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A SHARP TRILINEAR INEQUALITY RELATED TO

FOURIER RESTRICTION ON THE CIRCLE

EMANUEL CARNEIRO, DAMIANO FOSCHI, DIOGO OLIVEIRA E SILVA AND CHRISTOPH THIELE

Abstract. In this paper we prove a sharp trilinear inequality which is motivated by a program to obtain

the sharp form of the L2 − L6 Tomas-Stein adjoint restriction inequality on the circle. Our method uses

intricate estimates for integrals of sixfold products of Bessel functions developed in a companion paper [24].

We also establish that constants are local extremizers of the Tomas-Stein adjoint restriction inequality as

well as of another inequality appearing in the program.

1. Introduction

Let (S1, σ) denote the unit circle in the plane equipped with its arc length measure. We are interested in

the sharp version of the endpoint Tomas-Stein adjoint restriction inequality [32, 31] on the circle:

‖f̂σ‖L6(R2) ≤ Copt ‖f‖L2(S1), (1.1)

where the Fourier transform of the measure fσ is given by

f̂σ(x) =

∫

S1

f(ω) e−ix·ω dσω , (x ∈ R2),

and Copt denotes the optimal constant,

Copt := sup
06=f∈L2(S1)

Φ(f); Φ(f) := ‖f̂σ‖L6(R2)‖f‖−1
L2(S1).

The existence of global extremizers of Φ was recently established by Shao [30]. Our first result establishes

that the constant function 1 is a local extremizer of Φ.

Theorem 1. There exists δ > 0 such that, whenever ‖f − 1‖L2(S1) < δ, we have Φ(f) ≤ Φ(1).

It is known that the constant function 1 is a critical point of Φ. Indeed, by rotational symmetry, f = 1

satisfies the generalized Euler-Lagrange equation f = λ(|f̂σ|4f̂σ)∨ |S1 that characterizes critical points, see

[9, Proposition 2.1] for details. We give the proof of Theorem 1 in Section 4.

Our second and main result concerns a trilinear form related to Fourier restriction. To motivate this

trilinear form, we start by using Plancherel’s identity and writing

‖f̂σ‖6L6(R2) = (2π)2‖fσ ∗ fσ ∗ fσ‖2L2(R2)

= (2π)2(fσ) ∗ (fσ) ∗ (fσ) ∗ (f⋆σ) ∗ (f⋆σ) ∗ (f⋆σ)(0)

= (2π)2
∫

(S1)6
f(ω1)f(ω2)f(ω3)f⋆(ω4)f⋆(ω5)f⋆(ω6) dΣ~ω, (1.2)
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where f⋆(ω) = f(−ω) and

dΣ~ω = δ(ω1 + ω2 + ω3 + ω4 + ω5 + ω6) dσω1
dσω2

dσω3
dσω4

dσω5
dσω6

.

Here δ stands for the two dimensional Dirac measure. Note that the measure dΣ~ω is supported on the four

dimensional manifold Γ ⊂ (S1)6 determined by

ω1 + ω2 + ω3 + ω4 + ω5 + ω6 = 0. (1.3)

We define the trilinear form:

T (h1, h2, h3) :=

∫

(S1)6
h1(ω1)h2(ω2)h3(ω3)

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω. (1.4)

The main result of this paper is the following monotonicity estimate, obtained in Section 5 via a spectral

decomposition and a careful analysis of integrals involving Bessel functions. By antipodally symmetric

function we mean a function h on S1 with h(ω) = h(−ω).

Theorem 2. Let h ∈ L1(S1) be a nonnegative and antipodally symmetric function. Let c = 1
2π

∫
S1
h(ω) dσω

be the mean value of h. Then

T (h, h, h) ≤ T (c, c, c),

with equality if and only if h is constant.

This bound for the trilinear form T is the penultimate step in a six-step program that we propose to obtain

the sharp form of the Tomas-Stein adjoint restriction inequality (1.1) and characterize its global extremizers.

A similar program was used in [15] to obtain the sharp endpoint L2 − L4 Tomas-Stein adjoint restriction

inequality on the sphere S2, and subsequently in [7] to obtain the sharp non-endpoint L2 − L4 estimate on

the sphere Sd for 3 ≤ d ≤ 6. In this paper we complete all the steps of this program in the case of S1, except

for Step 4 which remains unresolved and that we pose as a conjecture.

We briefly describe each of these steps, which result in a proof of the conditional Theorem 5 below.

1.0.1. Step 1. Reduction to nonnegative functions. Since |fσ ∗ fσ ∗ fσ| ≤ |f |σ ∗ |f |σ ∗ |f |σ holds pointwise,

it follows that ∥∥fσ ∗ fσ ∗ fσ
∥∥
L2(R2)

≤
∥∥|f |σ ∗ |f |σ ∗ |f |σ

∥∥
L2(R2)

. (1.5)

Here equality holds if and only if there is a measurable complex-valued function h on the closed ball B(3) ⊂ R2

of radius 3 centered at the origin such that

f(ω1) f(ω2) f(ω3) = h(ω1 + ω2 + ω3)
∣∣f(ω1) f(ω2) f(ω3)

∣∣

for σ3−a.e. (ω1, ω2, ω3) ∈ (S1)3. This can be seen as in the proof of [7, Lemma 8]. Compare also with

[10, 15].

1.0.2. Step 2. Reduction to antipodally symmetric functions. Define the nonnegative, antipodally symmetric

rearrangement f♯ of a function f ∈ L2(S1) by

f♯ :=

√
|f |2 + |f⋆|2

2
.

2



If f is in L2(S1), then so is its antipodal rearrangement, with ‖f♯‖L2(S1) = ‖f‖L2(S1). A simple application

of the arithmetic/geometric mean inequality as in [15, Corollary 3.3] shows that
∫

(S1)6
f(ω1)f(ω2)f(ω3)f⋆(ω4)f⋆(ω5)f⋆(ω6) dΣ~ω ≤

∫

(S1)6
f♯(ω1)f♯(ω2)f♯(ω3)f♯(ω4)f♯(ω5)f♯(ω6) dΣ~ω. (1.6)

Here equality holds if and only if f = f⋆ = f♯ (σ−a.e. in S1). This follows as in the proof of [7, Lemma 9].

