity and water will be unavailable for several days to weeks after
the storm passes”, see http://www.nhc.noaa.gov/aboutsshws.php.

This article is protected by copyright. All rights reserved. 
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monly used to proxy local economic activity where no other measures are available,

see, for instance, Harari and La Ferrara (2013), Hodler and Raschky (2014) and

Michalopoulos and Papaioannou (2014). For further details on the data sources and

the construction of Equation (1), see online Appendix A.

1.2 Potential Flood Destruction Index

A flood is a temporary water overflow of a normally dry area due to a rise of a body

of water, unusual buildup or runoff of surface waters, or abnormal erosion or under-

mining of shoreline (see, e.g., Samaroo, 2010). In the absence of a complete flood

event database and sufficient data to run a hydrological model for the Caribbean,

we perform flood detection based solely on precipitation data.8

In following this approach we identify flood events as those above a given threshold

level of rainfall. We can then proxy country level flood-induced potential destruction

as:

Fj,t =
I∑
i=1

wi,j,t−1

30∑
d=1

ri,j,d,t1{ri,j,d,t≥r∗}, (2)

where Fj,t is the exposure-weighted average excess rainfall of country j in month

t, ri,j,d,t is the three-day moving sum of daily rainfall at location i on day d in

month t, and wi,j,t−1 are exposure weights for location i as defined in Equation

(1), see online Appendix B. We assume that potential damages are linearly related

to the extent of precipitation during a flood, in congruence with estimated flood

fragility curves.9 r∗ is set to 112 mm over a three day window, as determined by an

intensity-duration flood model and actual flood event data for Trinidad. Our source

for precipitation data are satellite-derived images from TRMM. For further details

8This approach has been validated by Montesarchio, Lombardo and Napolitano (2009) for river
basins less than 400 km2, which is essentially the case for all of the Caribbean.

9See for instance those used by Federal Emergency Management Authority (FEMA) for damage
estimation for the US (see, e.g., Federal Emergency Management Agency, 2006; Scawthorn et al.,
2006).

This article is protected by copyright. All rights reserved. 
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on the data sources and the construction of Equation (2); see online Appendix C.

Finally, it should be noted that a problem in trying to consider hurricane and

flood events simultaneously is that many of the excess rainfall events occur during

tropical storms. As a matter of fact, as noted for example by Jiang, Halverson and

Zipser (2008), the amount of rain and the maximum wind speed during a storm

tend to be positively correlated. Moreover, in practice many tropical storms are

not powerful enough, or do not come close enough to a locality to cause wind

damage, but may still produce enough excess rainfall to cause flooding.10 Thus,

in calculating our flood damage index F , we exclude flood events for a cell within

an island during a storm if the corresponding estimated wind speed was above the

threshold W ∗. In this context, our hurricane destruction index H will capture both

wind and accompanying rainfall damage for a locality, as long as winds are of at

least hurricane strength. In contrast the flood damage index F is constructed to

identify both non-tropical storm-related events, as well as flood damage due to

tropical storms that did not translate into local hurricane wind damage.11

1.3 Consumer Price Data

We construct the difference in the logged monthly consumer price index (CPI)

from January 2001 to December 2012 using data from the central banks of 15

island economies in the Caribbean: Antigua and Barbuda, Bahamas, Barbados,

Dominica, Dominican Republic, Guadeloupe, Grenada, Haiti, Jamaica, St. Kitts

& Nevis, St. Lucia, Montserrat, Martinique, Trinidad & Tobago, and St. Vincent

& the Grenadines.12 Our data also allows us to group goods into three broad sub-

categories:13 (i) Food, which includes food goods and non-alcoholic beverages, (ii)

10For example, although Tropical Storm Nicole never reached Hurricane strength, it caused a
considerable amount of damage due to heavy rainfall, believed to be around US $239.6 million, in
Jamaica; see Planning Institute of Jamaica (2010).

11This reduces the correlation between the two potential damage indices from 0.2095 to 0.0128
12Our panel is marginally unbalanced, as the data for Bahamas starts only in 2003.
13This choice was restricted by cross-country differences in disaggregation of the CPI.

