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Abstract

Certain phase transitions between topological quantum field theories (TQFTs) are driven by the
condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective
excitations, there can be topological obstructions that prevent them from condensing. Here we
formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation
is possible in SO(3), TQFTs with odd k. We further show that a ‘layered’ theory obtained by tensoring
SO(3)x TQFT with itself any integer number of times does not admit condensation transitions either.
This includes (as the case k = 3) the noncondensability of any number of layers of the

Fibonacci TQFT.

Topological order, a fundamental concept in quantum many-body physics, is best understood in two-
dimensional gapped quantum liquids, such as the fractional quantum Hall effect and certain spin liquids [1-9].
In these systems, quasiparticle excitations with anyonic quantum-statistical properties emerge [10]. Their fusion
and braiding behavior at large distances define a topological quantum field theory (TQFT), which characterizes
the universal properties of the phase [11-14].

The phase transitions between topological phases are, most of the times, driven by the condensation of
bosons [11, 15-25]. In the context of TQFTs, aboson is an emergent quasiparticle in the topologically ordered
phase with bosonic self-statistics, but which could have nontrivial fusion and braiding relations with the other
anyons. Such a quasiparticle can potentially undergo Bose—Einstein condensation, causing a phase transition to
another topologically ordered phase. The topological data of the new phase can be inferred from those of the
initial topological order [25].

One motivation to study condensation transitions is to classify topological order. An important example are
the 16 types of gauged chiral superconductors introduced by Kitaev [3]. Kiteav showed that while two-
dimensional superconductors are classified by an integer Z, only 16 bulk phases are topologically distinct. This
construction can be understood by considering ¢ layers of initially disconnected chiral p-wave superconductors,
i.e., elementary (Ising) TQFTs. Upon introducing generic couplings between these layers, one obtains a single
layer of a chiral #-wave superconductor, which corresponds to a specific TQFT in Kitaev’s classification. This
physical process of coupling the layers (by condensing inter-layer cooper pairs), corresponds to a condensation
transition on the level of the TQFTs. For every £ < 16, there is a unique condensation possible and one obtains
exactly 16 distinct TQFTs including Ising, the toric code and the double semion model. They determine the
nature of the topologically protected excitations in the vortices of each superconductor, including their braiding
statistics. In essence, this Z;4 classification can be seen as a property of the Ising TQFT.

It is imperative to ask whether multi-layer systems of other TQFTs show a similar collapse of the
classification from Z to Zy for some integer N. In this paper, we derive a criterion for when this is not the case,
i.e., when the Z classification generated by a given TQFT is stable. This criterion is based on the fact that there
exist bosonic anyons that cannot be condensed. An example are the bosons in multi-layered Fibonacci

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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topological order [17, 25, 26]. In this work, we generalize this observation by formulating a no-go theorem that
constitutes a sufficient obstruction against the condensation of a boson. Our criterion and its proof are given
using the tensor category formulation of topological order [3, 27-34], which we can use to describe the
condensation transition axiomatically [16, 17, 25]. We apply our no-go theorem to several examples, including
the forementioned multi-layer Fibonacci TQFTs.

Formalism—We use the algebraic formulation of anyon condensation discussed in [25]. Here we simply
restate the important relations and refer the reader to [25] for details. A fusion category is characterized by a set of
anyons a, b, ¢, ...and fusionrulesa x b = Y N c between them. The quantum dimension d,, gives the size
of the nonlocal internal Hilbert space associated with anyon a, and is equal to largest eigenvalue of the matrix N,
with elements (N,)yc = Nj,. A braided tensor category has additional structure, of which we will use the
topological spin 6, of a, a complex number with |6,| = 1. Bosons are defined by 6, = 1. A special role is played
by the vacuum anyon as the unique identity element of fusion. It is a boson with quantum dimension 1.