From inequalities (1.5) and (1.6) it follows that

Copt = sup
06=f∈L2(S1), f≥0, f=f⋆

Φ(f).

We may hence assume that our candidate f ∈ L2(S1) to being an extremizer of (1.1) is also a nonnegative,

antipodally symmetric function.

1.0.3. Step 3. Geometric considerations. Suppose that we naively try to follow the method used in [14] and

apply the Cauchy-Schwarz inequality directly to the last integral in (1.2) (or in (1.6)). We would obtain

‖f̂σ‖6L6(R2) ≤ (2π)2
∫

(S1)6
|f(ω1)|2|f(ω2)|2|f(ω3)|2 dΣ~ω

= (2π)2
∫

(S1)3
|f(ω1)|2|f(ω2)|2|f(ω3)|2σ ∗ σ ∗ σ(ω1 + ω2 + ω3) dσω1

dσω2
dσω3

.

If the 3-fold convolution product σ ∗ σ ∗ σ were a constant function inside its support, then the last integral

would reduce to a constant multiple of ‖f‖6L2(S1), and we would immediately obtain the estimate (1.1).

Unfortunately, the quantity σ∗σ∗σ(x) diverges logarithmically as x approaches the unit circle; the singularity

of σ ∗ σ ∗ σ will be described in Section 2. This singularity can be neutralized if in the integral (1.6) we

insert an appropriate weight which vanishes when the sum of three unit vectors is again a unit vector. This

is made possible thanks to the geometrical identity illustrated in the next lemma.

Lemma 3. If (ω1, ω2, ω3, ω4, ω5, ω6) ∈ Γ, then
∑

(63)

(
|ωi + ωj + ωk|2 − 1

)
= 16, (1.7)

where the sum above runs over all the
(
6
3

)
= 20 different choices of unordered distinct indices i, j, k ∈

{1, 2, 3, 4, 5, 6}.

For the proof, one squares (1.3) and expands (1.7) to arrive at the desired conclusion.

Using this identity, we can write

‖f̂σ‖6L6(R2) = (2π)2
1

16

∑

(63)

∫

(S1)6
f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)

(
|ωi + ωj + ωk|2 − 1

)
dΣ~ω

= (2π)2
5

4

∫

(S1)6
f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω ,

since by symmetry all 20 integrals in the first line of the last display have the same numerical value.

1.0.4. Step 4. Reduction to a trilinear problem. At this point in the program [15], a similar weight as(
|ω4 + ω5 + ω6|2 − 1

)
has been introduced, albeit nonnegative. The program there continues with an

application of the Cauchy-Schwarz inequality. Since our weight is partially negative, we cannot simply apply

the Cauchy-Schwarz inequality. Nevertheless, we pose this inequality as a conjecture:
3



Conjecture 4. Let f ∈ L2(S1) be nonnegative and antipodally symmetric. Then:

∫

(S1)6
f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω

≤
∫

(S1)6
f(ω1)

2f(ω2)
2f(ω3)

2
(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω. (1.8)

Numerical simulations suggest that this inequality holds. One reason to believe so is that the negative

portion of the weight is small, and via antipodal symmetry the values of the functions on this negative portion

have a strong correlation with the values of the functions on the positive part. However, the antipodal

symmetry does not preserve the support of dΣ~ω, which makes it difficult to exploit this correlation.

If on the right-hand side of (1.8) we replace ω4 + ω5 + ω6 by ω1 + ω2 + ω3 and integrate out ω4, ω5 and

ω6, we obtain an additional weight given by the 3-fold convolution product σ ∗ σ ∗ σ(|ω1 + ω2 + ω3|). As we
have already observed, this convolution has a logarithmic singularity at |ω1+ω2+ω3| = 1, which disappears

when multiplied by the weight |ω1 + ω2 + ω3|2 − 1, in analogy to the program of [15].

1.0.5. Step 5. Spectral analysis of a cubic form. The right-hand side of (1.8) invokes the trilinear form T

of our main Theorem 2. Thus, using (1.8) and Theorem 2 yields for nonnegative, antipodally symmetric

functions f :

‖f̂σ‖6L6(R2) ≤ (2π)2
5

4
T (f2, f2, f2) ≤ (2π)2

5

4

‖f‖6L2(S1)

‖1‖6L2(S1)

T (1,1,1) =
‖σ̂‖6L6(R2)

‖1‖6L2(S1)

‖f‖6L2(S1). (1.9)

This proves the first part of Theorem 5 below.

1.0.6. Step 6. Characterizing the complex-valued extremizers. If f ∈ L2(S1) is a complex-valued extremizer

of (1.9), by Theorem 2 we must have |f |♯ = γ 1, where γ > 0 is a constant. By the discussion in Step 2 above

we must have |f | = γ 1. By the discussion in Step 1 above there is a measurable function h : B(3) → C such

that

f(ω1) f(ω2) f(ω3) = γ3 h(ω1 + ω2 + ω3)

for σ3−a.e. (ω1, ω2, ω3) ∈ (S1)3. We now invoke [7, Theorem 4] (which is originally inspired in the work of

Charalambides [8]) to conclude that there exist c ∈ C \ {0} and ν ∈ C2 such that

f(ω) = c eν·ω

for σ−a.e. ω ∈ S1. Since |f | is constant, we must have ℜ(ν) = 0 and |c| = γ. This completes the proof of

the following theorem.

Theorem 5. Assume the validity of Conjecture 4. Then

Copt = (2π)−1/2‖σ̂‖L6(R2).

Moreover, all complex-valued extremizers of (1.1) are given by

f(ω) = c eiξ·ω,

where c ∈ C \ {0} and ξ ∈ R2.

The endpoint problem for the sphere S2 discussed in [15] is simpler than the above in Steps 4 and 5. In

Step 4, one faces the convolution of the surface measure of the sphere with itself, which has a singularity
4



at the origin, and one can choose a nonnegative weight vanishing at the origin, so that the corresponding

Step 4 follows from a plain application of the Cauchy-Schwarz inequality. In Step 5, the analogue spectral

analysis is over a bilinear rather than trilinear form. One uses the Funk-Hecke formula and properties of the

Gegenbauer polynomials to show that a certain bilinear term has a sign. This is considerably simpler than

the proof of Theorem 2.

