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Abstract
Certain phase transitions between topological quantumfield theories (TQFTs) are driven by the
condensation of bosonic anyons.However, as bosons in a TQFT are themselves nontrivial collective
excitations, there can be topological obstructions that prevent them from condensing. Here we
formulate such an obstruction in the formof a no-go theorem.We use it to show that no condensation
is possible in SO(3)kTQFTswith odd k.We further show that a ‘layered’ theory obtained by tensoring
SO(3)kTQFTwith itself any integer number of times does not admit condensation transitions either.
This includes (as the case k= 3) the noncondensability of any number of layers of the
Fibonacci TQFT.

Topological order, a fundamental concept in quantummany-body physics, is best understood in two-
dimensional gapped quantum liquids, such as the fractional quantumHall effect and certain spin liquids [1–9].
In these systems, quasiparticle excitationswith anyonic quantum-statistical properties emerge [10]. Their fusion
and braiding behavior at large distances define a topological quantum field theory (TQFT), which characterizes
the universal properties of the phase [11–14].

The phase transitions between topological phases are,most of the times, driven by the condensation of
bosons [11, 15–25]. In the context of TQFTs, a boson is an emergent quasiparticle in the topologically ordered
phasewith bosonic self-statistics, but which could have nontrivial fusion and braiding relationswith the other
anyons. Such a quasiparticle can potentially undergo Bose–Einstein condensation, causing a phase transition to
another topologically ordered phase. The topological data of the newphase can be inferred from those of the
initial topological order [25].

Onemotivation to study condensation transitions is to classify topological order. An important example are
the 16 types of gauged chiral superconductors introduced byKitaev [3]. Kiteav showed that while two-
dimensional superconductors are classified by an integer , only 16 bulk phases are topologically distinct. This
construction can be understood by considering ℓ layers of initially disconnected chiral p-wave superconductors,
i.e., elementary (Ising)TQFTs.Upon introducing generic couplings between these layers, one obtains a single
layer of a chiral ℓ-wave superconductor, which corresponds to a specific TQFT inKitaev’s classification. This
physical process of coupling the layers (by condensing inter-layer cooper pairs), corresponds to a condensation
transition on the level of the TQFTs. For every 16<ℓ , there is a unique condensation possible and one obtains
exactly 16 distinct TQFTs including Ising, the toric code and the double semionmodel. They determine the
nature of the topologically protected excitations in the vortices of each superconductor, including their braiding
statistics. In essence, this 16 classification can be seen as a property of the Ising TQFT.

It is imperative to askwhethermulti-layer systems of other TQFTs show a similar collapse of the
classification from  to N for some integerN. In this paper, we derive a criterion forwhen this is not the case,
i.e., when the  classification generated by a given TQFT is stable. This criterion is based on the fact that there
exist bosonic anyons that cannot be condensed. An example are the bosons inmulti-layered Fibonacci
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topological order [17, 25, 26]. In this work, we generalize this observation by formulating a no-go theorem that
constitutes a sufficient obstruction against the condensation of a boson.Our criterion and its proof are given
using the tensor category formulation of topological order [3, 27–34], whichwe can use to describe the
condensation transition axiomatically [16, 17, 25].We apply our no-go theorem to several examples, including
the forementionedmulti-layer Fibonacci TQFTs.

Formalism—Weuse the algebraic formulation of anyon condensation discussed in [25]. Here we simply
restate the important relations and refer the reader to [25] for details. A fusion category is characterized by a set of
anyons a b c, , , ¼and fusion rules a b N cc ab

c´ = å between them. The quantumdimension da gives the size
of the nonlocal internalHilbert space associatedwith anyon a, and is equal to largest eigenvalue of thematrixNa

with elements N Na bc ab
cº( ) . A braided tensor category has additional structure, of whichwewill use the

topological spin aq of a, a complex number with 1aq =∣ ∣ . Bosons are defined by 1aq = . A special role is played
by the vacuum anyon as the unique identity element of fusion. It is a bosonwith quantumdimension 1.

