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SOME RECENT PROGRESS ON SHARP FOURIER RESTRICTION

THEORY

DAMIANO FOSCHI AND DIOGO OLIVEIRA E SILVA

Abstract. The purpose of this note is to discuss several results that have been obtained
in the last decade in the context of sharp adjoint Fourier restriction/Strichartz inequalities.
Rather than aiming at full generality, we focus on several concrete examples of underlying
manifolds with large groups of symmetries, which sometimes allows for simple geometric
proofs. We mention several open problems along the way, and include an appendix on
integration on manifolds using delta calculus.

1. Introduction

Curvature causes the Fourier transform to decay. This observation links geometry to
analysis, and lies at the base of several topics of modern harmonic analysis. Given the
long history of the subject, it is perhaps surprising that the possibility of restricting the
Fourier transform to curved submanifolds of Euclidean space was not observed until the
late sixties. The Fourier transform of an integrable function is uniformly continuous, and
as such, can be restricted to any subset. On the other hand, the Fourier transform of a
square-integrable function is again square-integrable, and in view of Plancherel’s theorem
no better properties can be expected. In particular, restricting the Fourier transform of a
square-integrable function to a set of zero Lebesgue measure is meaningless. The question
is what happens for intermediate values of 1 < p < 2.

It is not hard to check that the Fourier transform of a radial function in Lp(Rd) defines a
continuous function away from the origin whenever 1 ≤ p < 2d

d+1 , see for instance [52]. The
corresponding problem for non-radial functions is considerably more delicate. To introduce
it, letM be a smooth compact hypersurface in Rd, endowed with a surface-carried measure
dµ = ψ dσ. Here σ denotes the surface measure of M, and the function ψ is smooth and
non-negative. Given 1 < p < 2, for which exponents q does the a priori inequality

(1.1)
(ˆ
M
|f̂(ξ)|q dµξ

) 1
q ≤ C‖f‖Lp(Rd)

hold? A complete answer for q = 2 is given by the celebrated Tomas–Stein inequality.
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2 DAMIANO FOSCHI AND DIOGO OLIVEIRA E SILVA

Theorem 1 ([51, 56]). Suppose M has non-zero Gaussian curvature at each point of the
support of µ. Then the restriction inequality (1.1) holds for q = 2 and 1 ≤ p ≤ 2d+2

d+3 .

The range of exponents is sharp, since no Lp → L2(µ) restriction can hold forM if p > 2d+2
d+3 .

This is shown via the famous Knapp example, which basically consists of testing the in-
equality dual to (1.1) against the characteristic function of a small cap on M. Moreover,
some degree of curvature is essential, as there can be no meaningful restriction to a hyper-
plane except in the trivial case when p = 1 and q =∞. An example to keep in mind is that
of the unit sphere Sd−1 = {ξ ∈ Rd : |ξ| = 1}, with constant positive Gaussian curvature.
However, nonvanishing Gaussian curvature is a strong assumption that can be replaced by
the nonvanishing of some principal curvatures, at the expense of decreasing the range of
admissible exponents p.

The question of what happens for values of q < 2 is the starting point for the famous
restriction conjecture. One is led by dimensional analysis and Knapp-type examples to
guess that the correct range for estimate (1.1) to hold is 1 ≤ p < 2d

d+1 and q ≤ (d−1
d+1)p′,

where p′ = p
p−1 denotes the dual exponent. This is depicted in Figure 1. Note that the

endpoints of this relation are the trivial case (p, q) = (1,∞), and p, q → 2d
d+1 .

1
p

1
q

1

0 1d+1
2d

d+3
2d+2

1
2

d+1
2d

Tomas–Stein

restriction
conjecture

Figure 1. Range of exponents for the restriction problem

Despite tremendous effort and very promising partial progress, the restriction conjecture
is only known to hold for d = 2. The restriction conjecture implies the Kakeya conjecture
and is implied by the Bochner–Riesz conjecture. Multilinear versions of the restriction and
Kakeya conjectures have been established by Bennett, Carbery and Tao [5], and played a
crucial role in the very recent work of Bourgain and Demeter [10] on `2 decoupling. For
more on the restriction problem, and its relation to other prominent problems in modern
harmonic analysis, we recommend the works [51, 59] and especially [55].
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Tomas–Stein type restriction estimates are very much related to Strichartz estimates for
linear partial differential equations of dispersion type. Let us illustrate this point in two
cases, that of solutions u = u(x, t) to the homogeneous Schrödinger equation

(1.2) i∂tu = ∆u,

and that of solutions to the homogeneous wave equation

(1.3) ∂2
t u = ∆u.

In both situations, (x, t) ∈ Rd+1. The following theorem was originally proved by Strichartz.

Theorem 2 ([54]). Let d ≥ 1. Then there exists a constant S > 0 such that

(1.4) ‖u‖
L2+ 4

d (Rd+1)
≤ S‖f‖L2(Rd),

whenever u is the solution of (1.2) with initial data u(x, 0) = f(x). If d ≥ 2, then there
exists a constant W > 0 such that

(1.5) ‖u‖
L
2+ 4

d−1 (Rd+1)
≤W‖(f, g)‖

Ḣ
1
2 (Rd)×Ḣ−

1
2 (Rd)

,

whenever u is the solution of (1.3) with initial data u(x, 0) = f(x) and ∂tu(x, 0) = g(x).

A hint that Theorems 1 and 2 might be related comes from the numerology of the expo-
nents: The Strichartz exponent 2 + 4

d coincides with the dual of the Tomas–Stein exponent
in dimension d + 1. It turns out that Strichartz estimates for the Schrödinger equation
correspond to restriction estimates on the paraboloid, whereas Strichartz estimates for the
wave equation correspond to restriction estimates on the cone. Note that the Gaussian cur-
vature of the cone is identically zero because one of its principal curvatures vanishes. This
in turn translates into estimate (1.5) holding for the Strichartz exponent in one lower di-
mension. Perhaps more significantly, neither of these manifolds is compact. However, they
exhibit some scale invariance properties that enable a reduction to the compact setting.
We shall return to this important point later in our discussion.