As evidence towards Conjecture 4 we prove the following local result in Section 6. Define

Ψ(f) :=

∫

(S1)6

(
f(ω1)f(ω2)f(ω3)− f(ω4)f(ω5)f(ω6)

)2 (|ω4 + ω5 + ω6|2 − 1
)
dΣ~ω. (1.10)

Observe that Ψ(1) is identically zero and that Conjecture 4 is equivalent to the fact that Ψ(f) ≥ 0 for

f ∈ L2(S1) nonnegative and antipodally symmetric.

Theorem 6. There exists δ > 0 such that, whenever f is real-valued and ‖f − 1‖L2(S1) < δ, we have

Ψ(f) ≥ 0.

Note that this result holds for all real-valued functions, without assumption of nonnegativity nor antipodal

symmetry.

The study of sharp Fourier restriction inequalities for the sphere Sd is quite recent, with the aforementioned

works [7, 10, 15, 30] and the additional [11]. The literature on sharp Fourier restriction inequalities related

to the paraboloid and cone is extensive and we highlight the works [1, 4, 6, 14, 19, 21, 26]. Other interesting

works on sharp Strichartz-type estimates and on the existence of extremizers for other Fourier restriction

estimates include [2, 3, 5, 12, 13, 16, 18, 20, 23, 25, 27, 28, 29].

2. Convolutions of unit circle measures

We start by recalling a particular case of [7, Lemma 5].

Lemma 7. The convolution σ ∗ σ is supported on the disk of radius 2 centered at the origin, and for |x| ≤ 2

we have:

σ ∗ σ(x) = 4

|x|
√

4− |x|2
.

Lemma 7 can be combined together with an additional convolution to yield

σ ∗ (σ ∗ σ)(x) =
∫

Sx

4dσω

|x− ω|
√
4− |x− ω|2

,

where Sx = {ω ∈ S1 : |x− ω| ≤ 2}. The last integrand can be written as a function which depends only on

the radius r := |x| and on the cosine u := x
|x| · ω. We have that dσω = (1− u2)−1/2du and, by applying this

change of variables in the integration, we obtain the following formula.

Lemma 8. The convolution σ ∗ σ ∗ σ is supported on the disk of radius 3 centered at the origin, and for

|x| ≤ 3 we have:

σ ∗ σ ∗ σ(x) = 4

r

∫ 1

A(r)

du
√
1− u2

√
(1−r)2

2r + 1− u
√

(3+r)(1−r)
2r + 1 + u

, (2.1)

where r = |x| and A(r) := −1 + max{0, (3 + r)(r − 1)/(2r)}.
5



The integral (2.1) diverges for r = 1. Suppose ε := |r− 1| > 0. The contribution coming from integration

over the intervals (A(r), A(r) + ε) and (1− ε2, 1) remains bounded as ε → 0, while the contribution coming

from the integration over [A(r) + ε, 1− ε2] grows like | log ε|. We obtain, as |x| → 1,

c ≤ σ ∗ σ ∗ σ(x)∣∣∣∣ log
∣∣∣|x| − 1

∣∣∣
∣∣∣∣
≤ C,

for some absolute constants c, C > 0.

3. Bessel functions

The main technical part of this paper uses the Bessel functions Jn and estimates for integrals of sixfold

products of Bessel functions that are proved in the companion paper [24]. Here we introduce the basic

definitions and present the estimates from [24] in a convenient form for our purposes. We identify R2 ≃ C,

and write a vector x ∈ R2 as a point in the complex plane x = |x|ei arg(x). For every n ∈ Z, define

en(x) := xn = |x|nein arg(x).

Bessel functions can be defined via the Fourier transform of the circular harmonics.

Definition 9. Let n ∈ Z and x ∈ R2. Then the Bessel function of order n, denoted Jn, is defined by

ênσ(x) = 2π(−i)nJn(|x|) |x|−nen(x). (3.1)

Bessel functions come into play via the following calculation. We have

(2π)2
∫

(S1)6
f1(ω1)f2(ω2)f3(ω3)f4(ω4)f5(ω5)f6(ω6) dΣ~ω =

∫

R2

f̂1σ f̂2σ f̂3σ f̂4σ f̂5σ f̂6σ dx. (3.2)

Assume that the six functions fj , 1 ≤ j ≤ 6, are spherical harmonics on S1, that is fj(ω) = enj
(ω) = ωnj .

Restricted to circles about the origin, the integrand on the right-hand side of (3.2) is a spherical harmonic

of index n := n1 + n2 + n3 + n4 + n5 + n6. So unless n = 0, the last display vanishes. If n = 0, then

the integrand is constant on circles about the origin, and integrating in polar coordinates yields for the last

display

= (2π)7
∫ ∞

0

Jn1
(r)Jn2

(r)Jn3
(r)Jn4

(r)Jn5
(r)Jn6

(r) r dr =: (2π)7In1,n2,n3,n4,n5,n6
.

For more general functions on S1 we write

fj(ω) =
∑

n∈Z

f̂j(n) en(ω) (3.3)

and obtain for (3.2):

(2π)7
∑

n1+n2+n3+n4+n5+n6=0

f̂1(n1)f̂2(n2)f̂3(n3)f̂4(n4)f̂5(n5)f̂6(n6) In1,n2,n3,n4,n5,n6
. (3.4)

Thus we will be interested in a good understanding of the quantities In1,n2,n3,n4,n5,n6
. Note that the

parity Jn = J−n for even n and Jn = −J−n for odd n allows us to restrict attention to these integrals for

nonnegative indices. In particular, the following sequences (defined for n ∈ Z) will come into play:

αn :=

∫ ∞

0

J2
n(r)J

4
0 (r) r dr, (3.5)

6



α̃n :=

∫ ∞

0

J2
n(r)J

2
1 (r)J

2
0 (r) r dr, (3.6)

as well as the linear combination

βn :=

∫ ∞

0

J2
n(r)J

2
0 (r)

(
3J2

1 (r) − J2
0 (r)

)
r dr. (3.7)

Table 1 shows some of these values, accurate to 5 × 10−7. Computing the values of αn and α̃n with

Mathematica required some care which is described in the companion paper [24, Section 8]. The values of

βn were obtained by subtracting the values on the first column from three times the values on the second

column.

n αn α̃n βn

0 0.3368280 0.0673656 -0.1347312
1 0.0673656 0.0423752 0.0597600
2 0.0369428 0.0138533 0.0046171
3 0.0249883 0.0088143 0.0014546
4 0.0188523 0.0064847 0.0006018
5 0.0151231 0.0051433 0.0003068
6 0.0126216 0.0042662 0.0001770
7 0.0108283 0.0036466 0.0001115
8 0.0094804 0.0031850 0.0000746
9 0.0084305 0.0028276 0.0000523
10 0.0075896 0.0025426 0.0000382

Table 1

The companion paper [24] gives precise estimates for these sequences summarized in the following theorem.