Condensation is based on amapping, called restriction, between the anyons a in the original TQFT and
the anyons t in the condensed fusion category  characterized by integers na

t
0Î :

a a n t a, . 1
t

a
t 


åº " Î

Î

 ( )

Ifmore than one particle appears on the right-hand side of equation (1), we say that the a particle splits. If
n 0a

t ¹ , we say t is in the restriction of a or t aÎ .We require that n 11 =j , wherej and 1 are the vacua in  and
, respectively. Imposing that condensation commutes with fusion implies the fundamental relation [25]

n n N N n , 2
r s

a
r

b
s

rs
t

c
ab
c

c
t

,  
å å=
Î Î

˜ ( )

between the fusion coefficientsNc
ab in and the fusion coefficients Nrs

t˜ in . A corollary to equation (2) [25] is

d n d a, . 3a
r

a
r

r 


å= " Î
Î

( )

The restriction is compatible with conjugation to antiparticles, i.e., n na
t

a
t= ¯
¯, where bar denotes the (unique)

antiparticle of an anyon.We say particle a condenses if aj Î , i.e., n 0a ¹j . Common knowledge in condensed
matter physics says that any bosons can condense. However, itmay also occur that a specific boson a cannot
condense, i.e., there is no solution to the above equations with n 0a ¹j . This is the situationwe shall analyze in
this paper.

Finally, the following definition is useful for formulating our no-go theorem: for a given anyon b, a subset
a a, ,b m1 = ¼{ }of anyons is called a set of zeromodes localized by b [35] if for all i j m, 1, ,= ¼ :

(1)The fusion products a ai j´ do not contain condensable bosons, except the identity if a ai j= ¯ ,6

(2) all ai are zeromodes of b, by whichwemean a b bi ´ = + , (i.e. N 0a b
b

i
> )

(3) if a particle ai is in b then so is its antiparticle.

Note that the choice of b for a given boson b is not unique and that b may ormay not contain the identity. (The
above conditions are satisfied in both cases.)Typically, wewill be interest tofind a set b that is as large as
possible. Tomotivate the terminology of the set b , observe that N 0ab

b > implies that a anyons can always be
emitted or absorbed by b. Therefore, bmust carry a zero-mode excitation of a.We can now state ourfirstmain
result, a general condition underwhich a bosonB cannot condense. It is an obstruction that is sufficient to show
that condensation ofB cannot occur.

No-go theorem—AbosonB cannot condense if there exists a set B , such that the sumof the quantum
dimensions of all anyons in B exceeds the quantumdimension ofB, i.e., if

d d d d . 4B a a am1 2< + + + ( )

Proof.We start by showing that all particles in B do not split, and have distinct restrictions. This follows from
inspection of equation (2) for t j= , a ai= , b aj= ¯ ,

6
In demanding that a ai j´ does not contain condensable bosons, as opposed to not containing any bosons at all (except the identity), we

are anticipating a inductive application of the no-go theorem.Oncewe have shown that a bosonB, whose set B is such that a ai j´ , with
a a,i j BÎ , does not contain any boson (except the identity), is uncondensable, it is allowed thatB appears in the fusion product a ai j´ of
the set B ¢ of another boson B¢.
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n n N n , 5
r

a
r

a
r

i j
c

a a
c

c,
1

i j i j


å åd= + j

Î ¹

( )¯

wherewe used n nc c=j j
¯ and n na

r
a
r

j j
=¯

¯ . By assumption, there are no condensable bosons in a ai j´ ¯ , hence Na a
c
i j¯

and nc
j cannot be both nonzero for any c 1¹ . Thus n n 1r a

r
a
r

i i
å = , implying a single restriction ai

 of ai, with
d da a

i i
= using equation (3).Moreover, n n 0r a

r
a
r

i j
å = if i j¹ , implying that the restrictions of a ai j¹ are

distinct particles.
With this knowledge about the restrictions of the ai, equation (2) for t j= , a ai= , b B= ¯ evaluates to

n n N n N n , 6B
a

B
a

c
a B
c

c a B
B

B
i i

i i
å= = j j

 

( )¯
¯

¯
¯

wherewe used N Na B
B

a B
B

i i
=¯

¯ Inserting this inequality in equation (3) for a=B, and using d da ai i
= , we have

d n N d . 7B B
i

m

a B
B

a
1

i i åj

=

( )

It follows that in a situationwhere equation (4) holds, equation (7) implies n 0B =j , i.e.,B does not condense.
(Note that in the case N 1a B

B
i
> , a stronger formof equation (4)with dai

is replaced by N da B
B

ai i
holds.)