This article is protected by copyright. All rights reserved. 
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Housing and Utilities, which includes all goods related to housing construction and

repair, furnishings, household equipment, routine household maintenance, and ex-

penditure on water, gas, electricity and other types of fuels, and (iii) Other, which

consists of all other goods.

1.4 Summary Statistics

Table 1 displays summary statistics for all variables used in the analysis. Accord-

ingly, the average monthly price change is 0.4%, translating into about 4.8% annually

over our time period 2001-2012, although with considerable monthly variation. The

rate of change in food prices is higher, but less variable than that of housing and

utilities. The variation of both extreme weather proxies is large relative to their

mean, due in part to the large number of non-damaging months for each. More

precisely, for our total of 2,340 island-months there are only 6.7% or 142 non-zero

occurrences of damaging hurricanes, with a corresponding figure of 28.8% or 673 for

flooding.

2 Econometric Results

2.1 Econometric Specification

We estimate the impact of extreme weather events on price changes using:

∆pj,t =
S∑
s=0

θHs Hj,t−s +
S∑
s=0

θFs Fj,t−s + µj + λt + νj,t, (3)

where, for country j at time t, ∆pj,t is the difference in log CPI, Hj,t is our hurricane

destruction index, Fj,t is our flood index, µj is a country specific indicator variable,

λt consists of a set of year and month indicator variables, and νj,t is an error term.

In order to take account of the country-specific time invariant factors, µj, we employ

a fixed effects estimator. We allow for cross-sectional and serial correlation of up

to four lags by using Driscoll and Kraay (1998) adjusted standard errors. In all

This article is protected by copyright. All rights reserved. 
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Table 1: Summary Statistics of Panel Data Set

Variable Mean Max Min St. Dev. Prob Mean
of Event When Event

Hurricane and flooding

Hurricane 1609246 1.15e+9 0 3.05e+07 0.029 55.5e+6
Flooding 18.05 416.72 0 49.30 0.288 59.0

Monthly price changes

All 0.37 12.23 -10.64 0.91 - 0.59
Food 0.50 16.79 -13.02 1.36 - 0.63
Housing & Utilities 0.35 46.47 -47.35 2.20 - 0.57
Other 0.41 11.63 -11.38 0.98 - 0.44

Other variables

Agricultural tariffs 71.96667 114.6 1 43.00682
Past hurricanes 0.0000151 0.0000355 0 0.0000109
Roads 0.0021569 0.0154107 0.0003446 0.0036729

This table shows descriptive statistics for the 2001-2012 monthly data used to estimate

Equation (3). The first panel shows the destruction indices of hurricane and flooding.

Prob of Event refers to the probability of a damaging month, and Mean When Event is

the mean conditional on the occurrence of a damaging month. The second panel shows

monthly price changes for the overall price, as well as for the price of food, housing and

utilities, and the remaining consumption goods. Mean when Event refers to the mean

when either a damaging hurricane or damaging flood occurs. Agricultural tariffs are from

the World Trade Organization. Past hurricanes are average values of our age H variable

over the 1950-1999 period. Roads are average roads in km per capita.

estimations we report coefficients as beta coefficients. Importantly, our estimated

coefficients capture both the direct and indirect effects of extreme weather, where

the latter might include responses via fiscal and monetary policy.14 Also, since

we control for country and time specific fixed effects, the remaining variations in

our indices are just random realisations from the spatio-temporal distributions of

the weather events, and thus, arguably, they are exogenous. More generally, our

coefficients measure the impulse response function of prices to weather, and as long

as the number of significant lags is small, our specification is preferable to the

inclusion of lags of the dependent variable.

14Although beyond the scope of this paper, examining the policy response to extreme events
would be an interesting avenue for future research.

This article is protected by copyright. All rights reserved. 
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2.2 Estimation Results

While we experiment with up to six lag lengths in Equation (3), we only report

results including up to two lags of H and F since further lags were consistently

insignificant. As can be seen in Column (1) of Table 2, we find that for floods the

impact is only contemporaneous, while for hurricanes, it persists up to one month.