Condensation is based on a mapping, called restriction, between the anyons a in the original TQFT A and
the anyons ¢ in the condensed fusion category 7 characterized by integers n; € Z:

ar—a =>"nit, VaecA (1)
teT

If more than one particle appears on the right-hand side of equation (1), we say that the a particle splits. If
n! = 0,wesaytisin the restrictionofaor t € al. Werequire that n;” = 1, where ¢ and 1 are the vacuain 7 and
A, respectively. Imposing that condensation commutes with fusion implies the fundamental relation [25]

S niniNy = S Ngn!, ©))

r,s€7T ce A

between the fusion coefficients N in .4 and the fusion coefficients 1\7:S in 7. A corollary to equation (2) [25] is

d, = Zn;d,, Vae€A 3)

reT

The restriction is compatible with conjugation to antiparticles, i.e., n’ = n, where bar denotes the (unique)
antiparticle of an anyon. We say particle a condensesif p € a',i.e., ny = 0. Common knowledge in condensed
matter physics says that any bosons can condense. However, it may also occur that a specific boson a cannot
condense, i.e., there is no solution to the above equations with n/ = 0. This is the situation we shall analyze in
this paper.

Finally, the following definition is useful for formulating our no-go theorem: for a given anyon b, a subset
7, = {ay, ...,a,,} of anyons is called a set of zero modes localized by b [35] if forall i, j = 1,...,m:

(1) The fusion products a; x a; do not contain condensable bosons, except the identity if a; = é}-,f’

(2) all g;are zero modes of b, by whichwemean a; x b =b + -, (i.e. N;b > 0)

(3)ifaparticle g;is in 7, then so is its antiparticle.

Note that the choice of 7, for a given boson b is not unique and that 7;, may or may not contain the identity. (The
above conditions are satisfied in both cases.) Typically, we will be interest to find a set 7, that is as large as
possible. To motivate the terminology of the set Z;, observe that N, > 0 implies that a anyons can always be
emitted or absorbed by b. Therefore, b must carry a zero-mode excitation of a. We can now state our first main
result, a general condition under which a boson B cannot condense. It is an obstruction that is sufficient to show
that condensation of B cannot occur.

No-go theoremi—A boson B cannot condense if there exists a set Zp, such that the sum of the quantum
dimensions of all anyons in Zy exceeds the quantum dimension of B, i.e., if

dp < dg +ds, + -+ + dg, 4)

Proof. We start by showing that all particles in Z do not split, and have distinct restrictions. This follows from
inspection of equation (2) fort = ¢,a = a;, b = aj,

®In demandingthat a; X a; does not contain condensable bosons, as opposed to not containing any bosons at all (except the identity), we
are anticipating a inductive application of the no-go theorem. Once we have shown that aboson B, whose set Zp is such that a; x a;, with
a;, a; € Ip, does not contain any boson (except the identity), is uncondensable, it is allowed that B appears in the fusion product a; x a; of
the set Zy' of another boson B’.
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a) phase with b)
condensed B (ﬁ

~

a; B

Figure 1. Tunneling processes mediated by an anyon condensate. The gray region is a phase in which a boson Bis condensed. (a)
Vertex of a boson B that localizes a zero mode of anyon a,. In the condensed phase, B can be converted into an identity particle world
line (not shown). By the axioms of anyon condensation, processes (a) and (b) are equivalent, i.e., B can be converted into a; by
tunneling through the condensate.

doning = 68ij+ Y Neanf, )

reT c=1

whereweused n? = nf andn u’) = n,,. Byassumption, there are no condensable bosons in a; x a;, hence Ng 5
and n? cannot be both nonzero forany ¢ = 1. Thus >, n, n, = 1,implyinga single restriction a} of a;, with
d,| = d,, usingequation (3). Moreover, 3_, 1, na’] = 0ifi = j, implying that the restrictions of a; = a;are
distinct particles.