To follow upwith a pictorial representation of these equations, consider the tunneling of anyons across the
domainwall as shown infigure 1, where each particle a in the uncondensed theory is converted into its
restriction a in the gray region. Figure 1(a) shows a vertex allowed by the fusion rule a B Bi ´  in the
uncondensed phase. The bosonB enters the condensed phase, where it can disappear as it is part of the
condensate (one of its restrictions is the vacuumj, theworld lines of which can be removed at will). By the
fundamental assumption that fusion and condensation commute (which is at the heart of equation (2)),
figure 1(a) is equivalent tofigure 1(b). The latter represents a coherent tunneling process that ismediated by the
condensate and convertsB into any of the ai. The existence of this process implies that the distinct restriction ai



of any aimust be in the restriction ofB. Hence, by equation (3), the quantumdimension ofBmust be large
enough to accommodate all the distinct restrictions of the ai, ifB condenses. Therefore if wefind sufficiently
many ai such that equation (4) holds,B cannot condense. ,

Note that the no-go theoremdoes not a priori require knowing the braiding data of—although the
modular tensor category structure fixes that data to some extend. The theorem involves only data obtainable
fromNab

c .We remark that the no-go theorem can only ever yield an obstruction against the condensation of
non-Abelian bosons. For Abelian bosons, the theory after condensation can be constructed explicitly, which is a
constructive proof that there is no obstruction [25].

We nowdemonstrate that the no-go theorem is practically useful by considering three examples: (i)multiple
layers of the Fibonacci TQFT, (ii) single layers of the SO(3)kTQFT for k odd, and (iii)multiple layers of the latter.
Wewill show that all these theories, while containing bosons, do not admit condensation transitions. All the
bosons are noncondensable. Additional general results, concerning for instance TQFTswith a condensing
Abelian sector andwith only a single boson, are given in appendix A.

Example (i):Multiple layers of Fibonacci—The Fibonacci category Fib is a non-Abelian TQFT containing
just one nontrivial particle τwith a fusion rule 1t t t´ = + , a topological spin ei4 5q =t

p , and a quantum
dimension d f=t given by the golden ratio 1 5 2f = +( ) . As Fib does not contain any nontrivial boson,
it cannot undergo a condensation transition.We are interestedwhether the TQFT formed byN identical layers
of Fib , i.e., the TQFT N

FibÄ , admits a condensation transition. TheTQFT N
FibÄ contains 2N particles

corresponding to all possible distributions of τ-particles over theN layers. For each r N0, ,= ¼ there are N

r( )
so-called rt( ) particles with τʼs in exactly r layers, eachwith spin er

ri4 5q =t
p

( ) and quantumdimension

Figure 1.Tunneling processesmediated by an anyon condensate. The gray region is a phase inwhich a bosonB is condensed. (a)
Vertex of a bosonB that localizes a zeromode of anyon ai. In the condensed phase,B can be converted into an identity particle world
line (not shown). By the axioms of anyon condensation, processes (a) and (b) are equivalent, i.e.,B can be converted into ai by
tunneling through the condensate.
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d r
rf=t( ) . The unique r=0 particle is the identity of N

FibÄ . From the topological spin, the bosons in N
FibÄ are

rt( ) particles with r n n5 , = Î . Using the no-go theorem, we show that none of these bosons can condense.
Using proof by induction on n 1 , we show that for any n5 t( ) bosonB, there exists a set n5 t( ) such that

equation (4) holds.Wefirst consider the case n=1.Given a 5t( ) boson, wemust construct a set 5 t( ) for this
boson. Consider the set formed by all 2t( ) particles obtained by replacing any 3tʼs in the bosonwith a 1. There
are 105

2
=( ) such 2t( ) particles for a given 5t( ) boson. They form a set 5 t( ) that obeys point 1–3 from the

definition: point 1 holds as any product of two of these particles has atmost 4 τs and is therefore not a
(potentially condensable) boson. Points 2 and 3 can be checked by using the Fibonacci fusion rules in each layer.
Finally, equation (4)holds because

d d10 8
a

a5
5 2

i

i

5
åf f= < =t
Î t

( )( )
( )

evaluates to about11.1 26.2< .We conclude that none of the 5t( ) bosons condense for any numberN of layers
of Fibonacci TQFT.