Our coefficients imply that a standard deviation (std) increase in the hurricane index

leads to a 1.33 std contemporaneous price increase, falling to 1.06 after one month.

This implies that the average (maximum) hurricane strike over our sample period

caused a 0.08 (1.5) percentage point increase in prices with a further 0.06 (1.2) rise

a month later. In contrast, for flooding, a one std increase causes a 0.12 standard

deviation rise in prices. The average (maximum) effect of a flood event is 0.08 (0.60)

percentage points.

For all three CPI sub-categories, shown in Columns (2) through (4), there is a

contemporaneous and lagged impact, although their magnitude differs substantially.

For instance, the contemporaneous (lagged) impact on food prices is 1.4 (0.5) std

higher than on housing and 0.9 (0.5) higher than on other goods. In terms of

flooding, decomposition into the sub-categories shows that while there is an effect

on the price of food and other goods, housing prices are not affected. As with H,

the effect on food is larger (by 0.1 std) than on other goods.

So far we have measured the average impact of extreme weather across all islands.

However, the impact of extreme weather may differ across island characteristics.

For instance, islands that experienced more extreme weather in the past may take

measures to attenuate the impact of future events, such as storing resources, im-

proving structures, and growing crops that are more resistant. To investigate this

we construct the average H from 1950 to 1999 and interact it with current values

of H and F in the base specification.15 We follow Balli and Sørensen (2013) and

15We set exposure weights w equal to their 1992 value, the first available year. Unfortunately
we cannot replicate this analysis for flooding, since our rainfall data is only available back to 1998.

This article is protected by copyright. All rights reserved. 
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demean the variables before interacting them. The results in Column (5) show that

the effect of a one std increase in H for an island with an average past hurricane

experience is a 1.135 std increase in prices. The coefficient of the interaction shows

that past hurricane experience indeed decreases the impact of current events. Tak-

ing the coefficient at face value, would imply, for example, for Jamaica, which has

experienced less previous hurricane destruction than the average island (0.0000104

vs. 0.0000151), that the total price impact is 1.525 std.

Local infrastructure, such as roads, could also play a mitigating role in the price

impact across islands by allowing goods to be transported quickly to those areas

with excess demand. To capture this effect we use interactions of our indices with

road density.16 As our results in Column (6) show, a more extensive road network

indeed reduces both the contemporaneous and lagged impact of hurricanes on prices,

while there is no such effect for extreme rainfall.

Finally, we also investigate whether heterogeneity across islands in trade policy,

in particular tariffs, can play a role. Since most of the tariffs in the Caribbean are

on agricultural products, we focus on the impact of agricultural tariffs, taken from

the WTO Tariffs database, on food prices. The results in Column (6) show that, as

might be expected, a more restrictive trade regime increases the contemporaneous

impact of hurricanes on food prices, with no such effect on excessive precipitation.

Our results contrast with those of Cavallo, Cavallo and Rigobon (2014), who find

no price increase in response to an earthquake for both Japan and Chile. One

possible explanation might be the absence of price gauging laws in the Caribbean.

However, while these exist in Japan, there is no such legislation in place in Chile.

A more plausible explanation is that small open island developing economies, like

the Caribbean, are more sensitive to localised exogenous shocks.

16Calculated from the Global Roads Open Access Data Set (gROADS), v1 (1980-2010).

This article is protected by copyright. All rights reserved. 
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Table 2: Impact of Hurricane and Flooding on Monthly Price Changes

Base results Interactions

All Food Housing Other All Food

(1) (2) (3) (4) (5) (6) (7)
Ht 1.325** 2.801** 1.394** 1.921** 1.135** 1.207** 2.265**

(0.248) (0.363) (0.472) (0.267) (0.232) (0.244) (0.287)
Ht−1 1.060** 1.626** 1.117** 1.163** 0.675** 0.819** 1.378*