Theorem 10. (cf. [24, Theorem 1]) For n ≥ 7 we have
∣∣∣∣αn − 3

4π2n
+

3

32π2(n− 1)n(n+ 1)

∣∣∣∣ ≤
1

500n4
;

∣∣∣∣α̃n − 1

4π2n
− 3

32π2(n− 1)n(n+ 1)

∣∣∣∣ ≤
1

500n4
.

We deduce the following estimate for the sequence βn. Define

c0 =
3

8π2
. (3.8)

Corollary 11. For n ≥ 2 even and ε1 = 0.03, we have
∣∣∣βn − c0

n3

∣∣∣ < ε1
c0
n3

.

Proof. For n ≤ 10 this follows by direct checking with the values given in Table 1, the tightest case being

n = 2. For n ≥ 12 one takes a linear combination of the estimates of the previous theorem to obtain
∣∣∣∣βn − c0

(n− 1)n(n+ 1)

∣∣∣∣ ≤
1

125n4
.

The triangle inequality then yields

∣∣∣βn − c0
n3

∣∣∣ ≤ c0
n3(n2 − 1)

+
1

125n4
≤

(
1

143
+

1

1500c0

)
c0
n3

< 0.025
c0
n3

.

This proves the corollary. �
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Note that the linear combination in the corollary is such that the terms of order n−1 in the asymptotics

of αn and α̃n cancel.

We will also need estimates for

γn,m :=

∫ ∞

0

Jn(r)Jm(r)Jn+m(r)J3
0 (r) r dr, (3.9)

γ̃n,m :=

∫ ∞

0

Jn(r)Jm(r)Jn+m(r)J2
1 (r)J0(r) r dr, (3.10)

and

δn,m :=

∫ ∞

0

Jn(r)Jm(r)Jn+m(r)
(
3J2

1 (r) − J2
0 (r)

)
J0(r) r dr. (3.11)

The values on the first two columns of Table 2 were again computed with Mathematica and have precision

5× 10−8.

n m γn,m γ̃n,m δn,m
2 2 0.00090754 0.00061039 0.00092363
4 2 0.00019186 0.00012012 0.00016850
6 2 0.00006958 0.00004264 0.00005834
4 4 0.00002195 0.00001272 0.00001621
6 4 0.00000498 0.00000281 0.00000345
8 4 0.00000160 0.00000089 0.00000107
10 4 0.00000064 0.00000035 0.00000041

Table 2

The companion paper [24] proves the following result.

Theorem 12. (cf. [24, Theorem 1]) For n ≥ 6 even we have

(i) ∣∣∣∣γn,2 −
15

64π2n(n+ 1)(n+ 2)

∣∣∣∣ ≤
1

500n4
;

∣∣∣∣γ̃n,2 −
9

64π2n(n+ 1)(n+ 2)

∣∣∣∣ ≤
1

500n4
.

(ii) ∣∣∣∣γn,4 −
1557

1024π2n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣∣ ≤
3

2000n4
;

∣∣∣∣γ̃n,4 −
855

1024π2n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣∣ ≤
3

2000n4
.

For n and m even with n ≥ m ≥ 6 we have

(iii)

|γn,m| , |γ̃n,m| ≤ 3

2000n4
.

Again we obtain a simple corollary for δn,m, where we recall the constant c0 from (3.8).

Corollary 13. (i) For n ≥ 2 even and ε2 = 0.11 we have

|δn,2| ≤ (1 + ε2)
c0

2n3/2(n+ 2)3/2
.

8



(ii) For n ≥ 4 even and γ3 = 1.3 we have
∣∣∣∣δn,4 −

21c0
8n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

∣∣∣∣ ≤ γ3
c0
8n4

.

(iii) For n and m even with n ≥ m ≥ 6 and again γ3 = 1.3 we have

|δn,m| ≤ γ3
c0
8n4

.

Proof. We begin with inequality (i). For n = 2, 4, 6 this is verified directly with Table 2. Again the tightest

case is n = 2. For n ≥ 8, from Theorem 12 we have

|δn,2| ≤
c0

2n(n+ 1)(n+ 2)
+

1

125n4
≤ c0

2n3/2(n+ 2)3/2
+

(
10

8

)3/2
1

1000n3/2(n+ 2)3/2
,

which is less than the desired quantity. Inequalities (ii) and (iii) follow from Theorem 12 via the estimate

3

500
≤ 1.3

3

64π2
.

This completes the proof of the corollary. �

4. Proof of Theorem 1: Constants are local extremizers of the extension inequality

In this section we follow the outline of [10, Section 16] to prove Theorem 1. Note that

(i) Φ(f) = Φ(λf) for all λ > 0;

(ii) Φ(f) ≤ Φ(|f |) ≤ Φ(|f |♯);
(iii) ‖|f |♯ − 1‖L2(S1) ≤ ‖|f | − 1‖L2(S1) ≤ ‖f − 1‖L2(S1).

