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Abstract 

The fact that critical structural components such as rails and crossings are randomly loaded 
increases the degree of uncertainty when trying to estimate their remaining service lifetime. 
Maintenance decisions are predominantly based on the feedback received from inspection 
engineers coupled with empirical knowledge that has been gained over the years. The use of 
structural degradation models is too risky due to the uncertainty arising from the variable 
dynamic loads sustained by the rail track. The use of structural health monitoring techniques 
offers significant advantages over conventional approaches. First of all, it is non-intrusive and 
does not interrupt normal rail traffic operations. Secondly, defects can be detected and 
evaluated in real-time whilst their evolution can be monitored continuously enabling 
maintenance to be scheduled in advance and at times where the need for rail network 
availability at the section concerned is at its lowest. This paper analyses the potential risks 
and benefits of a gradual shift from traditional inspection approaches to advanced structural 
health monitoring techniques.  

Keywords: Inspection, Maintenance, Railroads, Structural Health Monitoring, Operational 
Efficiency 

 

Introduction 

Operational efficiency is one of the key performance indicators for all railroad systems. 
Infrastructure inspection and maintenance engineers are tasked with the responsibility of 
ensuring the reliability, availability, maintainability and safety of the railroad network. 
However, as rolling stock traffic density increases throughout the network, inspection and 
maintenance opportunities become less readily available. Inspection and maintenance 
activities normally take place at night when there is little or no train movement to avoid 
disruption of normal railroad network operation. In addition, conventional inspection 
methodologies fail to deliver the efficiency required for the optimisation of maintenance 
decisions, particularly with respect to track renewals, due to their defect detection sensitivity 
and level of resolution limitations1-2.  

There is a strong need to increase rail transport capacity, improve efficiency and reduce 
operational cost. The construction of new rail lines and upgrades are inadequate to address 
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the increasing rail transport demand at global scale. Particular focus needs to be placed on rail 
network bottlenecks, e.g. junctions, where structural integrity deterioration of rails and 
crossings can result into severe disruption.  

Defects on rails can present themselves in various forms including rail head wear and Rolling 
Contact Fatigue (RCF), sub-surface flaws in the head, web or foot arising from contact, 
bending and lateral stresses, or foot corrosion. Severe rail defects (e.g. 1A or 1B class) need 
to be replaced immediately or soon after detection. Certain defect types may be clamped until 
the rail section affected has been replaced. An Emergency Speed Restriction (ESR) of 20 
MPH is normally applied for all rolling stock travelling over the damaged rail section until 
the necessary maintenance has been carried out. ESRs imposed cause delays to normal traffic 
incurring additional costs to the rail infrastructure manager since rolling stock operators need 
to be reimbursed.  

Severely damaged crossings can also result in significant delays and disruption in heavily 
travelled parts of the network. Replacement costs of a single defective crossing can exceed 
several tens of thousands of £. Over a twelve-month period, Network Rail reported 20 
defective crossings in the Wembley area alone. Manual and automated inspection systems are 
employed for the evaluation of defects present in rails and crossings but no RCM technology 
has been commercially deployed yet. The authors of the paper in collaboration with other 
researchers have been developing and testing novel RCM techniques based on the use of 
high-frequency acoustic emission sensors.  

 

Experimental Methodology 

The hardware architecture of the customised RCM system consists of the following basic 
components apart from the aforementioned acoustic emission sensors, accelerometers and 
triggering equipment; a) pre-amplifiers manufactured by PAC, b) main amplifiers 
manufactured by Krestos Limited or PAC, c) four-channel hub manufactured by Agilent, d) 
two Agilent 2531A four-channel USB cards and e) a PC for logging, storing and analysing 
the acoustic emission and vibration signals acquired. The customised software running on the 
PC has been written in LabVIEW ® and MATLAB® and is capable of both logging and 
analysing the datasets acquired. The photograph in Figure 1 shows the main hardware of the 
customised RCM system3.  

The amplitude of the output signal produced by acoustic emission sensors is only a few mV 
and therefore needs to be amplified. The amplification is achieved by the use of a pre-
amplifier and amplifier which amplify the analogue signal prior to digitisation by the Data 
Acquisition Card (DAQ). the pre-amplifier has an analogue band-pass filter built-in that can 
filter the signal from 100-1000 kHz, which is the operating frequency range for the R50α 
acoustic emission sensor. 



 

Figure 1: The customised RCM system used for high frequency AE measurements3. 
 

Results and Discussion 

The key findings and main conclusions drawn from the measurements carried out in the field 
on two different crossings on the West Coast Mainline (near Wembley Stadium- direction to 
Birmingham) and on Chiltern rail line (near Hatton Railway Station – direction to 
Birmingham). The Wembley crossing was evaluated visually before the measurements were 
carried out. No damage was identified from the visual inspection in any part of the crossing. 
The results of the AE tests carried out also support the findings of the visual inspection as 
there is no indication of any crack growth in the signals analysed. The maximum allowable 
train speed at the Wembley crossing is 100 MPH. The line is used by both passenger and 
freight trains.  
 