(0.267) (0.445) (0.400) (0.333) (0.230) (0.281) (0.562)
Ht−2 0.0618 0.475 0.702 0.242 0.348 0.112 0.306

(0.253) (0.586) (0.401) (0.382) (0.380) (0.244) (0.502)
Ft 0.122* 0.249** 0.0401 0.149* 0.119 0.123* 0.257**

(0.0599) (0.0809) (0.0849) (0.0665) (0.0611) (0.0595) (0.0796)
Ft−1 0.0295 0.101 -0.0402 0.0342 0.0311 0.0302 0.102

(0.0686) (0.0938) (0.0780) (0.0710) (0.0715) (0.0674) (0.0947)
Ft−2 -0.0454 -0.0366 -0.103 -0.0466 -0.0495 -0.0456 -0.0375

(0.0624) (0.0771) (0.118) (0.0659) (0.0625) (0.0603) (0.0780)

Past hurricanes Roads Tariffs

Ht -82,959** -267.8** 0.0795**
(31,129) (77.76) (0.0181)

Ht−1 -165,109 -572.2** 0.0379
(90,109) (117.8) (0.0211)

Ht−2 115,318 115.9 0.0276
(123,713) (172.8) (0.0456)

Ft 1,660 5.164 -0.000738
(3,702) (8.509) (0.00160)

Ft−1 -275.9 -2.236 0.000415
(4,314) (8.091) (0.00143)

Ft−2 2,704 9.134 0.000372
(3,505) (7.540) (0.00163)

F-test(θ = 0) 10.43 25.43 5.909 11.37 12.17 13.75 28.99

This table shows estimation results for different lag specifications of the regression of monthly price
changes on hurricane and flooding:

∆pj,t =
S∑

s=0

θHs Hj,t−s +
S∑

s=0

θFs Fj,t−s + µj + λt + νj,t, (3)

For country j at time t, ∆pj,t is the difference in log CPI, Hj,t is the potential hurricane destruc-

tion index, Fj,t is the potential flood destruction index excluding flood events during hurricane

events, µj is a country fixed effect, λt is a yearly and monthly time dummy, and νj,t is an error

term. Columns (1) through (4) show our baseline results, while in Columns (5) through (6), we

further interact extreme weather with past hurricane experience, road infrastructure, and agricul-

tural tariffs. F-test(θ=0) is the F-test of the regression, which includes the effect of hurricane and

flooding destruction for all lags. Driscoll and Kraay (1998) standard errors are shown in paren-

theses. ∗∗ and ∗ indicate 1% and 5% significance levels, respectively. All regressions are run with

2,145 observations.
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3 Potential Welfare Losses: The Case of Jamaica

We next examine the potential welfare implications of the price increases due to

extreme weather. To this end we use household data for Jamaica. While our choice

is driven by data availability, Jamaica is arguably particularly suited for this task.

Geographically it is the third largest island in the Caribbean and lies well within the

hurricane belt and thus is subject to frequent hurricane strikes. At the same time

Jamaica is also vulnerable to frequent flooding induced by tropical storms, fronts,

and troughs.17

3.1 Framework for Welfare Analysis

In order to assess the potential welfare effect of extreme weather-induced price

increases, we explore the change in households’ consumer surplus due to the subse-

quent reallocation of expenditures. One should note that we are abstracting from

any impacts of extreme weather on the absolute level of income due to, for example,

loss of employment. Moreover, we do not take account of any potential changes

in the demand curve of goods due to extreme weather-induced factors other than

relative price changes; as, for instance, the need to spend more on housing be-

cause of damages incurred. We are thus focusing simply on the price effect of these

events. Accordingly, for each household, we consider the compensating variation

due to an extreme weather event, defined as the percentage change in expenditure

∆ln(C) = ln(C̃) − ln(C) needed to maintain a constant utility after a change in

the price vector from p to p̃, where p = (p1, . . . , pn) with pi the price of good i,

and C is the initial level of expenditure. The new level of expenditure, C̃, can be

extracted from the indirect utility function V (C,p) by equating the levels of utility

before and after the weather-induced price changes: V (C,p) = V (C̃, p̃). This leads