We may therefore restrict attention to functions of the form

f = 1+ εg,

where 0 ≤ ε ≤ δ, g ⊥ 1, ‖g‖L2(S1) = 1, with g real-valued and antipodally symmetric. A straightforward

calculation gives the Taylor expansion

Φ(f)6 = Φ(1)6+(2πε)2‖1‖−6
2

(
15gσ ∗ gσ ∗σ ∗σ ∗σ ∗σ(0)− 3σ ∗σ ∗σ ∗σ ∗σ ∗σ(0) ‖1‖−2

2 ‖g‖22
)
+O(ε3), (4.1)

where O(ε3) denotes a quantity whose absolute value is majorized by Cε3, uniformly for g satisfying

‖g‖L2(S1) ≤ 1. Note that we do not have a term in ε since

gσ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ(0) = 0

due to the discussion after (3.2) and the fact that g ⊥ 1, i.e. ĝ(0) = 0. From (4.1) it suffices to show that

5 sup
‖g‖2=1

gσ ∗ gσ ∗ σ ∗ σ ∗ σ ∗ σ(0) < σ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ(0) ‖1‖−2
2 ‖g‖22.

Using (3.4) together with the fact that g is real with mean zero and antipodally symmetric, and therefore

can only have even nonzero Fourier coefficients, this reduces to1

5
∑

n∈(2Z)×

|ĝ(n)|2αn <
∑

n∈(2Z)×

|ĝ(n)|2α0, (4.2)

1Throughout this paper, we let (2Z)× := 2Z \ {0} and Z× := Z \ {0}. Similarly for (2N)×, where N := {0, 1, 2, . . .}.
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where we have used the fact that ‖g‖2L2(S1) = 2π
∑

n∈(2Z)× |ĝ(n)|2. Estimate (4.2) will follow from 5αn < α0

for all n ∈ (2Z)×. This in turn follows from Theorem 10 and Table 1.2 In particular, for n ≥ 10 we conclude

from Theorem 10 that

αn ≤ 3

4π2n
+

3

32π2(n− 1)n(n+ 1)
+

1

500n4
≤ 1

50
.

This completes the proof of Theorem 1.

Remark: By using Theorem 10, we appeal to the companion paper [24]. However, this particular conse-

quence (4.2) is a very simple case of the analysis in [24], and for self containment we sketch a proof of the

bound 5αn < α0 for all n ∈ (2Z)×. One first reduces the estimate to an estimate for integrals over bounded

domains, that is to

7

∫ 100

0

J2
n(r)J

4
0 (r) r dr <

∫ 100

0

J6
0 (r) r dr, (4.3)

by establishing bounds for the tails, that is

25

∫ ∞

100

J2
n(r)J

4
0 (r) r dr, 200

∫ ∞

100

J6
0 (r) r dr <

∫ 100

0

J6
0 (r) r dr .

To see these tail bounds, one estimates the left-hand sides using the well known bounds
∣∣∣∣∣J0(r) −

(
2

πr

)1/2

cos
(
r − π

4

)∣∣∣∣∣ ≤ r−3/2

and

|Jn(r)| ≤ r−1/3 ,

for all n ≥ 0. A sharper form of the latter inequality can be found in [22], while the former is reviewed in

[24]. The right-hand sides are then evaluated numerically. Here, we assume to have a sufficiently accurate

evaluation of Bessel functions at hand such as, for example, provided by the Mathematica package. Moreover,

Riemann sums with step size 1000−1 will give sufficient accuracy. To see the estimate (4.3) for the integrals

over bounded domains, in case n ≤ 200 one simply evaluates likewise numerically. To see the estimate for

n > 200, one estimates the left-hand side using |J0| ≤ 1 and the well-known estimate

Jn(r) ≤
rn

2nn!

for all n ≥ 0 and r > 0, reviewed in [24]. This completes the outline of the proof that 5αn < α0 for n ∈ (2Z)×.

As a final remark, note that a more refined analysis would allow to reduce the numerical component of the

proof.

5. Proof of Theorem 2: The sharp trilinear inequality

We shall prove Theorem 2 for h being a nonnegative and antipodally symmetric trigonometric polyno-

mial. The result for a general h ∈ L1(S1) nonnegative and antipodally symmetric follows by a standard

approximation argument, for example by convolving with the Féjer kernel, since the map h 7→ T (h, h, h) is

continuous on L1(S1). To pass the case of equality to the limit in the approximation argument, we observe

from the proof below that each nonzero even Fourier coefficient of h has a strictly negative contribution.

Let h be a nonnegative and antipodally symmetric trigonometric polynomial. Write

h = c+ g,

2However, it can be shown using integration by parts that 5α1 = α0.
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with g ⊥ 1 and c = 1
2π

∫
S1
h(ω) dσω . By the assumptions on h, we have that ĥ(−n) = ĥ(n) for every n ∈ Z,

and that ĥ(n) 6= 0 only if n ∈ 2Z. The analogous statements hold for g, and moreover ĝ(0) = 0. By linearity

and symmetry, one can immediately check that

T (h, h, h) = T (c, c, c) + 3T (c, c, g) + 3T (c, g, g) + T (g, g, g).

The strategy to prove Theorem 2 will be to analyze each of these summands separately. It turns out that

the linear term is zero, the bilinear term is nonpositive, and the trilinear term can be controlled in absolute

value by the bilinear term. Once we establish these facts, which are the subject of the remainder of this

section, the result follows.

5.1. Linear term. Let Rθω denote the rotation of ω by the angle θ counterclockwise around the origin.

Denote Rθg(ω) = g(Rθω). Then it is immediate from the definition that T (Rθf1, Rθf2, Rθf3) = T (f1, f2, f3)

for any functions f1, f2, f3 in L2(S1). For the linear term of our expansion this means that

T (c, c, f) = T (c, c, Rθf).

Hence f 7→ T (c, c, f) is a rotation invariant linear functional on L2(S1), and therefore it is a multiple of the

averaging operator. Since g has mean zero, we obtain T (c, c, g) = 0.

5.2. Bilinear term. We expand

|ω4 + ω5 + ω6|2 − 1 = 2 (1 + ω4 · ω5 + ω5 · ω6 + ω6 · ω4). (5.1)

Thus the integral (1.4) defining T (c, g, g) splits into a sum of four terms, the last three of which are identical

by symmetry considerations. We first consider

I :=

∫

(S1)6
g(ω2)g(ω3) dΣ~ω.