For the induction step, we assume that none of the n5 t( ) bosons can condense for n n0< , n 10 > , andwe
show that the same holds for the n5 0t( ) bosons. Define r n5 1 20 0 -≔ ⌊( ) ⌋, where x⌊ ⌋is the largest integer
smaller than or equal to x. For a given n5 0t( ) boson, form the set n5 0

 t( ) out of all r0t( )-particles that are
obtained by replacing any n r5 0 0 t-( ) ʼs in the boson n5 0t( )with a 1. There are n

r

5 0

0
( ) such r0t( ) particles. They

form a set n5 0
 t( ) for n5 0t( ). In particular their fusion products can only contain n5 t( )-bosonswith n n0< ,

which cannot condense by assumption. Equation (4) reads for this case

n

r

5
. 9n n r5 0

0

50 0 0f f< -
⎛
⎝⎜

⎞
⎠⎟ ( )

Using that r n5 20 0~ and n4 5 2n

n
n5

5 2
5 2

0
0

0

0 p~( ) for large n0, we obtain that the right-hand side of

equation (9) grows like n4 n n5 2 5 2
0

0 0f , asymptotically dominating the left-hand side. An explicit evaluation
yields that equation (9) holds for any n 10  in fact.We have thus shown that none of the n5 0t( ) bosons can
condense. This concludes the induction step and the proof that no boson in N

FibÄ can condense.
Example (ii): Single layer of SO(3)k—Our second example focuses on the (single-layer)TQFTs associated

with the Lie group SO(3) at values of odd level k. They contain bosons for an infinite subset of k.We show that
none of these bosons can condense. The SO(3)kTQFTswith k odd have k 1 2+( ) anyons j k0, , 1 2= - ( )
with

d
k

sin

sin 2
, e . 10j

j

k
j

j

2 1

2 2 i j
k

1
2

p

p
q=

+
= p

+
+ +

+
( )

[ ( )]
( )

Wenote that for k odd, all particles have distinct quantumdimensions. The fusion rules are

N
j j j j j k j j1 min ,

0 else
. 11j j

j 1 2 3 1 2 1 2
1 2

3
 

=
- + - -⎧⎨⎩

∣ ∣ { } ( )

The smallest odd k for which SO(3)k contains a boson is k=13, inwhich j=5 is a boson—an uncondensable
one, as we shall see.

The topological spins jq yield the condition j j k1 2+ = +( ) for the lowest j thatmay correspond to a
boson (aside from the vacuum j= 0). (Frequently, this condition cannot bemetwith integer j, as in the k= 13
example, and the lowest boson appears at even higher j.)Weconclude that thefirst boson after j=0 cannot
occur for j lower than

j k 9 4 1 2 . 120 = + -⌊ ⌋ ( )

Wewill nowdiscuss separately bosons j in the three ranges (see figure 2 for two examples)

j j k aI. 4 , 130   ⎢⎣ ⎥⎦ ( )

k j
k j

bII. 4
1

2

1

2
, 130<

-
-

-⎢
⎣⎢

⎥
⎦⎥

⎢
⎣⎢

⎥
⎦⎥ ( )

k j
j

k
cIII.

1

2

1

2

1

2
. 130 -

-
-

<
-⎢

⎣⎢
⎥
⎦⎥ ( )

Due to equation (12), bosons jB in range III have no bosons in their fusion product j jB B´ , other than the
identity. Thus, from equation (2) for t j= , and the fact thatB are their own antiparticles, we conclude that they
cannot split. Using equation (3) and the fact that they have d 1jB

> , we conclude that they cannot restrict to the
vacuum i.e., they cannot condense.
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Wenowuse our no-go theorem to show that bosons jB in range I are noncondensable. Specifically, we show
that the particles j j0 2B< < ⎢⎣ ⎥⎦ form a set jB

 of jB obeying equation (4). Before establishing that they satisfy
the conditions for a set jB

 , let us show that equation (4)holds for jB
 . For large k, we can rely on the following

asymptotic estimate. Using that the sine function in equation (10) ismonotonously increasing with negative
second derivative for j k 4 ⌊ ⌋, the estimate

j j2 1 2 1 14B
j

j

1

2 1B

å+ < +
=

-⎢⎣ ⎥⎦
( ) ( )

implies equation (4) for jB in range I. This inequality holds for all j 10B  . Using equation (12)we conclude that
it applies to all bosons in range I for k 109 .We verified explicitly that inequality(4) holds (using the exact
values of the quantumdimensions) for all bosons in range I for k 109< . Finally, it is readily verified using
equation (11) that jB

 form a set of zeromodes localized by jB provided that all bosonswith j jB< cannot
condense. The proof then proceeds straightforwardly by induction.