With this knowledge about the restrictions of the a;, equation (2) for t = ¢, a = a;, b = B evaluates to
D=0l = SN pnf > NEgng, ©)

c

n

S TR

where we used N, f 5 = N, 3 Inserting this inequality in equation (3) fora = B,and using d,, = d,,1, we have

m

dB 2 ng? ZNIf,Bdﬂi' (7)
i=1

It follows that in a situation where equation (4) holds, equation (7) implies nf = 0, i.e., Bdoes not condense.
(Note that in the case Nf 5 > 1,astronger form of equation (4) with d,, is replaced by N;f pd,, holds.)

To follow up with a pictorial representation of these equations, consider the tunneling of anyons across the
domain wall as shown in figure 1, where each particle a in the uncondensed theory is converted into its
restriction a! in the gray region. Figure 1(a) shows a vertex allowed by the fusion rule a; x B — Binthe
uncondensed phase. The boson B enters the condensed phase, where it can disappear as it is part of the
condensate (one of its restrictions is the vacuum ¢, the world lines of which can be removed at will). By the
fundamental assumption that fusion and condensation commute (which is at the heart of equation (2)),
figure 1(a) is equivalent to figure 1(b). The latter represents a coherent tunneling process that is mediated by the
condensate and converts B into any of the a;. The existence of this process implies that the distinct restriction a il
of any a; must be in the restriction of B. Hence, by equation (3), the quantum dimension of Bmust be large
enough to accommodate all the distinct restrictions of the a;, if B condenses. Therefore if we find sufficiently
many 4; such that equation (4) holds, B cannot condense. O

Note that the no-go theorem does not a priori require knowing the braiding data of . A—although the
modular tensor category structure fixes that data to some extend. The theorem involves only data obtainable
from N§;,. We remark that the no-go theorem can only ever yield an obstruction against the condensation of
non-Abelian bosons. For Abelian bosons, the theory after condensation can be constructed explicitly, which is a
constructive proof that there is no obstruction [25].

We now demonstrate that the no-go theorem is practically useful by considering three examples: (i) multiple
layers of the Fibonacci TQFT, (ii) single layers of the SO(3), TQFT for k odd, and (iii) multiple layers of the latter.
We will show that all these theories, while containing bosons, do not admit condensation transitions. All the
bosons are noncondensable. Additional general results, concerning for instance TQFT's with a condensing
Abelian sector and with only a single boson, are given in appendix A.

Example (i): Multiple layers of Fibonacci—The Fibonacci category Ag, is a non-Abelian TQFT containing
just one nontrivial particle 7 with a fusion rule 7 x 7 = 1 + 7,atopological spin 6, = ¢!*™/* and a quantum
dimension d, = ¢ given by the goldenratio ¢ = (1 + ~/5)/2. As A, does not contain any nontrivial boson,
it cannot undergo a condensation transition. We are interested whether the TQFT formed by N identical layers
of Agip, i.e., the TQFT A&Y, admits a condensation transition. The TQFT A%Y contains 2N particles

corresponding to all possible distributions of 7-particles over the Nlayers. For each r = 0,..., N thereare (Ij)

so-called (r7) particles with 7’s in exactly rlayers, each with spin 6,,, = €*4™"/% and quantum dimension

3
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d(;r) = ¢". The unique r = 0 particle is the identity of Agj . From the topological spin, the bosons in Af) are
(r7) particles with r = 51, n € Z. Using the no-go theorem, we show that none of these bosons can condense.
Using proof by inductionon n > 1, we show that for any (5x#7) boson B, there exists a set Zs,, such that
equation (4) holds. We first consider the case n = 1. Given a (57) boson, we must construct a set Zs, for this
boson. Consider the set formed by all (27) particles obtained by replacing any 37’s in the boson with a 1. There

are (z) = 10 such (27) particles for a given (57) boson. They form a set Zs. that obeys point 1-3 from the
definition: point 1 holds as any product of two of these particles has at most 4 7s and is therefore not a
(potentially condensable) boson. Points 2 and 3 can be checked by using the Fibonacci fusion rules in each layer.
Finally, equation (4) holds because

d(ST) = (bs < 10¢2 = Z da[ (8

a,'EI(5,»)

evaluates toabout 11.1 < 26.2. We conclude that none of the (57) bosons condense for any number N of layers
of Fibonacci TQFT.