It follows by calculations as the ones leading to (3.4) that

I = gσ ∗ gσ ∗ σ ∗ σ ∗ σ ∗ σ(0)

= (2π)−2
∑

n∈(2Z)×

∑

m∈(2Z)×

ĝ(n)ĝ(m)

∫

R2

ênσ êmσ σ̂ σ̂ σ̂ σ̂ dx

= (2π)−2
∑

n∈(2Z)×

|ĝ(n)|2
∫

R2

ênσ ê−nσ σ̂ σ̂ σ̂ σ̂ dx

= (2π)5
∑

n∈(2Z)×

|ĝ(n)|2 αn,

(5.2)

where the sequence {αn} was defined in (3.5).

We now focus on the second integral,

II :=

∫

(S1)6
g(ω2)g(ω3)(ω4 · ω5) dΣ~ω.

Observe that, using the algebra of complex numbers, we can write

ω4 · ω5 = cos(arg(ω4)− arg(ω5)) = ℜ(ω4ω5) =
1

2

(
ω4ω5 + ω4ω5

)
=

1

2

(
e1(ω4)e−1(ω5) + e−1(ω4)e1(ω5)

)
.
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By symmetry we obtain

II =

∫

(S1)6
g(ω2)g(ω3) e1(ω4)e−1(ω5) dΣ~ω.

By a similar calculation as for the first integral we obtain

II = (2π)−2

∫

R2

ĝσ ĝσ ê1σ ê−1σ σ̂ σ̂ dx

= (2π)−2
∑

n∈(2Z)×

∑

m∈(2Z)×

ĝ(n)ĝ(m)

∫

R2

ênσ êmσ ê1σ ê−1σ σ̂ σ̂ dx

= −(2π)5
∑

n∈(2Z)×

|ĝ(n)|2 α̃n,

(5.3)

where the sequence {α̃n} was defined in (3.6). Finally we obtain

T (c, g, g) = 2c(I + 3II) = −2c(2π)5
∑

n∈(2Z)×

|ĝ(n)|2 βn,

with {βn} as defined in (3.7). Since the numbers βn are positive by Corollary 11, this establishes that the

bilinear term T (c, g, g) is nonpositive.

5.3. Trilinear term. Identity (5.1) allows us to again express T (g, g, g) as a sum of four integrals, the last

three of which are identical by symmetry considerations. We start by computing the first one similarly to

the previous calculations:

I =

∫

(S1)6
g(ω1)g(ω2)g(ω3) dΣ~ω = (2π)−2

∫

R2

ĝσ ĝσ ĝσ σ̂ σ̂ σ̂ dx

= (2π)−2
∑

n∈(2Z)×

∑

m∈(2Z)×

∑

k∈(2Z)×

ĝ(n)ĝ(m)ĝ(k)

∫

R2

ênσ êmσ êkσ σ̂ σ̂ σ̂ dx

= (2π)5
∑

n∈(2Z)×

∑

m∈(2Z)×

ĝ(n)ĝ(m)ĝ(n+m)γn,m,

with {γn,m} as defined in (3.9). For the second integral we obtain similarly

II =

∫

(S1)6
g(ω1)g(ω2)g(ω3)(ω4 · ω5) dΣ~ω

= −(2π)5
∑

n∈(2Z)×

∑

m∈(2Z)×

ĝ(n)ĝ(m)ĝ(n+m) γ̃n,m,

with {γ̃n,m} as defined in (3.10). Summarizing, we obtain

T (g, g, g) = 2(I + 3II) = −2(2π)5
∑

n∈(2Z)×

∑

m∈(2Z)×

ĝ(n)ĝ(m)ĝ(n+m) δn,m,

with {δn,m} as defined in (3.11).

5.4. Bilinear controls trilinear. We want to show that the trilinear term we just computed is controlled

in absolute value by the bilinear term −3T (c, g, g). Since h ≥ 0, the constant c is given by (recall that we

are using the normalization (3.3) for the Fourier series)

c =
‖h‖1
2π

= ĥ(0) = ‖ĥ‖∞.
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Observe that ĝ(n) = ĥ(n) for n 6= 0. Our task can thus be reformulated as the following statement:
∣∣∣∣∣∣

∑

n,m,n+m∈(2Z)×

ĥ(n)ĥ(m)ĥ(n+m)δn,m

∣∣∣∣∣∣
≤ 3‖ĥ‖∞

∑

n∈(2Z)×

|ĥ(n)|2βn.

Letting k = −m−n, we further simplify the problem by using the symmetries of the planar lattice
(
(2Z)×

)3∩
{n+m+ k = 0}. We have two possibilities: (i) two numbers positive and one negative or (ii) two numbers

negative and one positive. Since ĥ(n) = ĥ(−n) for every n ∈ Z, the two cases are actually the same, and

so we work with case (i) only. In this case, we consider the instances where k is negative. By the triangle

inequality, it suffices to show that
∣∣∣∣∣∣

∑

n,m∈(2N)×

ĥ(n)ĥ(m)ĥ(n+m)δn,m

∣∣∣∣∣∣
≤ ‖ĥ‖∞

∑

n∈(2N)×

|ĥ(n)|2βn. (5.4)

Recall that c0 = 3/8π2 and define

ηn,4 =
21c0
8

1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

and

δ̃n,4 = δn,4 − ηn,4.

For n ∈ {6, 8, . . .} and m ∈ {6, . . . , n}, define

δ̃n,m = δn,m.

We break the left-hand side of (5.4) into 6 sums. The first two are the terms for which min(n,m) = 2,

sorted into those for which n ≤ m and those for which n > m. The next two are the terms for which

min(n,m) = 4, in which we have isolated the main contribution ηn,4. The last two sums are the terms with

min(n,m) ≥ 4 with the residual contribution δ̃n,m.

(LHS) ≤

∣∣∣∣∣∣∣

∑

n∈2N:
2≤n

ĥ(n)ĥ(2)ĥ(n+ 2)δn,2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∑

n∈2N:
2<n

ĥ(n)ĥ(2)ĥ(n+ 2)δn,2

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

∑

n∈2N:
4≤n

ĥ(n)ĥ(4)ĥ(n+ 4)ηn,4

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∑

n∈2N:
4<n

ĥ(n)ĥ(4)ĥ(n+ 4)ηn,4

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

∑

n,m∈2N:
4≤m≤n

ĥ(n)ĥ(m)ĥ(n+m)δ̃n,m

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

∑

n,m∈2N:
4≤m<n

ĥ(n)ĥ(m)ĥ(n+m)δ̃n,m

∣∣∣∣∣∣∣∣

= S1 + S2 + S3 + S4 + S5 + S6.