In this note, we are interested in extremizers and optimal constants for sharp variants
of restriction and Strichartz-type inequalities. Apart from their intrinsic mathematical
interest and elegance, such sharp inequalities often allow for various refinements of existing
inequalities. The following are natural questions, which in particular can be posed for
inequalities (1.1), (1.4) and (1.5):

(1) What is the value of the optimal constant?
(2) Do extremizers exist?

(a) If so, are they unique, possibly after applying the symmetries of the problem?
(b) If not, what is the mechanism responsible for this lack of compactness?

(3) How do extremizing sequences behave?
(4) What are some qualitative properties of extremizers?
(5) What are necessary and sufficient conditions for a function to be an extremizer?

Questions of this flavor have been asked in a variety of situations, and in the context of
classical inequalities from Euclidean harmonic analysis go back at least to the seminal work
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of Beckner [1] for the Hausdorff–Young inequality, and Lieb [36] for the Hardy–Littlewood–
Sobolev inequality. In comparison, sharp Fourier restriction inequalities have a relatively
short history, with the first works on the subject going back to Kunze [35], Foschi [23] and
Hundertmark–Zharnitsky [30].

Works addressing the existence of extremizers for inequalities of Fourier restriction type
tend to be a tour de force in classical analysis, using a variety of sophisticated techniques:
bilinear estimates and refined estimates in Xs,b-type spaces [16, 37, 43, 45], concentration
compactness arguments tailored to the specific problem in question [26, 32, 33, 35, 47,
48, 49], variants and generalizations of the Brézis–Lieb lemma from functional analysis
[21, 22, 26], Fourier integral operators [16, 26], symmetrization techniques [16], variational,
perturbative and spectral analysis [16, 19, 26, 37], regularity theory for equations with
critical scaling and additive combinatorics [17], among others. In contrast, a full charac-
terization of extremizers has been given in a few selected cases using much more elementary
methods. This is due to the presence of a large underlying group of symmetries which al-
lows for several simplifications that ultimately reduce the problem to a simple geometric
observation. We will try to illustrate this point in the upcoming sections.

Before doing so, let us briefly comment on some approaches that have been developed in
the last decades in order to establish Tomas–Stein type Fourier restriction inequalities. For
the sake of brevity, we specialize our discussion to inequalities (1.1) and (1.4), but a more

general setting should be kept in mind. If T denotes the restriction operator f 7→ f̂ |M,
then its adjoint T ∗, usually called the extension operator, is given by g 7→ ĝµ, where the
Fourier transform of the measure gµ is given by

(1.6) ĝµ(x) =

ˆ
M
g(ω)e−ix·ω dµω. (x ∈ Rd)

The Tomas–Stein inequality at the endpoint (p, q) = (2d+2
d+3 , 2) is equivalent to the extension

estimate

(1.7) ‖ĝµ‖
L

2d+2
d−1 (Rd)

≤ C‖g‖L2(M,µ).

If g ∈ L2(M, µ), then the composition T ∗T (g) is well-defined, and a computation shows
that

T ∗T : g 7→ g ∗ µ̂.
Since the operator norms satisfy ‖T‖2 = ‖T ∗‖2 = ‖T ∗T‖, the study of these three oper-
ators is equivalent, even if the goal is to obtain sharp inequalities and determine optimal
constants. So we focus on the operator T ∗T . Boundedness of T ∗T (g) is only ensured if the
Fourier transform µ̂(x) exhibits some sort of decay as |x| → ∞. This in turn is a conse-
quence of the principle of stationary phase, see [51, 59], since the nonvanishing curvature of
M translates into a nondegenerate Hessian for the phase function of the oscillatory integral
given by (1.6) with g ≡ 1. This is the starting point for the original argument of Tomas
[56], which was then extended to the endpoint 2d+2

d−1 by embedding T ∗T into an analytic
family of operators and invoking Stein’s complex interpolation theorem. It is hard not to
notice the parallel between the operator T ∗T and the averaging operator f 7→ f ∗µ, whose
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Lp improving properties can be established via the same proof on the Fourier side, see for
instance [51, pp. 370-371].

A second method to prove restriction estimates goes back to the work of Ginibre and
Velo [27]. It consists of introducing a time parameter and treating the extension operator
as an evolution operator. Two key ingredients for this approach are the Hausdorff–Young
inequality and fractional integration in the form of the Hardy–Littlewood–Sobolev inequal-
ity.1 These methods are more amenable to the needs of the partial differential equations
community, and for instance allow to treat the case of mixed norm spaces.

In the special cases when the dual exponent p′ is an even integer, one can devise yet
another proof which comes from the world of bilinear estimates, see for instance [9, 25, 34].
One simply rewrites the left-hand side of inequality (1.7) as an L2 norm, and appeals
to Plancherel in order to reduce the problem to a multilinear convolution estimate. For
instance, if d = 3, then p′ = 2·3+2

3−1 = 4, and

‖ĝµ‖2L4(R3) = ‖ĝµ ĝµ‖L2(R3) = ‖gµ ∗ gµ‖L2(R3).

Similarly, if d = 2, then p′ = 2·2+2
2−1 = 6, and

‖ĝµ‖3L6(R2) = ‖gµ ∗ gµ ∗ gµ‖L2(R2).

In the bilinear case, the pointwise inequality

|gµ ∗ gµ| ≤ |g|µ ∗ |g|µ
then reveals that one can restrict attention to nonnegative functions. This observation can
greatly simplify matters, as it reduces an oscillatory problem to a question of geometric
integration over a specific manifold. Furthermore, an application of the Cauchy–Schwarz
inequality with respect to an appropriate measure implies the pointwise inequality

|gµ ∗ gµ|2 ≤ (|g|2µ ∗ |g|2µ)(µ ∗ µ).