We apply our no-go theorem successively to bosons jB in range II in order of increasing jB. Using the result
that all bosons in range I are uncondensable, one verifies that the particles jwith

j k j j1 min 2 , 2 1B B  - -⎢⎣ ⎥⎦{ } form a set jB
 . As for range I, we can estimate the quantumdimensions.

From the relation j k k j ksin 2 1 2 sin 2 1 2B Bp p+ + = - + +[ ( ) ( )] [ ( ) ( )]we can estimate the quantum
dimension of jB using j k k j ksin 2 1 2 2 1 2B Bp p+ + < - + +[ ( ) ( )] ( ) ( ). The quantumdimensions of the
anyons in jB

 are estimated as for range Iwith j k j ksin 2 1 2 2 1 2p p+ + < + +[ ( ) ( )] ( ) ( ). Using these
estimates we find that if

k j j2 1 2 1 15B
j

k j j

1

min 2 , 2 1B B

å- + < +
=

- -⎢⎣ ⎥⎦
( ) ( )

{ }

holds, equation (4) follows. In the case k j j2 2 1B B- < -⎢⎣ ⎥⎦ , equation (15) reduces to
k j k j1 2 2B B

2< - + -( ) ( ), which is true for all jB in range II for all k. In the case k j j2 2 1B B- > -⎢⎣ ⎥⎦ ,

equation (15) simplifies to k j j2 2 2B B
2+ < + ⎢⎣ ⎥⎦( ) , which holds for all jB in range II if k 37 .We verified

explicitly that equation (4) holds for all bosons in range II if k 37< (they appear in k 13, 19, 31= ). This
concludes our proof that no condensation transition is possible in the SO(3)kTQFT for any odd k.

We note that this result can be readily extended to SU(2)kwith k odd, since SO(3)k is the projection of SU(2)k
to anyonswith integer j. One simply includes the half-integer j anyons in the theory (none of which are bosons).
The sets b as defined above remain the same and so do all the quantumdimensions. Hence, we also showed the
noncondensability of SU(2)k, with k odd. This is consistent with the ADE classification of SU(2)k [36]: there are
no off-diagonalmodular invariant partition functions for odd k in SU(2)k [37]. Thus, the no-go theorem
provides a proof of this fact that is complementary to theADE classification.

Example (iii):Multiple layers of SO(3)k—Wecan show that any number of layers of SO(3)k, with k odd, does
not contain condensable bosons. Fixing k, the proof proceeds again by induction. As induction base, we proof
that allmulti-layer anyonswith a nontrivial particle in only a single layer (and the identity anyon in the other
k 1- layers) cannot condense nor split. To show that, we can use the single-layer result from example (ii). For
the induction step, we assume that for afixed k k0 < allmulti-layer anyonswith nontrivial particles in l layers,

l k1 0  , cannot condense and do not split.We can then show that the same holds formultilayer anyonswith
nontrivial particles in k 10 + layers, completing the induction. The details of this proof are given in appendix B.

Summary—Wehave presented a generally applicable no-go theorem against the condensation of a
topological boson and illustrated it with several examples. The proof of our theoremusesmostly the fusion (as
compared to the braiding) information of the TQFT.We showed a connection between our results and theADE

Figure 2.Quantumdimensions and bosons (blue columns) for SO(3)k theories with (a) k=13 and (b) k=103. These are the smallest
k, for which SO(3)k contains two and four bosons, respectively. Indicated are also the ranges I–III defined in equation (13). The
maximumquantumdimension coincides with the boundary between range I and II in equation (13). For instance, to apply the no-go
theorem to the j=5 boson in (a), choose j 2j 5 = == { } and use that d 3.65 » is smaller than d 4.22 » .
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classification of SU(2)k theories, indicating that the no-go theoremmight be useful for the classification of
modular invariant partition functions of conformalfield theoriesmore broadly [25]. It would be interesting to
study, whether other obstructions against boson condensation exist or whether our no-go theorem actually
constitutes a necessary condition. In all examples we know, noncondensability is captured by the no-go
theorem.