17Over our sample period, Hurricanes Iris (2001), Lili (2002), Ivan (2004), Emily (2005), Charley
(2005), Dean (2007), Gustav (2008), and Sandy (2012) have all caused at least some damage on
the island. Major damaging floods are known to have occurred in the years 2004, 2007, 2008, 2009,
2010 and 2012 (see Mandal et al., 2014).
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to the following expression for compensated variation:

∆ ln(C) = ln
(
V −1 (V (C,p), p̃)

)
− ln(C), (4)

where = V −1(.,p) refers to the inverse of the expenditure function with respect to

its first argument. Thus we quantify the impact on consumer welfare of changes in

prices, while accounting for households’ ability to substitute away from those goods

whose prices have risen in relative terms. This approach assumes that there are

no laws or customs that prohibit the emergence of undistorted price signals, which

is likely for Jamaica where food subsidies were eliminated by the early 1990s (see

International Fund for Agricultural Development, and Inter-American Institute for

Cooperation on Agriculture, 1994).

To evaluate the distribution of potential welfare losses implied by extreme weather

events we use Equation (4) to calculate the loss in welfare ∆ ln(C)(α) of a household

with budget shares si due to a change in the price of goods ∆ ln(pi)
(α), following a

set of possible flood and hurricane events of different strengths, associated with a

quantile α likelihood of occurrence. Given that damaging flood and hurricane events

are not independent, as similar climate factors are likely to be driving both18, we

look at the distribution of one type of event conditional on the incidence of the other.

Since there is an infinite number of possible combination of pairs of events, we focus

on the distribution of one type of event conditional on a five year return level of the

other, corresponding to a monthly probability of 0.9833. For instance, in the case

of hurricanes conditional on flooding, we use ∆ ln(pi)
(α) = ΘH

i H
(α)
c + ΘF

i F
(α), where

H
(α)
c = F−1H|F (α|F−1F (0.9833)), FH|F is the distribution of hurricane, conditional on

flooding, FH and FF are, respectively, the distributions of hurricane and flooding,

and ΘH
i and ΘF

i are the sum of the significant contemporaneous and lagged effects

estimated in Equation (3) for good i. This allows us to associate a welfare loss to

18For instance, in our data, 13% of extreme weather damaging months are characterised by both
hurricane and flood events.
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any conditional quantile of the distribution of each one of these types of events.

3.2 Estimation of Demand System

Figure 1: Return plots for bivariate POT models
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(b) Budget Share of different goods, as a
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Notes: (1) Graph of the kernel density estimate using a Gaussian kernel and a plug-in

bandwidth; (2) Red line indicates poverty threshold at J$12,000.

In order to make Equation (4) operational, we follow Attanasio, Di Maro, Lech-

ene and Phillips (2013) and assume a specific functional form of the indirect util-

ity function V (C,p), which leads to the Quadratic Almost Ideal Demand System

(QUAIDS) of Banks, Blundell and Lewbel (1997). QUAIDS consists in a system

of budget shares equations that is consistent with consumer theory. Its advantage

is that it allows elasticities to depend on the level of expenditures, which could be

important for the price impact of extreme weather events, given that our broad cat-

egories of goods do not allow us to take account of compositional differences across

income.

In order to estimate the QUAIDS model, we need household data on budget shares

and total expenditures as well as a set of prices that varies across households. For

the first, we use the 2012 Jamaican Survey of Living Conditions (JSLC), which is

a household budget survey covering 6,450 representative households. The official
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poverty line in Jamaica is about J$143,000 per capita, or about J$12,000 per capita

per month, so that 1,382 (21.4%) out of the total 6,450 households in our data

are classified as poor. The kernel density distribution of per capita consumption

per household19 calculated from the data along with the poverty line threshold is

depicted in Figure 1a.