A good understanding of the convolution measure µ∗µ becomes a priority. Given integrable
functions g, h ∈ L1(M, µ), the convolution gµ ∗ hµ is a finite measure defined on the Borel
subsets E ⊂ Rd by

(gµ ∗ hµ)(E) =

ˆ
M×M

χE(η + ζ)g(η)h(ζ) dµη dµζ .

It is clear that this measure is supported on the Minkowski sumM+M. In most situations
of interest when some degree of curvature is present, one can check that gµ∗hµ is absolutely
continuous with respect to Lebesgue measure on Rd. In such cases, the measure gµ ∗ hµ
can be identified with its Radon–Nikodym derivative with respect to Lebesgue measure,
and for almost every ξ ∈ Rd we have that

(1.8) (gµ ∗ hµ)(ξ) =

ˆ
M×M

δ
(
ξ − η − ζ

)
g(η)h(ζ) dµη dµζ .

1Interestingly, the full restriction conjecture on R2 can be proved with a combination of Hausdorff–Young
and Hardy–Littlewood–Sobolev, see for instance [51, pp. 412-414].
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Here δ
(
·
)

denotes the d-dimensional Dirac delta distribution. As we shall exemplify in the
course of the paper, expression (1.8) turns out to be very useful for computational purposes.

Overview. As we hope to have made apparent already, this note is meant as a short survey
of a restricted part of the topic of sharp Strichartz and Fourier extension inequalities. In
§2 we deal with noncompact surfaces, and discuss the cases of the paraboloid and the cone,
where a full characterization of extremizers is known, and the cases of the hyperboloid
and a quartic perturbation of the paraboloid, where extremizers fail to exist. Most of the
material in this section is contained in the works [12, 23, 39, 43, 44]. In §3 we discuss the
case of spheres. A full characterization of extremizers at the endpoint is only known in the
case of S2. We mention some recent partial progress in the case of the circle S1, and ob-
serve how the methods in principle allow to refine some related inequalities. In particular,
we obtain a new sharp extension inequality on S1 in the mixed norm space L6

radL
2
ang(R2).

Most of the material in §3 is contained in the works [13, 14, 18, 24, 40]. We leave some
final remarks to §4, where we hint at a possible unifying picture for the results that have
been discussed. Finally, we include an Appendix with a brief introduction to integration
on manifolds using delta calculus.

Remarks and further references. The style of this note is admittedly informal. In
particular, some objects will not be rigorously defined, and most results will not be precisely
formulated. None of the material is new, with the exception of the results in §3.2 and a few
observations that we have not been able to find in the literature. The subject is becoming
more popular, as shown by the increasing number of works that appeared in the last five
years. We have attempted to give a rather complete set of references, which includes several
interesting works [3, 4, 6, 7, 8, 11, 29, 31, 38, 41, 42, 46] that will not be discussed here.
Given its young age, there are plenty of open problems in the area. Our contribution is to
provide some more.

2. Noncompact surfaces

2.1. Paraboloids. Given d ≥ 1, let us consider the d-dimensional paraboloid

Pd = {(ξ, τ) ∈ Rd+1 : τ = |ξ|2},

equipped with projection measure

µd(ξ, τ) = δ
(
τ − |ξ|2

)
dξ dτ.

The validity of an L2(µd) → L2+ 4
d extension estimate follows from Strichartz inequal-

ity (1.4) for the Schrödinger equation as discussed before. Extremizers for this inequality
are known to exist in all dimensions [47], and to be Gaussians in low dimensions [2, 23, 30].
Extremizers are conjectured to be Gaussians in all dimensions [30], see also [15]. Let us
specialize to the case d = 2 and follow mostly [23]. In view of identity (1.8), which itself is
a consequence of formula (A.1) from the Appendix, the convolution of projection measure
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on the two-dimensional paraboloid P2 is given by

(µ2 ∗ µ2)(ξ, τ) =

ˆ
R2×R2

δ

(
ξ − η − ζ

τ − |η|2 − |ζ|2
)

dη dζ =

ˆ
R2

δ
(
τ − |η|2 − |ξ − η|2

)
dη.

Changing variables and computing in polar coordinates according to (A.5), we have that

(µ2 ∗ µ2)(ξ, τ) =

ˆ
R2

δ
(
τ − |ξ|

2

2 − 2|η|2
)

dη =
π

2
χ
(
τ ≥ |ξ|

2

2

)
.

We arrive at the crucial observation that the convolution measure µ2 ∗µ2 defines a function
which is not only uniformly bounded, but also constant in the interior of its support
{2τ ≥ |ξ|2}. See [23, Lemma 3.2] for an alternative proof that uses the invariance of
µ2 ∗ µ2 under Galilean transformations and parabolic dilations. A successive application
of Cauchy–Schwarz and Hölder’s inequality finishes the argument. Indeed, the pointwise
bound

(2.1) |(fµ2 ∗ fµ2)(ξ, τ)|2 ≤ (µ2 ∗ µ2)(ξ, τ)(|f |2µ2 ∗ |f |2µ2)(ξ, τ)

follows from an application of the Cauchy–Schwarz inequality with respect to the measure

δ

(
ξ − η − ζ

τ − |η|2 − |ζ|2
)

dη dζ.

Integrating inequality (2.1) over R2+1, an application of Hölder’s inequality then reveals

(2.2) ‖fµ2 ∗ fµ2‖2L2(R3) ≤ ‖µ2 ∗ µ2‖L∞(R3)‖f‖4L2(R2).

It is possible to turn both inequalities simultaneously into an equality. The conditions for
equality in (2.1) translate into a functional equation

(2.3) f(η)f(ζ) = F (η + ζ, |η|2 + |ζ|2)

which should hold for some complex-valued function F defined on the support of the
convolution µ2∗µ2, and almost every point (η, ζ). An example of a solution to (2.3) is given
by the Gaussian function f(η) = exp(−|η|2) and the corresponding F (ξ, τ) = exp(−τ). All
other solutions are obtained from this one by applying a symmetry of the Schrödinger
equation, see [23, Proposition 7.15]. That they turn inequality (2.2) into an equality
follows from the fact that the convolution µ2 ∗ µ2 is constant inside its support.