The no-go theorem can be used to studywhether a TQFT is N graded under layering. This provides away
to classify TQFTs depending onwhetherN is finite or infinite. As a venue for futurework, when restricting the
condensations to those that preserve certain symmetries of the anyonmodel, one could similarly classify
symmetry enriched topological phases, andwith this also symmetry protected topological phases without
intrinsic topological order. The classification of the latter is often related to the former upon gauging the
protecting symmetry [38, 39].
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AppendixA.No-go theoremwithAbelian sector

Wehave seen from the examples discussed in themain text, that the no-go theorem can often be used to not only
show that individual bosons in a TQFT cannot condense, but that an entire TQFT is not condensable. Here, we
extend this discussion to examples of TQFTs that have noncondensable sub-structures. This problem ismotived
by physical examples: in the fractional quantumHall effect, for instance, one frequently discusses phases that are
described by a direct (or semi-direct)product of anAbelian and a non-Abelian TQFT. A simple example is the

3 Read–Rezayi state of bosons, which is described by the TQFT Fib 2 ´ .While such a theory admits
condensations, already in the N

2Ä sector, when enough layers are considered, one has the intuition that the
noncondensability of Fibonacci should still constrain the possible condensations.

Lemma1.Consider a TQFT

, A1 ´ ( )

where is an Abelian TQFT (i.e., all its anyons have quantumdimension 1). Further, for all particles b Î (not
only for the bosons), except for the vacuum, let there exist a set a a, ,b m1 = ¼{ }of zeromodes of b, containing
anyons from, such that the quantumdimensions satisfy

d d . A2b
i

m

a
1

i å
=

( )

Then, any possible condensation transition will lead to a theory of the form

, A3 ´ ( )

where the Abelian TQFT  can be obtained from through a condensation.

Proof.This lemma follows almost directly from the no-go theorem. Let us denote a particle from ´ by the
pair (b, x)where b Î and x Î . If (b, x) is boson, we can show that it has to be an uncondensable one, except
if b=1. The set

a x a x, , , , , A4b x m, 1 = {( ) ( )} ( )( )

(where a a, , m1  form a set b of zeromodes of bwhose existence is guaranteed by assumption) satisfies all the
conditions 1–3 form the definition of a set of (b, x) zeromodes. Since x is an Abelian particle, dx= 1 and
equation (A2)directly implies that the sumof the quantumdimensions of the particles in b x,( ) satisfies the
inequality(4) from themain text. Hence, (b, x) cannot condense. In turn, this implies any condensable boson in
 ´ is of the form x1,( ). A condensate of this form is transparent to the anyons in andwill thus leave this
sub-TQFTunaffected. It will only induce a condensation  , so that thefinal theory is of the from(A3). ,

We return to the example of Fib 2 ´ . ConsiderN layers of this theory, i.e., N N
Fib 2 ´Ä Ä . Thismulti-layer

TQFT satisfies all assumptions of lemma 1: for each anyon b N
FibÎ Ä , a choice for the set b is given by

b1,b = { }. This is so because all possible bosons appearing in the fusion product of b×b are uncondensable
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by the no-go theorem and the sumof the quantumdimensions of b , given by d1 b+ is larger than db.We
conclude that the N

FibÄ structure is preserved under any condensation transition in such a theory.

Appendix B. Proof for example (iii),multiple layers of SO(3)k

In this section, we show that no condensation is possible in the TQFT SO 3 k
NÄ( ) comprised ofN layers of SO 3 k( )

for any odd k and any integerN. The proof goes by induction.We denote the particles in SO 3 k
NÄ( ) with a

shorthand notation. An anyon that has the identity particle from SO 3 k( ) in all layers, except for the k0 layers
i i i, , , k1 2 0

 , is denoted by j j ji i ik1 2 0
{ }. Here j k1 1 2il

  -( ) can stand for any anyon fromSO(3)k (except
the identity 0), for all l k1, , 0=  .

B.1. Induction base
First, consider particles ji{ }with just one nontrivial anyon in some layer i. This will serve as the induction base.
By the no-go theorem and our proof in example (ii), we know that no bosons of form ji{ } can condense. (Use the
particles with only one nontrivial in that same layer i to build the set ji

 as elaborated for example (ii).)As a
corollary, the anyons ji{ }do not split: when fusedwith themselves no condensable boson appears in the fusion
product, which prevents splitting by equation (2) from themain text for t j= .