To calculate budget shares from the JSLC, we categorise expenditures into groups

of food, housing and utilities, and the remaining items to match our cross-country

price data grouping. Figure 1b shows the relationship between the budget shares

of these three consumption goods and consumption per capita, using a Nadaraya-

Watson non-parametric regression. As can be seen, the share spent on food decreases

with income, standing roughly at around 42% at the poverty threshold. In contrast,

expenditure on housing and utilities and on other goods rises with wealth and is

about 12 and 41%, respectively, near the poverty line.

Our prices come from the Central Bank of Jamaica for 2012 and we aggregate them

to match the prices of our three categories of consumption goods. Since Jamaica

calculates its CPI series separately for three regional groupings (the greater Kingston

metropolitan, other urban, and rural areas), we match prices to each household’s

urban-rural classification and the month it was surveyed. Hence, prices vary over

time as well as space across households.

We use the method of Blundell and Robin (1999) to estimate the parameters of

the QUAIDS model, including demand shifters and controlling for the potential

endogeneity of total expenditures; see online Appendix D for details. The implied

compensated (Hicksian) elasticities from our QUAIDS estimation are provided in

Table 3. As can be seen, all own-price elasticities are statistically significant and

of the expected negative sign, where Jamaican households are most responsive to

changes in housing and utilities. In terms of the cross-price elasticities the estimated

19As is standard, we weight children half of adults in the consumption per capita calculation,
see Deaton (1997).
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coefficients suggest that all three groups of goods are substitutes, although the

responsiveness varies considerably.

Table 3: Compensated (Hicksian) price elasticities from the QUAIDS model

Food Housing & Utilities Other

Food -0.607* 0.358* 0.249
(0.198) (0.115) (0.256)

Housing & Utilities 0.780 -1.848** 1.068
(0.406) (0.237) (0.526)

Other 0.210 0.412** -0.621*
(0.174) (0.102) (0.226)

Elasticities are computed from the QUAIDS estimates in Table D.1 in in online Appendix D,
according to Equation D.1 in online Appendix D. Standard errors are shown in parentheses. ∗∗

and ∗ indicate 1% and 5% significance levels, respectively.

3.3 Distribution of Hurricane and Flood Events

It is common practice to model the probabilities of rare occurrences, such as weather

shocks, using extreme value theory, see, for instance, Jagger and Elsner (2006). A

standard approach in this regard is to use Peak Over Threshold (POT) models

(see, e.g., Smith, 1987; Davison and Smith, 1990) POT models consist of fitting

exceedances above a threshold by a Generalized Pareto Distribution (GPD), whose

shape parameter captures the fatness of the tails of the distribution, which indicates

how likely it is to observe extreme weather events.

As a starting point we model hurricane and flood events independently as uni-

variate POT models; see the estimates given in column (1) of Table E.1 of online

Appendix E. For hurricanes, we find a positive but insignificant shape parameter

which indicates a slowly decaying power tail, implying a non-negligible probability

of extreme events. In contrast, the shape parameter for flooding is very significantly

negative, which implies that the distribution has a finite domain, with an upper

bound, beyond which the probability drops to zero, and thus there is less reason for

concern about very extreme events. In line with our estimations, the return plot for
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hurricane is convex, while for flooding it is concave and seems to be bounded; see

Figure E.1 in online Appendix E.

To account for dependence between hurricanes and floods, we consider six popular

bivariate POT models, which combine univariate GPDs into proper bivariate distri-

butions of extremes, characterised by one or several dependence parameters; namely,

the logistic (Gumbel), the negative logistic (Galambos), and the mixed model, as

well as their asymmetric counterparts. All bivariate POT models, regardless of the

functional form, show very significant dependence parameters between hurricane

and flooding, see Table E.1 of online Appendix E. which is the most commonly

used.20

3.4 Potential Welfare Losses

We now have all the parameters to calculate the welfare loss ∆ ln(C)(α) of any house-

hold in our Jamaican data set for any quantile α of the weather distribution. In

order to demonstrate how these losses vary across income levels we use a Nadaraya-

Watson non-parametric regression estimate of the effect of income on compensating

variation, calculated as a percentage of initial household consumption, for each of

a range of α. The univariate results are plotted jointly in terms of return periods

in Panels (a) and (b) of Figure 2. As expected, given its POT estimates, for floods

welfare losses rise up to a 5 year return period and then remain fairly stable for a

given income group. However, clearly welfare losses are larger for poorer households

across the full range of depicted events. For example, for a 10 year event, house-

holds just below the poverty line will experience a welfare loss of 0.6%, while the

corresponding households in the 95th percentile will be subject to losses of 0.5%.