The one-dimensional case L2(µ1) → L6 admits a similar treatment. The threefold con-
volution µ1 ∗µ1 ∗µ1 is given by a constant function in the interior of its support {3τ ≥ ξ2},
and the corresponding functional equation can be solved by similar methods. Gaussians
are again seen to be the unique extremizers.

Alternative approaches are available: Hundertmark–Zharnitski [30] based their analysis

on a novel representation of the Strichartz integral ‖f̂σ‖4L4 , and Bennett et al. [2] identified
a monotonicity property of such integrals under a certain quadratic heat-flow.
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2.2. Cones. Given d ≥ 2, consider the (one-sheeted) cone

Γd = {(ξ, τ) ∈ Rd+1 : τ = |ξ| > 0},

equipped with its Lorentz invariant measure

νd(ξ, τ) = δ
(
τ − |ξ|

) dξ dτ

|ξ|
= 2 δ

(
τ2 − |ξ|2

)
χ(τ > 0) dξ dτ .

The second identity is a consequence of formula (A.4) from the Appendix. The validity

of an L2(νd)→ L2+ 4
d−1 extension estimate follows from Strichartz inequality (1.5) for the

wave equation as discussed before. Extremizers for the cone are known to exist in all
dimensions [45], and to be exponentials in low dimensions [12, 23]. Let us specialize to the
case d = 3. The convolution of the Lorentz invariant measure on the three-dimensional
cone Γ3 is given by

(ν3 ∗ ν3)(ξ, τ) =

ˆ
R3

δ
(
τ − |η| − |ξ − η|

)
|η||ξ − η|

dη.

Given ξ ∈ R3, we write a generic vector η ∈ R3 in spherical coordinates, so that dη =
ρ2 sin θ dρdθ dϕ, where ρ = |η| ≥ 0, θ ∈ [0, π] is the angle between ξ and η, and ϕ ∈ [0, 2π] is
an angular variable. Setting σ = |ξ−η|, the Jacobian of the change of variables η  (ρ, σ, ϕ)
into bipolar coordinates, see Figure 2 below, is given by

dη =
ρσ

|ξ|
dρdσ dϕ.

ρ
σ

0 ξ

η

Figure 2. Bipolar coordinates
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Letting a = ρ−σ and b = ρ+σ, we invoke the change of variables formula (A.5) to further
compute

(ν3 ∗ ν3)(ξ, τ) = 2π

ˆ
|ρ−σ|≤|ξ|
ρ+σ≥|ξ|

δ
(
τ − ρ− σ

)
ρσ

ρσ

|ξ|
dρdσ =

=
π

|ξ|

ˆ
|a|≤|ξ|
b≥|ξ|

δ
(
τ − b

)
da db = 2πχ(τ ≥ |ξ|).

This again defines a constant function inside its support, and a combination of Cauchy–
Schwarz and Hölder as before establishes the sharp inequality. The characterization of
extremizers follows from the analysis of the functional equation

(2.4) f(η)f(ζ) = F (η + ζ, |η|+ |ζ|),
which yields as a particular solution the exponential function f(η) = exp(−|η|) and the
corresponding F (ξ, τ) = exp(−τ). All other solutions are obtained from this one by apply-
ing a symmetry of the wave equation, see [23, Proposition 7.23], and the lower dimension
case L2(ν2)→ L6 admits a similar treatment.

2.3. Hyperboloids. We now switch to the (one-sheeted) hyperboloid

Hd = {(ξ, τ) ∈ Rd+1 : τ =
√

1 + |ξ|2},
equipped with the Lorentz invariant measure

λd(ξ, τ) = δ
(
τ −

√
1 + |ξ|2

) dξ dτ√
1 + |ξ|2

= 2 δ
(
τ2 − |ξ|2 − 1

)
χ(τ > 0) dξ dτ .

As established in [54], an L2(λd)→ Lp
′

extension estimate holds provided

2 +
4

d
≤ p′ ≤ 2 +

4

d− 1
, if d > 1,(2.5)

6 ≤ p′ <∞, if d = 1.

Note that the lower and upper bounds in the exponent range (2.5) correspond to the cases
of the paraboloid and the cone, respectively. We focus on the case d = 2 and p′ = 4,
and take advantage of Lorentz symmetries to compute the convolution λ2 ∗ λ2. Along the
vertical axis of the hyperboloid H2,

(λ2 ∗ λ2)(0, τ) =

ˆ
R2

δ
(
τ − 2

√
1 + |η|2

) dη

1 + |η|2
=

2π

τ
χ(τ ≥ 2).

Lorentz invariance forces the convolution λ2 ∗ λ2 to be constant along the level sets of the
function τ2 − |ξ|2. As a consequence,

(2.6) (λ2 ∗ λ2)(ξ, τ) =
2π√

τ2 − |ξ|2
χ(τ ≥

√
4 + |ξ|2).

Contrary to the previous cases, this no longer defines a constant function inside its support.
Since it is uniformly bounded (by π), the argument can still be salvaged to yield a sharp
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extension inequality. Extremizers for this inequality, however, do not exist. We shall
observe a similar phenomenon in the case of perturbed paraboloids, considered in the next
subsection, and postpone a more detailed discussion until then.