B.2. Induction step
Weassume that for any l k1 0  all j j ji i il1 2

{ }

(1) do not condense and

(2) do not split.

We now show the induction step, namely that all particles with nontrivial anyons in k 10 +( ) layers
j j ji i ik1 2 0 1+

{ }neither condense nor split.
We begin by showing that j j ji i ik1 2 0 1+

{ }cannot condense. The particles j j ji i ik1 2 0 1+
{ }can be obtained by

fusing a j j ji i ik1 2 0
{ }with a jik0 1+

{ }, where i i i, ,k k1 10 0
Ï+ { }. In this case, equation (2) from themain text reads

for t j=

N n . B1
j j j j j j j,i ik ik i i ik ik1 0 0 1 1 2 0 0 1

=j j


+


+ 
˜ ( ){ } { } { }

Now, because of the uniqueness of the antiparticle, N
j j j,i ik ik1 0 0 1

j


+


˜
{ } { } can be either 0 or 1. If it was 1,

j j ji i ik1 2 0

{ } would be the antiparticle of jik0 1


+

{ } . Because all particles are their own antiparticles, this would

imply j j j ji i i ik k1 2 0 0 1
= 

+
{ } { } . However, this is not possible for k 10 > , because the associativity of fusion

would then also imply that ji1
{ } is the antiparticle (and coinciding with) j j ji i ik k2 0 0 1


+

{ } , i.e.,

j j j ji i i ik k1 2 0 0 1
= 

+
{ } { } . Remembering that j j ji i ik1 2 0

{ }, j j ji i i 1k2 2 0+
{ }do not split, and equating the

quantumdimensions of the particles for these two identificationswe have

d d d d

d d d d

,

. B2

j j j j

j j j j

i i ik ik

i i ik ik

1 2 0 0 1

1 2 0 0 1

=

=
+

+



 ( )

For k 10 > , this contradicts the fact that all nontrivial particles in this theory have quantumdimensions d 1> .
This rules out the possibility N 1

j j j,i ik ik1 0 0 1

=j


+


˜
{ } { } and shows that j j ji i ik1 2 0 1+

{ }does not condense for k 10 > .

The case k 10 = needs to be considered separately, as both lines in equation (B2) are identical in this case,
and therefore do not lead to a contradiction. Assume that N 1

j j,i i1 2

=j
 

˜
{ } { } . In the case j ji i1 2

¹ , we can rely on the

following argument to disprove this assumption: as all anyons in SO(3)kwith k odd have distinct quantum
dimension, it follows that the two anyons ji1{ }and ji2{ } restrict to distinct particles and in particular

j j
i i1 2

j Ï ´ —with equation (2) from themain text this implies that j ji i1 2
{ }neither splits nor condenses. In the

case j j ji i1 2
= º , define j j ji i1 2

ºˆ { }.Wewant to show that ĵ does not condense. As there are no fermions in

SO(3)kwith k odd, ĵ can only be a boson if 1jq = , i.e., if ji1{ }and ji2{ }are bosons. Our no-go theorem applies to
all bosons ji1{ }and ji2{ }with zeromode sets ji1

{ } and ji2
{ }.We can then use the set j j ji i1 2

  = ´ˆ { } { },

containing the fusion product of any particle in ji1
{ }with any particle in ji2

{ }, to prove that ĵ cannot condense.

To show that j ˆ is a set of zeromodes of ĵ , themain challenge is to show that the product of any two elements
from j ˆ cannot condense. The product of any two elements from j ˆ is always of the form j ji i1 2

{ }.We have
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shown that when j ji i1 2
¹ such particles cannot condense.We therefore need only show that nontrivial particles

of form j ji i1 2
{ }with j ji i1 2

= both bosons cannot condense. In order to show they are not condensable, we can use

the proof given for example (ii). For that, observe that the anyons ĵ have the same fusion coefficients among

themselves as the j anyons in SO(3)k in example(ii)have, i.e., N N
j j
j

j j
j

, ,=
¢


¢


ˆ ˆ
ˆ

, where j j j, ,¢  ÎSO(3)k. Recall that

conditions 1–3 from the definition of a set of zeromodes only depend on the fusion coefficients Nj j
j
, ¢
 and the

information, which particles are bosons.Hence, conditions 1–3 are satisfied for j ˆ whenever they are satisfied
for j in example(ii). It remains to show that j ˆ is of large enough quantumdimension to satisfy the

fundamental inequality equation (4) from themain text. For ĵ , equation (4) from themain text takes the form

d d d d . B3j j
a

a
a

a
2

2

j j 
å å= < =
Î Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )ˆ

ˆ
ˆ

ˆ

Upon taking the square root, this is equivalent to equations (14) and(15) from themain text, whichwere shown
to hold in example (ii). Therefore the j j ji i1 2