For the induction step, we assume that none of the (517) bosons can condense for n < 1y, ny > 1,and we
show that the same holds for the (571¢7) bosons. Define 1y := | (519 — 1)/2], where | x | is the largest integer
smaller than or equal to x. For a given (571, 7) boson, form the set Z s, -, out of all (1, 7)-particles that are

obtained by replacing any (519 — 15) 7’s in the boson (571y7) with a 1. There are (5"0 ) such (1, 7) particles. They
To

formaset Z(s,, ) for (519 7). In particular their fusion products can only contain (5#7)-bosons with n < 1y,
which cannot condense by assumption. Equation (4) reads for this case

¢ < (5”°)¢S"0—fo. ©)

To
Using that ry ~ 5ny/2 and (550”; 2) ~ 4m/2 / \J75n,/2 forlarge ng, we obtain that the right-hand side of
equation (9) grows like 4°"0/2¢>"/2/ /g, asymptotically dominating the left-hand side. An explicit evaluation
yields that equation (9) holds for any ny > 1in fact. We have thus shown that none of the (51 7) bosons can
condense. This concludes the induction step and the proof that no boson in A& can condense.

Example (ii): Single layer of SO(3)—Our second example focuses on the (single-layer) TQFT's associated
with the Lie group SO(3) at values of odd level k. They contain bosons for an infinite subset of k. We show that
none of these bosons can condense. The SO(3), TQFTs with k odd have (k + 1)/2 anyons j = 0,---,(k — 1)/2
with

. 2j+1
d = M, 0; = Q2T (10)
sin[w/(k + 2)]

We note that for k odd, all particles have distinct quantum dimensions. The fusion rules are

1\713 _ {1 |]1 _jzl <j3 < min{jl +j2) k — j1 _]'2}.
hh 0 else

€3))

The smallest odd k for which SO(3), contains a bosonisk = 13, in whichj = 5isaboson—an uncondensable
one, as we shall see.

The topological spins ¢; yield the condition j(j + 1) = k + 2 for the lowest j that may correspond toa
boson (aside from the vacuum j = 0). (Frequently, this condition cannot be met with integer j, as in the k = 13
example, and the lowest boson appears at even higher j.) We conclude that the first boson after j = 0 cannot
occur for jlower than

jo= Wk +9/4 —1/2]. (12)

We will now discuss separately bosons j in the three ranges (see figure 2 for two examples)

Lojy <j<|k/4], (13a)
. k—1 jo—lJ
L [k/4]<j< 12— 13b
{/J j 3 [ 5 (13b)
k=1 |j—1] _._ k-1
. —— —|2—|<j< . 13
e el A 30

Due to equation (12), bosons j in range ITT have no bosons in their fusion product j; X jg, other than the
identity. Thus, from equation (2) for t = ¢, and the fact that B are their own antiparticles, we conclude that they
cannot split. Using equation (3) and the fact that they have d; > 1, we conclude that they cannot restrict to the
vacuum i.e., they cannot condense.
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a) ° b) 35 [k =103
30
¢ —_— 25 F
d; 3 d; 20
2 15
10
] — 5 .
01 2/83 4 5 6 J 5 10 2‘0 30 40 50 J
I II III I 1I III

Figure 2. Quantum dimensions and bosons (blue columns) for SO(3) theories with (a) k = 13 and (b) k = 103. These are the smallest
k, for which SO(3)y. contains two and four bosons, respectively. Indicated are also the ranges I-III defined in equation (13). The
maximum quantum dimension coincides with the boundary between range I and Il in equation (13). For instance, to apply the no-go
theorem to the j = 5bosonin (a), choose Z;_5 = {j = 2} and use that d5 ~ 3.6 is smaller than d, ~ 4.2.