This is due to the fact that poorer households spend a higher share of their income

20See, e.g., Ledford and Tawn (1996), who develop the estimation of the model, Longin and
Solnik (2001), who use the model to study extreme dependence between financial returns, and
Bonazzi, Cusack, Mitas and Jewson (2012), who use the model to analyse the spatial dependence
in wind storms.
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on food, the price of which is more susceptible to extreme events.

Compensating variation for hurricanes rises substantially in a slightly exponential

manner, as one considers more extreme events, as shown in Panel (b) of Figure 2.

This implies that a 20 year event results in losses around 9 times larger than for a 5

year event. However, there is little difference across income levels. This is because,

while there is a larger price effect on food, which affects the poor more, hurricanes

also have an impact on the price of housing, which is more important for richer

households.

Panels (c) and (d) of Figure 2 show the compensating variation for conditional

flood and hurricane events based on the bivariate estimations. Welfare losses rise

relatively sharply but then flatten out for more extreme events. For example, while a

10 year conditional flood decreases welfare by about 200%, the corresponding figure

for a 20 year conditional event is about 267%. There is now little difference across

income, which is driven by the conditional hurricane event. For hurricanes, the

shapes of the bivariate and univariate distributions are similar, with losses rising

sharply as events become more extreme. For instance a 20 year hurricane event

causes on average a 710% loss in consumer welfare.

4 Conclusion

In this paper we investigate how extreme weather can drive short-term price in-

creases in the Caribbean. Our results show that while the expected price increase

is on average small every month, when this does occur the impact can be multi-

fold of average price changes. In this regard the expected monthly impact is larger

and occurs more often for floods, but when a hurricane strikes the resulting rise is

considerably larger. Looking at broad sub-categories of goods, we find that both

hurricanes and floods have the largest impact on food prices, but only hurricanes

affect the price of housing goods. Our results indicate that greater previous hur-
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Figure 2: Return plots for univariate and bivariate POT models
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(b) Hurricane

0
5

10
15

20

0

20000

40000

60000

80000
0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

Return periodConsumption per capita

C
o
m

p
e
n
s
a
te

d
 v

a
ri
a
ti
o
n

(c) Flood Conditional on Hurricane
(bivariate)
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(d) Hurricane Conditional on Flood
(bivariate)

This figure shows estimates of a series of kernel regressions of compensated variation

on consumption per capita. Panel (a) and (b) shows results for flooding and hurricanes

derived from univariate POT models. Panel (c) shows results for flood events, conditional

on 5 year return period hurricane events, interpolated over a grid of return periods

between 1 and 20 years. Panel (d) shows results for hurricane events, conditional on 5

year return period flooding events, interpolated over a grid of return periods between

1 and 20 years. Kernel regressions use a Gaussian kernel and a plug-in bandwidth.

Compensating variation is measured in percentage changes.

ricane exposure, a more open trade policy, and better infrastructure may mitigate

the price impact of extreme weather events. However, one should note that these

findings may not necessarily be generalisable to larger landlocked countries.

Using the case study of Jamaica we also investigate the welfare implications due

to the price impact of extreme weather events. We find that losses in welfare can

be large for the rarer events. If we consider hurricanes and floods as independent
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events, floods have a disproportionately larger impact on the poor due to their

higher spending on food. This effect disappears when we allow for dependence due

to the impact of hurricanes on the price of housing goods and the propensity of

richer households to spend more on these goods.

More generally our analysis suggests that the potential short-term costs of price

pressure due to shortages of goods after an extreme weather event should not be

ignored. In this regard, some governments in developing countries have already been

employing targeted policies for many years. For example, the Philippines National

Food Authority keeps stocks of rice and corn in order to buffer the price hike due

to droughts, floods, and typhoons.