=ˆ { } anyons do not condense and all ji{ }have distinct restrictions.
We conclude that for any k 10  only N 0

j j j,i ik ik1 0 0 1

=j


+


˜
{ } { } is permitted and hence equation (B1) implies

that j j ji i ik1 2 0 1+
{ }does not restrict to the identityj, i.e., it does not condense. This proves the assumption 1 of

the induction step for k 10 + .
To complete the induction step, we need to show that j j ji i ik1 2 0 1+

{ }does not split. For that, consider
equation (2) from themain text for j ji ik1 0 1+

{ }with itself and t j=

n N n

n 1. B4
r

j j
r

c
j j j j

c
c

2
,

1

i ik i ik i ik1 0 1 1 0 1 1 0 1
å å=

= =

j

j

+ + +
  ( )

( )

{ } { } { }

Wehave used that none of the j j ji i il1 2
{ }with l k1 10  + can restrict to the identityj since they cannot

condense. This implies none of j ji ik1 0 1+
{ } splits, which proves the assumption 2 of the induction step

for k 10 + .
We have thus shown inductively that none of the particles (except for the vacuum) restricts to the vacuum in

theN-layer theory SO(3) k
NÄ . Thus, there is no condensate andwith it no condensation in any numberN of layers

of SO(3)kwith k odd.

AppendixC.General constraints on boson condensation

In this section, we list lemmas that pose other general constraints on condensation transitions in TQFTs.

Lemma2. Suppose S a a, , m1= { } is a collection of particles in a TQFT  with a ai i´ ¯ containing no bosons other
than the identity—i.e., na

t
a
t

i
i

d=  and ai does not split.Moreover assume a ai j¹  for i j¹ . Then if a boson B

appears in the fusion of ai and aj¯ , a a Bi j´ = + ¯ for any i j¹ , then B is not condensable.

Proof.Using equation (2) from themain text for a ai= , b aj= ¯ and t j= , we have

n n n Nij t a
t

a
t

c c a a
c

i j i j
d = å = å j

¯ ¯ . For i j¹ we get n N 0B B a a
B
i j

å =j
¯ . So if bosonB appears in a ai j´ ¯ , wemust have

n 0B =j , so thatB is not condensable. ,

Lemma3.Consider a TQFT  with no fusionmultiplicity and just one boson B. If B is condensed then either B is
abelian or B rj= + where r is a single anyon.

Proof.As there is just a single boson, B B= . Equation (2) from themain text implies

n n n N n N1 . C1
t

B
t

B
t

c
c BB

c
B BB

Bå å= = +j j ( )

Notice, however, that the left-hand side is greater or equal to n nB B
j j. For condensation, this implies n 1B =j , and

tells us that n n 1 or 2t B
t

B
tå = . In the former case, B j= . This implies d 1B = , and soB is a quantum

dimension 1 boson hencemust have NBB
a

a,1d= . In the latter case,B restricts to just two particles with
multiplicity 1 each, so that B rj= + . ,
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Lemma4.With the conditions of lemma 3, and assuming B has d 1B > , condensation of B can only occur if
N N NBB

a
BB
b

ab
B for all anyons a and b of.

Proof. Lemma 3 shows B rj= + , where r a simple object. Consider a Î where a B1,¹ . Equation (2)
from themain text for b=B and t j= reads

n n n

N n

N . C2

a
r

B
r

a
r

aB
B

B

aB
B

=

=

=

j

( )

Consider now equation (2) from themain text for b B1,¹ and for a b¹ , which gives

n n N n n . C3
t

a
t

b
t

ab
B

a
r

b
rå = ( )

Combining the a B, and b B, and a b, equations gives the inequality

N N N . C4BB
b

BB
a

ab
B ( )

,
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