We now use our no-go theorem to show that bosons j in range I are noncondensable. Specifically, we show
that the particles 0 < j < ljB / 2J formaset Z; ofjpobeying equation (4). Before establishing that they satisfy
the conditions for aset 7 , let us show that equation (4) holds for Z; . For large k, we can rely on the following
asymptotic estimate. Using that the sine function in equation (10) is monotonously increasing with negative
second derivative for j < |k/4], the estimate

LjB / ZJ -1
g+ 1< >, @i+ 1 (14)
=1
implies equation (4) for jg in range I. This inequality holds for all j, > 10. Using equation (12) we conclude that
itapplies to all bosons in range I for k > 109. We verified explicitly that inequality (4) holds (using the exact
values of the quantum dimensions) for all bosons in range I for k < 109. Finally, it is readily verified using
equation (11) that Z; form a set of zero modes localized by jz provided thatall bosons with j < j; cannot
condense. The proof then proceeds straightforwardly by induction.

We apply our no-go theorem successively to bosons jz in range I in order of increasing js. Using the result
that all bosons in range I are uncondensable, one verifies that the particles j with
1 <j < min{k — 2j, LjB / 2J — 1}formaset 7; . As for range I, we can estimate the quantum dimensions.
From the relation sin[7 (2j; 4+ 1)/(k + 2)] = sin[7 (k — 2j; + 1)/(k + 2)]we can estimate the quantum
dimension of jp using sin[7 (2j, + 1)/(k + 2)] < w(k — 2j; + 1)/(k + 2). The quantum dimensions of the
anyonsin Z; are estimated as for range I with sin[7 (2j + 1)/(k + 2)] < w(2j + 1)/(k + 2). Using these
estimates we find that if

min {(k—2jy,| jp /2] -1}
k-2, +1< > Qi+ 1) (15)
=1
holds, equation (4) follows. In the case k — 2j, < |_jB / ZJ — 1, equation (15) reduces to
1 < (k — 2jp)* + (k — 2jp), whichis true for all jz in range II for all k. In the case k — 2j; > [jB/ZJ -1,
equation (15) simplifiesto k 4 2 < 2j, + (LjB / ZJ)Z, which holds for all jpin range ILif k > 37. We verified
explicitly that equation (4) holds for all bosons in range Il if k < 37 (theyappearin k = 13, 19, 31). This
concludes our proof that no condensation transition is possible in the SO(3);, TQFT for any odd k.

We note that this result can be readily extended to SU(2), with k odd, since SO(3)y is the projection of SU(2),
to anyons with integer j. One simply includes the half-integer j anyons in the theory (none of which are bosons).
The sets Z; as defined above remain the same and so do all the quantum dimensions. Hence, we also showed the
noncondensability of SU(2)y, with k odd. This is consistent with the ADE classification of SU(2), [36]: there are
no off-diagonal modular invariant partition functions for odd k in SU(2) [37]. Thus, the no-go theorem
provides a proof of this fact that is complementary to the ADE classification.

Example (iii): Multiple layers of SO(3);,—We can show that any number of layers of SO(3)y, with k odd, does
not contain condensable bosons. Fixing k, the proof proceeds again by induction. As induction base, we proof
that all multi-layer anyons with a nontrivial particle in only a single layer (and the identity anyon in the other
k — 1layers) cannot condense nor split. To show that, we can use the single-layer result from example (ii). For
the induction step, we assume that for a fixed kg < k all multi-layer anyons with nontrivial particles in /layers,

1 < I < ko, cannot condense and do not split. We can then show that the same holds for multilayer anyons with
nontrivial particles in ko + 1layers, completing the induction. The details of this proof are given in appendix B.