2.4. Perturbations. Let us start with a brief discussion of a specific instance of a compar-
ison principle from [39] that proved useful in establishing sharp inequalities for perturbed
paraboloids. Let (P2, µ2) denote the two-dimensional paraboloid considered in §2.1, and
let µ̃2 denote the projection measures on the surface

{(ξ, τ) ∈ R2+1 : τ = |ξ|2 + |ξ|4}.
Then the pointwise inequality

(2.7) (µ̃2 ∗ µ̃2)
(
ξ,
|ξ|2

2
+
|ξ|4

8
+ τ
)
≤ (µ2 ∗ µ2)

(
ξ,
|ξ|2

2
+ τ
)

holds for every τ > 0 and ξ ∈ Rd, and is strict at almost every point of the support of
the measure µ̃2 ∗ µ̃2. The feature of the function ξ 7→ |ξ|4 that makes this possible is
convexity. Any nonnegative, continuously differentiable, strictly convex function would do,
see [39, Theorem 1.3] for a precise version of this comparison principle which holds in all
dimensions. A sharp L2(µ̃2)→ L4 extension inequality can be obtained by concatenating
Cauchy–Schwarz and Hölder as before, and extremizers do not exist because of the strict
inequality in (2.7). Heuristically, extremizing sequences are forced to place their mass in
arbitrarily small neighborhoods of the region where the convolution µ̃2∗µ̃2 attains its global
maximum, for otherwise they would not come close to attaining the sharp constant. The
analysis of the cases of equality in (2.7) reveals that this region has zero Lebesgue measure,
and this forces any extremizing sequence to concentrate.

3. Compact surfaces

3.1. Spheres. Consider the endpoint Tomas–Stein extension inequality on the sphere

(3.1)
(ˆ

Rd

|f̂σ(x)|p′ dx
) 1

p′ ≤ C‖f‖L2(Sd−1,σ),

where σ = σd−1 denotes surface measure on Sd−1 and p′ = 2d+2
d−1 . Extremizers for inequality

(3.1) were first shown to exist when d = 3 in [16]. The precise form of nonnegative
extremizers was later determined in [24], and they turn out to be constant functions.
See also [26] for a conditional existence result in higher dimensions. It seems natural to
conjecture that extremizers should be constants in all dimensions. Spheres are antipodally
symmetric compact manifolds, and this brings in some additional difficulties which can
already be observed at the level of convolution measures. Indeed, formula (A.4) from the
Appendix implies

σd−1(ξ) = δ
(
1− |ξ|

)
dξ = 2 δ

(
1− |ξ|2

)
dξ.

Invoking (A.3), and then (A.4) once again, we have

(σd−1 ∗ σd−1)(ξ) = 2

ˆ
Sd−1

δ
(
1− |ξ − ω|2

)
dσω =

2

|ξ|

ˆ
Sd−1

δ
(

2 ξ
|ξ| · ω − |ξ|

)
dσω.
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Computing in polar coordinates according to (A.5), one concludes

(3.2) (σd−1 ∗ σd−1)(ξ) =
Vd−2

|ξ|

(
1− |ξ|

2

4

) d−3
2

+
,

where Vd−2 denotes the surface measure of Sd−2. When d = 3, and consequently p′ = 4,
the inequality in question is equivalent to a 4-linear estimate. Moreover, the last factor in
(3.2) simplifies and one is left with

(3.3) (σ2 ∗ σ2)(ξ) =
2π

|ξ|
χ(|ξ| ≤ 2).

Expression (3.3) blows up at the origin ξ = 0, which prevents a straightforward adaptation
of the methods from the previous section. In particular, the interaction between antipodal
points causes difficulties that prevented the local analysis from [16] to identify the global
extremizers of the problem. The work [24] resolves this issue in a simple manner, using the
following geometric feature of the sphere: If the sum of three unit vectors ω1, ω2, ω3 ∈ Sd
is again a unit vector, then necessarily

(3.4) |ω1 + ω2|2 + |ω2 + ω3|2 + |ω3 + ω1|2 = 4.

To see why this is true, one simply squares the assumption |ω1 +ω2 +ω3| = 1 and expands
the left-hand side of (3.4). An application of the Cauchy–Schwarz inequality together with
identity (3.4) reduces the analysis to antipodally symmetric functions, and at the same
time neutralizes the singularity of the convolution measure at the origin. This reduces the
4-linear problem on f to a bilinear problem on its square f2. More precisely, one is left
with establishing a monotonicity property for the quadratic form

H(g) =

ˆ
(S2)2

g(ω)g(ν)|ω − ν| dσω dσν ,

where g = f2 is now assumed to be merely integrable. This in turn is accomplished
via spectral analysis. If c denotes the mean value of g over the sphere and 1 denotes the
constant function equal to 1, one wants to show thatH(g) ≤ H(c1). The crucial observation
is that the quadratic form H is diagonal in a suitable basis. In fact, expanding g =

∑
k≥0 Yk

in spherical harmonics, we have

(3.5) H(g) = 2π
∑
k≥0

Λk‖Yk‖2L2(S2) ≤ 2πΛ0‖Y0‖2L2(S2) = H(c1),

where the eigenvalues Λk can be computed via the Funk–Hecke formula [20, p. 247]. It
turns out that Λk < 0 when k ≥ 1, we refer the reader to [24] for the full details. This
approach was extended in [13] to establish sharp L2(σd−1) → L4 extension estimates
on Sd−1 for d = 4, 5, 6, 7. Table 1 indicates the signs of the corresponding coefficients
Λk = Λk(Sd−1).

Note that the sum in (3.5) ranges over even values of k only since the function f , and
therefore g = f2, is assumed to be antipodally symmetric. In particular, the sign of the
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Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 . . .
d = 3 + − − − − − − . . .
d = 4 + 0 − 0 − 0 − . . .

d = 5, 6, 7 + + − − − − − . . .
d ≥ 8 + + + ∗ ∗ ∗ ∗ . . .

Table 1. Signs of the coefficients Λk(Sd−1)

coefficient Λ1 is of no importance to the analysis. However, one starts to observe that
Λ2(Sd−1) > 0 if d ≥ 8, and this is the reason for the failure of this method of proof.
Threefold convolution measures can also be computed via delta calculus, at the expense of
possibly more complicated expressions. For instance, the convolution σ2 ∗σ2 ∗σ2 is a radial
function supported on the ball of radius 3 centered at the origin, given by the expression

(σ2 ∗ σ2 ∗ σ2)(ξ) =

{
8π2, if 0 ≤ |ξ| ≤ 1,

4π2
(
− 1 + 3

|ξ|

)
, if 1 ≤ |ξ| ≤ 3.