In the case of the Hatton crossing from the visual inspection carried out surface damage is 
evident (cracking and lipping). No emergency speed restrictions have been set at the Hatton 
crossing by the route manager so trains pass with speeds up to 100 MPH. This is also a mixed 
line being used by both passenger and freight trains. Analysis of the AE measurements 
obtained from the Hatton crossing suggests that damage growth does occur when train passes. 
Damage evolution has been assessed as limited when lighter passenger or freight carriages 
pass over the crossing. However, there is evidence of faster damage evolution when heavier 
axle loads are involved. This leads us to conclude that for the Hatton crossing, damage, at this 
stage at least, can be classified as moderate. 
 
Track circuits are being used in both lines tested. The Wembley crossing is part of an 
electrified line whilst the Hatton crossing is part of a conventional line. In both cases there 
was no interference caused by the AE sensors on the track circuits. Furthermore, no problems 
were caused by the return current in the electrified line to the AE system thanks to the 
satisfactory insulation provided by the ceramic plate of the AE sensors and Araldite adhesive 
used to attach the sensors on the crossing. The installation of the entire system was completed 
in about an hour during night time while traffic had stopped. 
 
The photographs in figure 3 show the measurement setup at the Wembley crossing. The 
sensors were attached on the crossing of interest using Araldite since magnetic hold-downs 
are not an option in this case.  
 
Araldite provides the adhesive strength to keep the AE sensors mounted on the surface of the 
crossing during testing as well as the level of additional electrical insulation required. 



Furthermore, it provides the required coupling quality enabling good transmissibility of the 
stress waves produced from any crossing defects growing during loading from the wheel and 
axle loads sustained.  
 
Araldite enables long term adhesion of the sensors. It provides consistent coupling quality 
over extended measurement periods and over a wide range of environmental conditions 
including hot or cold weather, wet or snowy conditions and solar ray exposure. Araldite is a 
two-component epoxy adhesive which is inexpensive, commercially available at hardware 
stores, and safe to handle. It cures relatively fast enabling the installation of the AE sensors 
within a few minutes. It also has good resistance to any vibration related damage.  
 

a)  
 

b)  
 

Figure 2: Photographs showing a) indicative traffic at the instrumented Wembley 
crossing, and b) the monitored crossing location. 

 
The photographs in figure 4 show the measurement setup at Hatton crossing. The installation 
of the AE sensors was done in the same way as for Wembley. 

 

Instrumented 
crossing 



a)  
 

b)  
 

Figure 3: Photographs showing: a) the indicative traffic at the instrumented Hatton 
crossing and b) AE sensor installation with Araldite. 

 
To analyse the AE data collected from the two instrumented crossings a template-based 
correlation processing method has been used. This methodology enables us to accurately 
differentiate AE signals from different sources such as impact, deformation and crack growth. 
Although the signal acquired is affected by a number of factors, signals generated by the 
same source mechanism are similar and can thus be correlated to each other. If the signal 
features generated by a propagating defect are known in advance, the relevant template can 
be used to identify all those segments from the original waveform which are similar to it. 
These segments with the same feature are very likely to be generated by the defect. 
Therefore, correlation analysis can be used as a powerful tool not only to identify the 
presence of defect, but also to effectively discriminate signals generated by different sources 
of AE. There are two vital parts in correlation analysis: the template and the feature used in 
the correlation processing approach. Templates are of great importance to achieve accurate 
and reliable results in correlation analysis. They normally consist of a set of signals which 
correspond to specific defect signatures under controlled environment, such as train speed, 
bogie geometry and wagon weight, etc. In this application, templates need to be carefully 



selected from the test data generated on cast manganese steel samples in the laboratory. The 
schematic in figure 4 shows the 4 steps involved in correlation processing.  
 

 

 

Figure 4: Correlation processing procedure. 
 

Below we discuss in more detail the steps followed during the correlation processing 
procedure to analyse AE data and obtain the required information. 

1. Filtering the signal 
The frequency band of interest lies between 100 to 250 kHz. Although the pre-amplifier has 
the analogue band-pass filter built-in, the energy of the low frequency signals from spurious 
sources can still be high enough to appear in the spectrum. As a result, the collected data need 
to be filtered again to remove the low frequency contents. 

2. Selecting window size and overlap 
The raw data are divided into a number of segments which is determined by the value of the 
window size and overlap. The more segments employed, the better resolution can be 
achieved. However, there is a trade-off between the accuracy and computing time. The 
window size generally covers the duration of a complete impact signal, while 50% overlap is 
sufficient. 

3. Calculating the PSE for each window  
As crossing loading is dynamic, i.e. each wheel passing loads the crossing potentially causing 
further damage, PSE is used to estimate the power of it at different frequencies. PSE is 
calculated via Welch’s method, which is based on the concept of periodogram spectrum 
estimates. By breaking the time series into segments with overlap, a modified periodogram is 
performed for each segment and then averaging of these results is carried out to produce the 
estimate of the power spectral density. The PSE for each segment is normalised, so that the 

Filter the original signal 

Select proper window size 
and overlap 

Calculate cross-
correlation & MSC 

Calculate the PSE for each 
window 
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calculation is based on the distribution of the PSE, while the energy of individual segments 
no longer affects the result. 