THEMA, University of Cergy-Pointoise

Inter-American Development Bank

Department of Economics and Oeschger Climate Change Research Centre, Univer-

sity of Bern

Additional Supporting Information may be found in the online version of this article:

Appendix A. Wind Field Model

Appendix B. Exposure Weights

Appendix C. Flood Detection

Appendix D. Quadratic AIDS Model

Appendix E. Peak Over Threshold Models

Data S1.

References

Acevedo, S., Cebotari, A. and Turner-Jones, T. (2013). ‘Caribbean small states:

Challenges of high debt and low growth’, International Monetary Fund.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
American Society of Civil Engineers (2006). ‘Minimum design loads for buildings

and other structures’, ASCE/SEI 7-05.

Attanasio, O., Di Maro, V., Lechene, V. and Phillips, D. (2013). ‘Welfare conse-

quences of food price increases: Evidence from rural mexico’, Journal of Devel-

opment Economics, vol. 104, pp. 136–151.

Balli, H.O. and Sørensen, B.E. (2013). ‘Interaction effects in econometrics’, Empir-

ical Economics, vol. 45(1), pp. 583–603.

Banks, J., Blundell, R. and Lewbel, A. (1997). ‘Quadratic engel curves and consumer

demand’, The Review of Economics and Statistics, vol. 79(4), pp. 527–539.

Blundell, R. and Robin, J.M. (1999). ‘An iterated least squares estimator for con-

ditionally linear equations models’, Journal of Applied Econometrics, vol. 14(3),

pp. 209–232.

Bonazzi, A., Cusack, C., Mitas, C. and Jewson, S. (2012). ‘The spatial structure

of European wind storms as characterized by bivariate extreme-value copulas’,

Natural Hazards and Earth Systems Science, vol. 12, pp. 1769–1782.

Boose, E., Serrano, M. and Foster, D. (2004). ‘Landscape and regional impacts of

hurricanes in Puerto Rico’, Ecological Monograph, vol. 74, pp. 335–352.

Caribbean Catastrophe Risk Insurance Facility (2010). ‘Enhancing the climate risk

and adaption fact base for the Caribbean’, CCRIF.

Cavallo, A., Cavallo, E. and Rigobon, R. (2014). ‘Prices and supply disruptions

during natural disasters’, The Review of Income and Wealth, vol. 60, pp. S449–

S471.

Cavallo, E. and Noy, I. (2011). ‘Natural disasters and the economy - a survey’,

International Review of Environmental and Resource Economics, vol. 5, pp. 63–

102.
This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Davison, A. and Smith, R.L. (1990). ‘Models of exceedances over high thresholds

(with discussion)’, Journal of the Royal Statistical Society Series B, vol. 52, pp.

393–442.

Deaton, A. (1997). The Analysis of Household Surveys: A Microeconometric Ap-

proach to Development Policy, Baltimore: The Johns Hopkins University Press.

Dessus, S., Herrera, S. and De Hoyos, R. (2008). ‘The impact of food inflation on

urban poverty and its monetary cost: Some back-of-the-envelope calculations’,

Agricultural Economics, vol. 39(1), pp. 417–429.

Driscoll, J. and Kraay, A. (1998). ‘Consistent covariance matrix estimation with

spatially dependent panel data’, Review of Economics and Statistics, vol. 80, pp.

549–560.

Easterly, W. and Fischer, S. (2001). ‘Inflation and the poor’, Journal of Money,

Credit and Banking, vol. 33, pp. 160–178.

Emanuel, K.F. (2005). ‘Increasing destructiveness of tropical cyclones over the past

30 years’, Nature, vol. 436, pp. 686–688.

Emanuel, K.F. (2011). ‘Global warming effects on US hurricane damage’, Weather,

Climate, and Society, vol. 3, pp. 261–268.

Federal Emergency Management Agency (2006). ‘Multi-hazard loss estimation

methodology. flood model- technical manual’, Washington, DC.
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