Notice that this defines a bounded, continuous function which is constant inside the unit
ball, and decreases to zero on the annulus {1 ≤ |ξ| ≤ 3}. The lowest dimensional endpoint
case (d, p) = (2, 6) holds some hidden surprises. First of all, the estimate translates into an
inequality involving a 6-linear form. The convolution σ1 ∗ σ1 ∗ σ1 defines a radial function
given by a complicated integral expression, see [14, Lemma 8], which is better illustrated
in Figure 3 below.

1 2 3 4

10

20

30

40

Figure 3. Plot of the function r 7→ (σ1 ∗ σ1 ∗ σ1)(r).

A difficulty is that the convolution σ1 ∗ σ1 ∗ σ1 now blows up along a whole circle, and
not just at one point. One would still like to reduce matters to a two-step analysis, and a
possible program is as follows. One first reduces the 6-linear analysis to a trilinear analysis
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on squares, and then performs a spectral analysis of the trilinear form

(3.6) T (h1, h2, h3) =

ˆ
(S1)6

h1(ω1)h2(ω2)h3(ω3)
(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω,

where the measure Σ is given by

(3.7) dΣ~ω = δ
(
ω1 + ω2 + ω3 + ω4 + ω5 + ω6

)
dσω1 dσω2 dσω3 dσω4 dσω5 dσω6 .

This is later specialized to the case h1 = h2 = h3 = f2. Let us formulate these steps in a
more precise manner:

Step 1. Let f ∈ L2(S1) be nonnegative and antipodally symmetric. Then:

ˆ
(S1)6

f(ω1)f(ω2)f(ω3)f(ω4)f(ω5)f(ω6)
(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω

≤
ˆ

(S1)6
f(ω1)2f(ω2)2f(ω3)2

(
|ω4 + ω5 + ω6|2 − 1

)
dΣ~ω.

Step 2. Let h ∈ L1(S1) be a nonnegative and antipodally symmetric function. Let c denote
the mean value of h over S1. Then T (h, h, h) ≤ c3T (1,1,1), with equality if and only if h
is constant.

Step 1 is an open problem, posed as a conjecture in [14]. Step 2 is the subject of papers [14,
40]. In short, one decomposes h = c+ g where g has mean zero, and analyzes each of the
summands in

T (h, h, h) = T (c, c, c) + 3T (c, c, g) + 3T (c, g, g) + T (g, g, g)

separately. The linear term in g vanishes for symmetry considerations, the bilinear term is
nonpositive and the trilinear term can be controlled in absolute value by the bilinear term.
The proof of these statements relies on expanding the integrand in (3.6) in Fourier basis,
and appealing to delicate estimates for integrals of sixfold products of Bessel functions.
We refer the reader to the original papers for details, and proceed to discuss a related
inequality which can be put in sharp form by invoking more elementary estimates for
integrals of Bessel functions.

3.2. Estimates in mixed norm spaces. The connection between Bessel functions and
spherical harmonics is easily seen via the formula

(3.8) Ŷkσ(x) = ikJ d
2
−1+k(|x|)|x|

1− d
2Yk

( x
|x|

)
, (x ∈ Rd)

which follows from an application of the Funk–Hecke formula together with Rodrigues
formula for Gegenbauer polynomials, see [53, 58]. Spherical harmonic expansions played an
important role in the recent work of Córdoba [18] on certain Fourier extension inequalities
in mixed norm spaces. The following inequality, which had already appeared in the Ph.D.



14 DAMIANO FOSCHI AND DIOGO OLIVEIRA E SILVA

thesis of Vega [57], was reproved in [18] using different methods: For d ≥ 2 and q > 2d
d−1 ,

there exists Cd,q <∞ such that

(3.9) ‖f̂σ‖Lq
radL

2
ang(Rd) ≤ Cd,q‖f‖L2(Sd−1).

Here the norm in LqradL
2
ang(Rd) is given by the integral(ˆ ∞

0

(ˆ
Sd−1

|f̂σ(rω)|2 dσω

) q
2
rd−1 dr

) 1
q
.

Note that inequality (3.9) follows in a simple way from Hölder’s inequality for those expo-
nents q for which the (adjoint) Tomas–Stein inequality is known to hold. We now indicate
a possible path to obtain the sharp form of a number of instances of inequality (3.9).
Given f ∈ L2(Sd−1), we expand it in normalized spherical harmonics

f =
∑
k≥0

akYk,

with each ‖Yk‖L2 = 1. Appealing to formula (3.8) and to orthogonality of the {Yk}, we
see that ˆ

Sd−1

|f̂σ(rω)|2 dσω =
∑
k≥0

|ak|2|J d
2
−1+k(r)|

2r2−d.

The q-th power of the left-hand side of inequality (3.9) can thus be rewritten as

(3.10)

ˆ ∞
0

(∑
k≥0

|ak|2|J d
2
−1+k(r)|

2
) q

2
r(1− d

2
)qrd−1 dr,

which is the starting point for the analysis in [18]. Whenever the exponent q is an even inte-
ger, we can take an alternative route and in principle obtain a sharp inequality. Let us illus-
trate this in the case (d, q) = (2, 6), which corresponds to a weaker form of the L2(σ1)→ L6

adjoint Tomas–Stein inequality discussed in the previous subsection. In this case, the in-
tegral (3.10) can be rewritten as∑

k,`,m≥0

|ak|2|a`|2|am|2I(k, `,m),

where the integrals I(k, `,m) are defined as

I(k, `,m) =

ˆ ∞
0

J2
k (r)J2

` (r)J2
m(r)r dr.