5.4.1. Analysis of S1. We treat these terms in a special way so as to not have to estimate ĥ(2) by ‖ĥ‖∞ as

in S5 and S6. Using Corollary 13 and the Cauchy-Schwarz inequality, we proceed as follows:

S1 ≤ |ĥ(2)|(1 + ε2)
c0
2

∑

n∈(2N)×

|ĥ(n)|
n3/2

|ĥ(n+ 2)|
(n+ 2)3/2
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≤ |ĥ(2)|(1 + ε2)
c0
2


 ∑

n∈(2N)×

|ĥ(n)|2
n3




1/2



∑

n∈2N:
4≤n

|ĥ(n)|2
n3




1/2

.

Let |ĥ(2)| = x and
∑

n∈(2N)×
|ĥ(n)|2

n3 = S. We seek to maximize

x 7→
[
x2

(
S − x2

8

)]1/2
.

This maximum occurs when x2 = 4S. We also note that

S ≤ c2

8
ζ(3), (5.5)

where ζ(s) =
∑∞

n=1
1
ns is the Riemann zeta-function. At the point of maximum we then have that

[
x2

(
S − x2

8

)]1/2
=

[
2S2

]1/2 ≤
√
ζ(3)

2
c S1/2 < (0.55) c S1/2.

Hence

S1 < (1 + ε2) c0 (0.275) c S.

Using Corollary 11 we then arrive at

S1 <

[
(1 + ε2)(0.275)

(1− ε1)

]
c

∑

n∈(2N)×

|ĥ(n)|2 βn. (5.6)

5.4.2. Analysis of S2. We follow the same outline as above, and now we obtain a slight improvement due to

the restricted summation indices. In fact,

S2 ≤ |ĥ(2)|(1 + ε2)
c0
2

∑

n∈2N:
2<n

|ĥ(n)|
n3/2

|ĥ(n+ 2)|
(n+ 2)3/2

≤ |ĥ(2)|(1 + ε2)
c0
2

∑

n∈2N:
4≤n

|ĥ(n)|2
n3

.

Again we let |ĥ(2)| = x and
∑

n∈(2N)×
|ĥ(n)|2

n3 = S. We now seek to maximize

x 7→ x

(
S − x2

8

)
.

The maximum occurs when x =
√
8S/3. Using (5.5), at the point of maximum we have that

x

(
S − x2

8

)
=

√
8S

3

2S

3
≤ 2

√
ζ(3)

3
√
3

c S < (0.422)c S.

Using Corollary 11, this leads to

S2 <

[
(1 + ε2) (0.211)

(1− ε1)

]
c

∑

n∈(2N)×

|ĥ(n)|2 βn. (5.7)
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5.4.3. Analysis of S3. First notice that

S3 ≤ |ĥ(4)| 21c0
8

∑

n∈2N:
4≤n

|ĥ(n)|
n3/2

|ĥ(n+ 4)|
(n+ 4)3/2

n3/2(n+ 4)3/2

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
.

Note that the function

x 7→ x3/2(x+ 4)3/2

x(x+ 1)(x+ 2)(x+ 3)(x+ 4)

is decreasing on [4,∞). Therefore

S3 ≤ |ĥ(4)| 21c0
8

4
√
2

5× 6× 7

∑

n∈2N:
4≤n

|ĥ(n)|
n3/2

|ĥ(n+ 4)|
(n+ 4)3/2

.

Using the Cauchy-Schwarz inequality, we then obtain that

S3 ≤ |ĥ(4)|
√
2c0
20




∑

n∈2N:
4≤n

|ĥ(n)|2
n3




1/2 


∑

n∈2N:
6≤n

|ĥ(n)|2
n3




1/2

.

Now let |ĥ(4)| = x and
∑

n∈2N:
4≤n

|ĥ(n)|2

n3 = T . We want to maximize

x 7→
[
x2

(
T − x2

64

)]1/2
.

This maximum occurs when x2 = 32T . Note also that

T ≤ c2

8
(ζ(3) − 1). (5.8)

At the point of maximum, we then have that

[
x2

(
T − x2

64

)]1/2
= 4T ≤ 4

√
ζ(3)− 1√

8
c T 1/2.

Hence

S3 ≤ c0

√
ζ(3)− 1

10
c T < c0 (0.045) c T,

and from Corollary 11 we arrive at

S3 <
(0.045)

(1− ε1)
c
∑

n∈2N:
4≤n

|ĥ(n)|2 βn. (5.9)

5.4.4. Analysis of S4. We follow the same outline as in the analysis of S3 to get

S4 ≤ |ĥ(4)|
√
2c0
20

∑

n∈2N:
6≤n

|ĥ(n)|2
n3

.

Again we let |ĥ(4)| = x and
∑

n∈2N:
4≤n

|ĥ(n)|2

n3 = T . We now seek to maximize

x 7→ x

(
T − x2

64

)
.
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The maximum occurs when x =
√
64T/3. Using (5.8), at the point of maximum we have that

x

(
T − x2

64

)
=

√
64T

3

2T

3
≤ 8√

3

2

3

√
ζ(3)− 1√

8
c T.

Hence

S4 ≤ c0

√
2

20

8√
3

2

3

√
ζ(3)− 1√

8
c T < c0 (0.035) c T,

and from Corollary 11 we arrive at

S4 <
(0.035)

(1− ε1)
c
∑

n∈2N:
4≤n

|ĥ(n)|2 βn. (5.10)

5.4.5. Analysis of S5. From Corollary 11 and Corollary 13, for every positive even integersm and n satisfying

4 ≤ m ≤ n, we have that

|δ̃n,m|
β
1/2
n β

1/2
m

≤ γ3
c0
8n4

n3/2 m3/2

(1− ε1)c0
≤ γ3

8(1− ε1)n
. (5.11)

Using (5.11), it follows that

S5 ≤ ‖ĥ‖∞
∑

n,m∈2N:
4≤m≤n

|ĥ(n)|β1/2
n |ĥ(m)|β1/2

m

|δ̃n,m|
β
1/2
n β

1/2
m

≤ γ3
8(1− ε1)

‖ĥ‖∞
∑

n∈2N:
4≤n

|ĥ(n)|β1/2
n




∑
m∈2N:
4≤m≤n

|ĥ(m)|β1/2
m

n




≤ γ3
16(1− ε1)

‖ĥ‖∞
∑

n∈2N:
4≤n

|ĥ(n)|β1/2
n




∑
m∈2N:
4≤m≤n

|ĥ(m)|β1/2
m

(n/2)− 1


 .