Summary—We have presented a generally applicable no-go theorem against the condensation of a
topological boson and illustrated it with several examples. The proof of our theorem uses mostly the fusion (as
compared to the braiding) information of the TQFT. We showed a connection between our results and the ADE

5



10P Publishing

NewJ. Phys. 18 (2016) 123009 T Neupert et al

classification of SU(2); theories, indicating that the no-go theorem might be useful for the classification of
modular invariant partition functions of conformal field theories more broadly [25]. It would be interesting to
study, whether other obstructions against boson condensation exist or whether our no-go theorem actually
constitutes a necessary condition. In all examples we know, noncondensability is captured by the no-go
theorem.

The no-go theorem can be used to study whether a TQFT is Zy graded under layering. This provides a way
to classify TQFTs depending on whether N'is finite or infinite. As a venue for future work, when restricting the
condensations to those that preserve certain symmetries of the anyon model, one could similarly classify
symmetry enriched topological phases, and with this also symmetry protected topological phases without
intrinsic topological order. The classification of the latter is often related to the former upon gauging the
protecting symmetry [38, 39].
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Appendix A. No-go theorem with Abelian sector

We have seen from the examples discussed in the main text, that the no-go theorem can often be used to not only
show that individual bosons in a TQFT cannot condense, but that an entire TQFT is not condensable. Here, we
extend this discussion to examples of TQFT's that have noncondensable sub-structures. This problem is motived
by physical examples: in the fractional quantum Hall effect, for instance, one frequently discusses phases that are
described by a direct (or semi-direct) product of an Abelian and a non-Abelian TQFT. A simple example is the
73 Read—Rezayi state of bosons, which is described by the TQFT Ay, X Z,. While such a theory admits
condensations, already in the Z3~ sector, when enough layers are considered, one has the intuition that the
noncondensability of Fibonacci should still constrain the possible condensations.

Lemma 1. Consider a TQFT
A x X, (A1)

where X is an Abelian TQFT (i.e., all its anyons have quantum dimension 1). Further, for all particlesb € A (not
only for the bosons), except for the vacuum, let there exist a set I, = {ay, ..., a,,} of zero modes of b, containing
anyons from A, such that the quantum dimensions satisfy

m
dy < S (A2)
i=1
Then, any possible condensation transition will lead to a theory of the form
A x Y, (A3)

where the Abelian TQFT ) can be obtained from X through a condensation.

Proof. This lemma follows almost directly from the no-go theorem. Let us denote a particle from .4 x X by the
pair (b, x) where b € A and x € X.If (b, x) is boson, we can show that it has to be an uncondensable one, except
ifb = 1. Theset

I(b,x) = {(alr X), "')(ama X)}, (A4)

(where ay, ---,a,, form a set Z;, of zero modes of b whose existence is guaranteed by assumption) satisfies all the
conditions 1-3 form the definition of a set of (b, x) zero modes. Since x is an Abelian particle, d, = 1 and

equation (A2) directly implies that the sum of the quantum dimensions of the particles in Z, ,, satisfies the
inequality (4) from the main text. Hence, (b, x) cannot condense. In turn, this implies any condensable boson in
A x Xisoftheform (1, x). A condensate of this form is transparent to the anyons in .4 and will thus leave this
sub-TQFT unaffected. It will only induce a condensation X — )/, so that the final theory is of the from (A3). [

We return to the example of Agy, X Z,. Consider Nlayers of this theory, i.e., Afn x Z3N. This multi-layer
TQFT satisfies all assumptions of lemma 1: for each anyon b € A%}, a choice for the set Z, is given by
Iy = {1, b}. Thisis so because all possible bosons appearing in the fusion product of b x b are uncondensable

6
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by the no-go theorem and the sum of the quantum dimensions of Z;, givenby 1 + dj, is larger than d;,. We
conclude that the A&} structure is preserved under any condensation transition in such a theory.

Appendix B. Proof for example (iii), multiple layers of SO(3),

In this section, we show that no condensation is possible in the TQFT SO (3),(®N comprised of N layers of SO (3)
for any odd k and any integer N. The proof goes by induction. We denote the particles in SO(3);™ witha
shorthand notation. An anyon that has the identity particle from SO (3); in all layers, except for the k, layers

it, b, 5 Ik, is denoted by {j; J;, - jiko}' Herel < j;, < (k — 1)/2 can stand for any anyon from SO(3); (except
the identity 0), forall [ = 1, -+, k.