These integrals obey the following monotonicity property:

Proposition 3. Let k, `,m be nonnegative integers. Then:

I(k, `,m) ≤ I(0, 0, 0),

and equality holds if and only if k = ` = m = 0.
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As a consequence, we obtain a sharp form of this particular instance of inequality (3.9):

‖f̂σ‖6L6
radL

2
ang(R2) =

∑
k,`,m≥0

|ak|2|a`|2|am|2I(k, `,m)

≤ I(0, 0, 0)
∑

k,`,m≥0

|ak|2|a`|2|am|2 = I(0, 0, 0)‖f‖6L2(S1),

with constants being the unique extremizers.

Proof of Proposition 3. Reasoning as in [14, §3], we see that

I(k, `,m) =

ˆ
R2

êkσêkσê`σê`σêmσêmσ dx =

ˆ
(S1)6

(ω1ω2)k(ω3ω4)`(ω5ω6)m dΣ~ω,

where the function en : S1 → C is defined via en(ω) = ωn and the measure Σ is given
by (3.7). The triangle inequality immediately implies

I(k, `,m) ≤ I(0, 0, 0),

with equality if and only
(ω1ω2)k(ω3ω4)`(ω5ω6)m = 1,

for every ω1, . . . , ω6 ∈ S1 such that
∑6

j=1 ωj = 0. One easily checks that this im-
plies k = ` = m = 0, and the proof is complete. �

4. Towards a unifying picture

Table 2 summarizes some of our discussion from the previous sections concerning the
sharp form of a number of Fourier extension inequalities which can be recast as bilinear
estimates for the appropriate convolution measures.

Manifold Fourier extension inequality Extremizers
Paraboloid L2(P2, µ2)→ L4(R3) Gaussians

Cone L2(Γ3, ν3)→ L4(R4) Exponentials
Hyperboloid L2(H2, λ2)→ L4(R3) Do not exist

Sphere L2(S2, σ2)→ L4(R3) Constants
Table 2.

The two-dimensional surfaces in question (paraboloid, hyperboloid and sphere) can all be
obtained as intersections of the three-dimensional cone with appropriately chosen hyper-
planes. Figure 4 below illustrates this point. There, the ambient space R4 is endowed
with coordinates (ξ, τ) ∈ R3+1, where ξ = (ξ1, ξ

′) ∈ R1+2. One cannot help noticing
that the restriction of the exponential function exp(−|ξ|), which is an extremizer for the
cone, to the different conic sections coincides with the corresponding extremizers given
by Table 2. It is a constant function when τ = 1 (sphere, red in Fig. 4) and a Gauss-
ian when τ = −ξ1 + 2 (paraboloid, blue in Fig. 4). Furthermore, it yields the function
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exp(−
√

1 + |ξ′|2) when τ =
√

1 + |ξ′|2 (hyperboloid, yellow in Fig. 4). Extemizers for
the problem on the hyperboloid do not exist, but it was shown in [44, Lemma 5.4] that

the function fa(ξ
′) = exp(−a

√
1 + |ξ′|2) produces an extremizing sequence {fa/‖fa‖L2} as

a→∞ for the L2(λ2)→ L4 extension inequality on the hyperboloid.

τ

ξ′

ξ1
q10p

Cone: τ = |ξ|

Hyperboloid: ξ1 = 1, τ2 − |ξ′|2 = 1

Hyperboloid: |ξ − q| − |ξ| = |q| − 2
Paraboloid: 4ξ1 = 4− |ξ′|2
Ellipsoid: |ξ − p|+ |ξ| = |p|+ 2

Sphere: |ξ| = 1

Figure 4. Conic sections

Appendix A. Integration on manifolds using delta calculus

Let M be a smooth k-dimensional submanifold of Rd, with 0 < k < d. On M one can
define a canonical measure σ = σM which is naturally induced by the Euclidean metric
structure of Rd. Integration on the manifold M can be rigorously defined by means of
differential forms [50], but the actual computation of integrals of the formˆ

M
ϕ(x) dσ
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often appears to be a challenging task when M is a nontrivial manifold. The theory of
distributions comes into help since these integrals can be viewed as pull-backs of Dirac
delta distributions [28].

Suppose thatM is (locally) implicitly described as the zero level set of a C1 function f
defined on an open subset Ω of Rd and taking values in Rd−k,

M =Mf := {x ∈ Ω: f(x) = 0} ,

and assume that the Jacobian matrix Df(x) of the map f has maximal rank at every point
x ∈ Ω. Consider the usual Dirac delta distribution δ

(
·
)

on Rd−k defined by

〈 δ
(
·
)
, ϕ〉 =

ˆ
Rd−k

δ
(
y
)
ϕ(y) dy = ϕ(0),

for any smooth test functions ϕ. We would like to make sense of the composition δ
(
f(x)

)
as a distribution on Ω. There are several ways to define such a composition. One possibility
is to approximate the delta distribution with a family of smooth bump functions,

γε(y) = εk−dγ(ε−1y), where 0 ≤ γ ∈ C∞c (Rd−k),
ˆ
Rd−k

γ(y) dy = 1.

One is led to defineˆ
Ω
δ
(
f(x)

)
ϕ(x) dx = 〈 δ

(
f
)
, ϕ〉 := lim

ε→0

ˆ
Ω
γε (f(x))ϕ(x) dx,

for every ϕ ∈ C∞c (Ω). This limit converges to the integral

(A.1)

ˆ
Ω
δ
(
f(x)

)
ϕ(x) dx =

ˆ
M

ϕ(x)

Jf (x)
dσ,

where Jf (x) is the Jacobian determinant of the function f at the point x,

Jf (x) =
√

det (Df(x) ·Df(x)t) = |df1(x) ∧ df2(x) ∧ · · · ∧ dfd−k(x)| ,

and here ∧ stands for the wedge product of differential forms. Therefore integrals over the
manifold M can be expressed as integrals over Rd by means of delta distributions:ˆ

M
ϕ(x) dσ =

ˆ
Rd

δ
(
f(x)

)
ϕ(x)Jf (x) dx.