4. Calculating the cross-correlation, coherence and frequency distribution 
Cross-correlation, coherence and frequency distribution analysis are performed between the 
template and each window to calculate the similarity. A normalised similarity result is 
provided after the processing. As suggested, signals that have the same features with the 
template should lead to higher similarity. Suitable templates have been selected from the tests 
carried out on cast manganese samples in the laboratory. The templates employed 
corresponded to different extents of severity. Figure 5 shows the raw AE data set for one of 
the samples tested indicating crack growth at relatively early stage in every loading cycle. 

 

Figure 5: Raw AE data set generated from the laboratory 3-point bending test of one of the 
cast manganese steel samples.  

Figure 6 shows the template selected from the above measurement. 

 

Figure 6: Selected reference template indicative of early stage crack growth. 

 



Wembley measurement results: 

As discussed earlier the Wembley crossing is considered to be free from defects so no 
indication was expected following the analysis based on correlation. The graph in figure 7 
shows the raw AE signal obtained from one of the sensors while a passenger train passed 
over the crossing. The high-amplitude peaks are predominantly from the engine noise causing 
some sliding of the wheels giving rise to noise. No impact events are visible in the raw AE 
data predominantly thanks to the band-pass filters. 

 

Figure 7: Raw AE signal from passenger train going over the Wembley crossing. 

Figure 8 shows the cross-correlation result using the early stage damage template. As it can 
be seen there is practically no appreciable indication of damage. Further analysis carried out 
using the moderate stage damage template (figure 9) supports the conclusion that there is no 
appreciable damage in the Wembley crossing.  

 



 

Figure 8: Cross-correlation analysis based on the early stage damage template. 

 

 

Figure 9: Cross-correlation result based on the moderate-stage damage template. No visible 
indication is present. 

Hatton measurement results: 

Both passenger and freight train loading sequences were measured at Hatton crossing. Figure 
10 shows the raw AE data set for one of the Chiltern passenger trains loading the 
instrumented crossing. It can be seen that there are several high-amplitude peaks despite the 
comparable size and weight of the train to the passenger trains measured at Wembley. 
Moreover, the gain used for the Hatton measurement has been reduced to 29 db in 
comparison to 40 db used in Wembley to  further decrease environmental noise effects on the 
raw signal. 



 

Figure 10: Raw AE data set for Hatton crossing.  

 

The plot in figure 11 shows the correlation results obtained based on the early stage template. 
There are clear peaks indicative of damage growth occurring. The relatively low amplitude of 
the peaks in comparison to the Wembley signals is due to the lower amplification used in 
these tests. The signal comparison should be based on the background level when compared 
to the peaks.  

 

Figure 11: Cross-correlation result based on the early stage damage template showing clear 
indications of damage growth. 



 

The plot in figure 12 shows the cross-correlation result for moderate stage damage template. 
A number of peaks are visible indicating a number of damage growth events belonging to this 
category occurring during this particular loading sequence. 

 

Figure 12: Cross-correlation result based on the middle stage-damage template 

The following results shown in figure 13 are related to a loading sequence of the 
instrumented crossing from a heavy freight train. Each of the wheels periodically loads the 
crossing. The small peaks indicate the presence of each wheel. The high-amplitude peaks are 
most likely caused by a wagon fairly heavier than the rest. 

 

Figure 13: Raw AE dataset for part of a freight train measured at Hatton. 

Figure 14 shows the correlation result when using the early stage damage template. Damage 
growth peaks are again evident practically for every loading cycle. 



.  

Figure 14: Cross-correlation result using the early-stage template. 

Figure 15 shows the cross-correlation result after applying the middle stage template. The 
smaller peaks disappear, as they are not generated by the middle stage damage mechanism. 
However, the peak at the 5 sec shows up with high similarity result indicating slightly faster 
damage evolution during this particular loading event. 

 

Figure 15: Cross-correlation result based on the middle-stage damage template. 

Conclusions 

The results of the AE measurements carried out at both instrumented crossings show that the 
Hatton crossing is mainly at the early stage of crack growth but some moderate crack growth 
is also evident. The presence of each wheel triggers small crack growth. However, if heavier 
wagons pass, signals with the feature of middle stage damage growth have been generated. 
This leads us to conclude that damage should be classified as moderate for this particular 



crossing. Also spurious signals, such as the impact generated by the wheel-rail interface, can 
be identified and removed effectively from the original waveform, as their spectral character 
is different. In the case of the Wembley crossing the results suggest that there was no 
appreciable damage present at the time of the measurements. AE has proven to be an 
appropriate methodology for the RCM of railway infrastructure components. The technique 
can be accordingly be deployed for evaluation of conventional rails in real-time, helping 
optimise predictive maintenance strategies and increasing network cost-efficiency. 
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