B.1. Induction base

First, consider particles { j;} with just one nontrivial anyon in some layer 7. This will serve as the induction base.
By the no-go theorem and our proofin example (ii), we know that no bosons of form { j;} can condense. (Use the
particles with only one nontrivial in that same layer i to build the set 7 as elaborated for example (ii).) As a
corollary, the anyons { j;} do not split: when fused with themselves no condensable boson appears in the fusion
product, which prevents splitting by equation (2) from the main text for t = .

B.2. Induction step
We assume that forany 1 < I < kpall (i J;, - 3}

(1) do not condense and

(2) do not split.

We now show the induction step, namely that all particles with nontrivial anyons in (ko + 1) layers
Uidiy =+ Jig, neither condense nor split.

Webegin by showing that {; j, -+ Jizg) canmot condense. The particles {j; j, - Jigg} cN be obtained by
fusinga {j; j;, - j, Ywitha{j; _}, whereiy ., & {i), -+, ik, ). In this case, equation (2) from the main text reads
fort = ¢

NY

{]ilmjiko}l’{jikoﬂll (Bl)

_ 9
=nt . . . .
{Jilliz”',’ikofikoﬂ}

Now, because of the uniqueness of the antiparticle, N

i 1hl , can be either O or 1. If it was 1,
i Jiggh >

}
Ui ds, - J iko} ! would be the antiparticle of { j %H} !, Because all particles are their own antiparticles, this would

x'k()+1

imply {j; j; - Jig,) L= o) !, However, this is not possible for ko > 1, because the associativity of fusion
would then also imply that { jil}l is the antiparticle (and coinciding with) {j; -+ j o j %H} Lie.,
Uy =, JiegJing i} !. Remembering that {j; j, --- Jib Uiy Jiy " Ji 1} do ot split, and equating the
quantum dimensions of the particles for these two identifications we have
dj dj, - dj =dj
dj =dj --d

i ]"ko Jx‘koﬂ’

i2

(B2)

For ko > 1, this contradicts the fact that all nontrivial particles in this theory have quantum dimensions d > 1.

This rules out the possibility 1\7{? iy, =1 and shows that {j; j;, - Jigid does not condense for ko > 1.
i Jigg? > ik

The case ko = 1 needs to be considered separately, as both lines in equation (B2) are identical in this case,

and therefore do not lead to a contradiction. Assume that N, {9]7 Jijy: = LIn thecase j; = j,, we canrely on the
it > Uip

following argument to disprove this assumption: as all anyons in SO(3) with k odd have distinct quantum
dimension, it follows that the two anyons { j; } and {}; } restrict to distinct particles and in particular

e ]lf X jl.i—with equation (2) from the main text this implies that { j; j; } neither splits nor condenses. In the
case j, = j, = j,define j = {j. j. }. We want to show that j does not condense. As there are no fermions in
1 ) h'n

SO(3) with k odd, f canonlybeabosonif ; = 1,i.e.,if {}; } and {j; } are bosons. Our no-go theorem applies to
all bosons { Ji} and { Ji} with zero mode sets Z; i) and Z; i) We can then use theset 7; = 7 AR I i

containing the fusion product of any particle in Z; i) with any particle in Z; j,)» to prove that j cannot condense.