Let us now have a look at some simple but useful algebraic rules which follow easily
from these definitions, and allow for manipulation of integrals with delta distributions.
These rules have been used in the previous sections to carry out explicit computations of
convolution measures defined on the various manifolds considered there.

A.1. Hypersurfaces. In the codimension 1 case, k = d− 1, we have that M is a hyper-
surface defined by a scalar function. Identity (A.1) simplifies to

(A.2)

ˆ
Ω
δ
(
f(x)

)
ϕ(x) dx =

ˆ
M

ϕ(x)

|∇f(x)|
dσ.
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For example, in the case of the unit sphere Sd−1 equipped with surface measure σ, we
have that f(x) = |x| − 1, |∇f(x)| = 1, and

ˆ
Sd−1

ϕ(x) dσ =

ˆ
Rd

δ
(
|x| − 1

)
ϕ(x) dx.

For another example, consider the region Ω− = {x ∈ Ω: f(x) < 0}, with boundary in-

side Ω given by M, and with outgoing unit normal vector given by ν = ∇f
|∇f | . Combining

the divergence theorem with formula (A.2), we have the following: For any smooth vector
field V (x) with compact support in Ω,

ˆ
Ω−

(∇ · V )(x) dx =

ˆ
M
V (x) · ν(x) dσ =

ˆ
Ω
δ
(
f(x)

)
V (x) · ∇f(x) dx.

A.2. Products of delta distributions. We can make sense of the product of two delta
distributions by simply setting

δ
(
f(x)

)
δ
(
g(x)

)
:= δ

(
f(x)
g(x)

)
,

whenever the right-hand side is well-defined as a distribution supported on the manifold
M(f,g) =Mf ∩Mg. We can also make sense of the integration of the distribution δ

(
f(x)

)
over the manifold Mg as follows:

ˆ
Mg

δ
(
f(x)

)
ϕ(x) dσMg =

ˆ
Ω
δ

(
f(x)
g(x)

)
ϕ(x)Jg(x) dx(A.3)

=

ˆ
Mf∩Mg

ϕ(x)
Jg(x)

J(f,g)(x)
dσM(f,g)

.

In the case of codimension d− k > 1, the delta distribution can always be viewed (locally)
as a product of d− k delta distributions on hypersurfaces.

For example, let σ denote the surface measure on the (d − 1)-dimensional unit sphere
in Rd, and let h be a smooth function on the unit sphere. The convolution hσ ∗ hσ is
supported on the ball of radius 2 centered at the origin, and its value at a point x inside
that ball can be written as an integral over the (d−2)-dimensional sphere Γx obtained as the

intersection of the unit sphere with its translate by x. The sphere Γx has radius

√
1− |x|

2

4 .

We can write Γx =Mf ∩Mg, with f(y) = |y| − 1 and g(y) = |x− y| − 1. If y ∈ Γx, then

J(f,g)(y) = | df(y) ∧ dg(y)| =
∣∣∣∣ x− y|x− y|

∧ y

|y|

∣∣∣∣ = |x ∧ y| = |x|

√
1− |x|

2

4
.
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0

x
1

y 1

Γx

Figure 5. Γx = Sd−1 ∩ (x+ Sd−1)

Using formula (A.3), we obtain a generalization of formula (3.2): If |x| ≤ 2, then

(hσ ∗ hσ)(x) =

ˆ
Rd

δ

(
|x− y| − 1
|y| − 1

)
h(x− y)h(y) dy

=

ˆ
Γx

h(x− y)h(y)

J(f,g)(y)
dσy =

2

|x|
√

4− |x|2

ˆ
Γx

h(x− y)h(y) dσy

=
Vd−2

|x|

(
1− |x|

2

4

) d−3
2  

Γx

h(x− y)h(y) dσy,

where Vd−2 is the surface volume of the (d− 2)-dimensional unit sphere and
ffl

denotes the
averaged integral.

A.3. Multiplication by scalar functions. Let α : Ω→ R be a positive C1 scalar func-
tion. Then, on the manifold Mαf =Mf , we have that Jαf = αd−kJf , and consequently

(A.4) δ
(
α(x)f(x)

)
= α(x)−d+k δ

(
f(x)

)
.

In particular, if α and β are smooth positive scalar functions which coincide on Mf ,
then δ

(
αf
)

= δ
(
βf
)
. For example, on the unit sphere, we have that

δ
(
|x|2 − 1

)
=

1

|x|+ 1
δ
(
|x| − 1

)
=

1

2
δ
(
|x| − 1

)
.

In a similar way, on the null cone, we have that

δ
(
t2 − |x|2

)
=

δ
(
t− |x|

)
t+ |x|

−
δ
(
t+ |x|

)
t− |x|

=
δ
(
t− |x|

)
2 |x|

+
δ
(
t+ |x|

)
2 |x|

.
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A.4. Change of variables. Suppose that x = Ψ(y) is a local diffeomorphism on Rd. As
for any distribution, we have the usual change of variables rule,

(A.5)

ˆ
Ω
δ
(
f(x)

)
ϕ(x) dx =

ˆ
Ψ−1(Ω)

δ
(
f(Ψ(y))

)
ϕ(Ψ(y)) |detDΨ(y)| dy.

If instead we consider the composition g(x) = Φ(f(x)), with Φ a local diffeomorphism
defined on a neighborhood of 0 in Rd−k and satisfying Φ(0) = 0, then Mg =Mf , and

δ
(
Φ(f(x))

)
= |detDΦ(f(x))|−1 δ

(
f(x)

)
.

In particular, if L is a nonsingular d× d matrix and M is a nonsingular (d− k)× (d− k)
matrix, then we have thatˆ

L−1(Ω)
δ
(
Mf(Lx)

)
ϕ(x) dx =

1

|detLdetM |

ˆ
Ω
δ
(
f(y)

)
ϕ(L−1y) dy.
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