This last term can be estimated using the Cauchy-Schwarz inequality yielding

S5 ≤ γ3
16(1− ε1)

‖ĥ‖∞




∑

n∈2N:
4≤n

|ĥ(n)|2βn




1/2 


∑

n∈2N:
4≤n




∑
m∈2N:
4≤m≤n

|ĥ(m)|β1/2
m

(n/2)− 1




2


1/2

. (5.12)

We now recall a sharp version of Hardy’s inequality for sequences.

Lemma 14. (Hardy’s inequality, cf. [17, p. 239]) Given any sequence {an} of nonnegative real numbers, we

have
∞∑

n=1

(
a1 + a2 + . . .+ an

n

)2

≤ 4

∞∑

n=1

a2n.

Using Hardy’s inequality in (5.12), with aj−1 = |ĥ(2j)|β1/2
2j , for 2 ≤ j ≤ n

2 , yields

S5 ≤ γ3
8(1− ε1)

‖ĥ‖∞
∑

n∈2N:
4≤n

|ĥ(n)|2βn. (5.13)

5.4.6. Analysis of S6. For S6 we have (at least) the same bound (5.13) as for S5. This is sufficient for our

purposes.
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5.4.7. Conclusion. Putting together the estimates (5.6), (5.7), (5.9), (5.10) and (5.13) (twice), and recalling

c = ‖ĥ‖∞, we conclude that

S1 + S2 + S3 + S4 + S5 + S6 <

[
0.08 + (1 + ε2)(0.486) +

γ3

4

(1− ε1)

]
‖ĥ‖∞

∑

n∈2N:
2≤n

|ĥ(n)|2βn.

The values of ε1 = 0.03, ε2 = 0.11 and γ3 = 1.3 provided by Corollaries 11 and 13 guarantee that
[
0.08 + (1 + ε2)(0.486) +

γ3

4

(1− ε1)

]
< 0.974 < 1.

This establishes (5.4) and concludes the proof of Theorem 2.

6. Proof of Theorem 6: A local estimate of Cauchy-Schwarz type

It is sufficient to show that there exists a universal ε0 > 0 such that for all g ∈ L2(S1), with g ⊥ 1 and

‖g‖L2(S1) = 1, we have Ψ(1+ εg) ≥ 0 for 0 ≤ ε < ε0. In order to simplify notation, let us write gi := g(ωi).

Note that

Ψ(1+ εg) = ε2
∫

(S1)6
(g1 + g2 + g3 − g4 − g5 − g6)

2
(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω +O(ε3),

where the constant implicit in the big O notation is uniform for g satisfying ‖g‖L2(S1) ≤ 1. Let us investigate

the second order term

S :=

∫

(S1)6
(g1 + g2 + g3 − g4 − g5 − g6)

2
(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω

= 6

∫

(S1)6
g21

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω + 12

∫

(S1)6
g1g2

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω

− 18

∫

(S1)6
g1g4

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω

= 12

∫

(S1)6
g21 dΣ~ω − 12

∫

(S1)6
g1g2 dΣ~ω + 36

∫

(S1)6
g21 (ω4 · ω5) dΣ~ω

+ 36

∫

(S1)6
g1g2 (ω4 · ω5) dΣ~ω − 72

∫

(S1)6
g1g4 (ω4 · ω5) dΣ~ω

=: 12A− 12B + 36C + 36D− 72E.

(6.1)

By (5.2) we have (note that we are not assuming here that g is even)

B = (2π)5
∑

n∈Z×

|ĝ(n)|2 (−1)n αn, (6.2)

and similarly to (5.2) we obtain

A = g2σ ∗ σ ∗ σ ∗ σ ∗ σ ∗ σ(0) = (2π)5α0 ĝ2(0) = (2π)5
∑

n∈Z×

|ĝ(n)|2 α0. (6.3)

By (5.3) it follows that

D = −(2π)5
∑

n∈Z×

|ĝ(n)|2 (−1)n α̃n, (6.4)

and similarly to (5.3) we obtain

C = (2π)−2

∫

R2

ĝ2σ σ̂ ê1σ ê−1σ σ̂ σ̂ dx = −(2π)5α̃0 ĝ2(0) = −(2π)5
∑

n∈Z×

|ĝ(n)|2 α̃0. (6.5)
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Finally, expanding the identity
∫

(S1)6
g1g4 |ω4 + ω5|2 dΣ~ω =

∫

(S1)6
g1g4 |ω1 + ω2 + ω3 + ω6|2 dΣ~ω,

and using the symmetries to simplify, we arrive at

E = −B

2
− 3D

2
. (6.6)

Combining (6.1), (6.2), (6.3), (6.4), (6.5) and (6.6) we obtain

S = 12(A+ 2B + 3C + 12D) = 12 (2π)5
∑

n∈Z×

|ĝ(n)|2 cn,

where

cn = α0 + 2(−1)nαn − 3α̃0 − 12(−1)nα̃n.

We must verify that cn > η > 0 for all n ∈ Z×, with η universal. Since cn = c−n, we can restrict our

attention to n > 0. The cases n = 1, 2, . . . , 6 can be verified by direct computation using the values on Table

1. For n ≥ 7, we use Theorem 10 to get

∣∣6α̃n − αn

∣∣ ≤ 3

4π2n
+

21

32π2(n− 1)n(n+ 1)
+

7

500n4
< 0.012

and hence

cn ≥
(
α0 − 3α̃0

)
− 2

∣∣6α̃n − αn

∣∣ > 0.134− 0.024 > 0.

This completes the proof of Theorem 6.

We note that Theorem 2 and Theorem 6 provide an alternative proof of Theorem 1.
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