To show that Z; isa set of zero modes of f , the main challenge is to show that the product of any two elements
from 7; cannot condense. The product of any two elements from 7; is always of the form {j; j, }. We have

7
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shown thatwhen j; = j; such particles cannot condense. We therefore need only show that nontrivial particles
ofform {j; j; } with j; = j; both bosons cannot condense. In order to show they are not condensable, we can use
the proof given for example (ii). For that, observe that the anyons j have the same fusion coefficients among
themselves as the j anyons in SO(3), in example (ii) have, i.e., N ]];/, = N]J;/,, where j, i/, i € SO(3)y. Recall that
conditions 1-3 from the definition of a set of zero modes only depend on the fusion coefficients N]] ;, and the
information, which particles are bosons. Hence, conditions 1-3 are satisfied for Z ; whenever they are satisfied
for 7; in example (ii). It remains to show that Z; is of large enough quantum dimension to satisfy the
fundamental inequality equation (4) from the main text. For 7,equation (4) from the main text takes the form

2

di=d; <[> da| = da (B3)

acI; aeT;

Upon taking the square root, this is equivalent to equations (14) and (15) from the main text, which were shown

to hold in example (ii). Therefore the j = { J; J; } anyons do not condense and all { j;} have distinct restrictions.

We conclude that for any ko > 1 only N{il'”fiko} NP T 0 is permitted and hence equation (B1) implies
that {j; j, - j o) does not restrict to the identity ¢, i.e., it does not condense. This proves the assumption 1 of
the induction step for ko + 1.

To complete the induction step, we need to show that {j; j, --- j, .} does not split. For that, consider
0
equation (2) from the main text for {j L T +1} withitselfand t = ¢
0
§ I 2 = § £ o 4
- (n{],'l“‘lfkoﬂ} ) - N{]flm]"koﬂ}’{]‘lm]ikgﬂ} ne

c

— pr = 1. (B4)
Wehave used thatnone of the {j; j, -+ j;} with1 < I < ko + 1canrestrict to the identity o since they cannot
condense. This implies none of { j; -+ j o 1} splits, which proves the assumption 2 of the induction step
for ko + 1.

We have thus shown inductively that none of the particles (except for the vacuum) restricts to the vacuum in
the N-layer theory SO(3) ¢N. Thus, there is no condensate and with it no condensation in any number N of layers
of SO(3); with k odd.

Appendix C. General constraints on boson condensation
In this section, we list lemmas that pose other general constraints on condensation transitions in TQFTs.

Lemma 2. Suppose S = {ay, --+,a,,} is a collection of particlesin a TQFT A with a; X a; containing no bosons other
than theidentity—i.e., n, = 6! | and a; does not split. Moreover assume al = ajlfori = j. Thenifaboson B

appearsin the fusion of a; and a;, a; X a; = B + ---forany i = j, then B is not condensable.

Proof. Using equation (2) from the main textfor a = a;, b = d;and t = ¢, we have
bj = ngng =3 Ny Fori= jweget, nf;Nfﬁj = 0.Soifboson Bappearsin a; X d;, we must have
ng = 0, so that Bis not condensable. O

Lemma 3. Consider a TQFT A with no fusion multiplicity and just one boson B. If B is condensed then either B is
abelian or Bt = ¢ + r where 1 is a single anyon.

Proof. As there is just a single boson, B = B. Equation (2) from the main text implies

> omgng =y nfNig =1+ nf Ngp. (C1)
t c

Notice, however, that the left-hand side is greater or equal to nf ng. For condensation, this implies nf = 1, and
tellsusthat 3, ninf, = 1 or 2. In the former case, B! = . Thisimplies dg = 1,and so Bisa quantum
dimension 1 boson hence must have Ng; = §,1. In the latter case, B restricts to just two particles with
multiplicity 1 each, so that B! = ¢ + r. O
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Lemma 4. With the conditions of lemma 3, and assuming B has dg > 1, condensation of B can only occur if
NggNEs < NE forall anyons a and b of A.

Proof. Lemma 3 shows B! = ¢ + r, where rasimple object. Consider a € A where a = 1, B. Equation (2)
from the main textforb = Band t = (p reads

ning =n,
= NfB ng
= Ngp- (C2)
Consider now equation (2) from the main text for b = 1, Band for a = b, which gives
Soning = Ni, > ninj. (C3)
t
Combining the a, Band b, Band a, b equations gives the inequality
NgsNgs < Nij. (C4)
O
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