UNIVERSITY^{OF} BIRMINGHAM

Research at Birmingham

Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions

Lautenschlager, Stephan; Ferreira, Gabriel; Werneburg, Ingmar

DOI: 10.3389/fevo.2018.00007

Document Version Peer reviewed version

Citation for published version (Harvard):

Lautenschlåger, S, Ferreira, G & Werneburg, I 2018, 'Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions', Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2018.00007

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Sensory evolution and ecology of early turtles revealed by digital endocranial reconstructions

Stephan Lautenschlager¹, Gabriel S. Ferreira^{2, 3, 4}, Ingmar Werneburg^{3, 4, 5*}

¹School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom,
 ²Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil,
 ³Seckenberg Center for human evolution and Palaeoenvironment, Germany, ⁴Fachbereich
 Geowissenschaften, Universität Tübingen, Germany, ⁵Leibniz-Institut für Evolutions- und
 Biodiversitätsforschung, Museum für Naturkunde, Germany

Submitted to Journal: Frontiers in Ecology and Evolution

Specialty Section: Paleontology

Article type: Original Research Article

Manuscript ID: 323974

Received on: 24 Oct 2017

Revised on: 10 Jan 2018

Frontiers website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

S.L. and I.W. conceived and designed the study, S.L. performed the three-dimensional reconstruction, I.W. provided digital datasets, S.L., G.S.F. and I.W. collected, analyzed and interpreted the data. S.L. and G.S.F. created figures and supplementary data. S.L., G.S.F. and I.W. contributed equally to the discussion, preparation and writing of the paper.

Keywords

Neuroanatomy, sensory adaptation, 3D visualization, Digital endocast, stem-turtle, turtle origin

Abstract

Word count: 184

In the past few years, new fossil finds and novel methodological approaches have prompted intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on their ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat occupation, proposed for the earliest stem-turtles. While research has focused largely on the origin of the anapsid skull and unique postcranial anatomy, little is known about the endocranial anatomy of turtles. Here, we provide 3D digital reconstructions and comparative descriptions of the brain, nasal cavity, neurovascular structures and endosseous labyrinth of *Proganochelys quenstedti*, one of the earliest stem-turtles, as well as other turtle taxa. Our results demonstrate that *P. quenstedti* had retained a simple tube-like brain morphology with poorly differentiated regions and mediocre hearing and vision, but a well-developed olfactory sense. Endocast shape analysis indicates that an increase in size and regionalization of the brain took place in the course of turtle evolution, achieving an endocast diversity comparable to other amniote groups. Based on the new evidence, we further conclude that *P. quenstedti* was a highly terrestrial, but most likely not a fossorial taxon

Funding statement

This research was funded by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) grants 2016/03934-2 and 2014/2539-5 to G.S.F. and by SNF (Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung advanced postdoc mobility grant P300PA_164720 to I.W.

Ethics statements

(Authors are required to state the ethical considerations of their study in the manuscript, including for cases where the study was exempt from ethical approval procedures)

Does the study presented in the manuscript involve human or animal subjects: No

1	Sensory evolution and ecology of early turtles revealed by digital
2	endocranial reconstructions
3	
4	Stephan Lautenschlager ^{1,°} , Gabriel S. Ferreira ^{2,3,4,°} Ingmar Werneburg ^{3, 4, 5,*}
5	
6	¹ School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham,
7	UK
8	² Biology Department, Faculty of Philosophy, Science, and Letters at Ribeirão Preto, University of
9	São Paulo, Ribeirão Preto, Brazil
10	³ Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) at Eberhard Karls
11	Universität, Tübingen, Germany
12	⁴ Fachbereich Geowissenschaften der Eberhard Karls Universität, Tübingen, Germany
13	⁵ Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin,
14	Germany
15	
16	° equally contributed equally to the paper
17	
18	*Correspondence: Ingmar Werneburg ingmar.werneburg@senckenberg.de
19	

1

20 Abstract

21	In the past few years, new fossil finds and novel methodological approaches have prompted
22	intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on their
23	ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat occupation,
24	proposed for the earliest stem-turtles. While research has focused largely on the origin of the
25	anapsid skull and unique postcranial anatomy, little is known about the endocranial anatomy of
26	turtles. Here, we provide 3D digital reconstructions and comparative descriptions of the brain, nasal
27	cavity, neurovascular structures and endosseous labyrinth of Proganochelys quenstedti, one of the
28	earliest stem-turtles, as well as other turtle taxa. Our results demonstrate that P. quenstedti had
29	retained a simple tube-like brain morphology with poorly differentiated regions and mediocre
30	hearing and vision, but a well-developed olfactory sense. Endocast shape analysis indicates that an
31	increase in size and regionalization of the brain took place in the course of turtle evolution,
32	achieving an endocast diversity comparable to other amniote groups. Based on the new evidence
33	presented herein, we further conclude that P. quenstedti was a highly terrestrial, but most likely not
34	a f ossorial, taxon.
35	

Formatted: Font color: Auto

36 Keywords: neuroanatomy; sensory adaptation; 3D visualization; digital endocast; stem-turtles;

37 turtle origin

38

Formatted: Font color: Auto, English (United States)

39 Introduction

40 Turtles (Testudinata sensu Joyce et al., 2004) are a diverse group of reptiles with an unusual 'body 41 plan' bauplan' fundamentally different from that of other amniotes. Unique morphological 42 characters, including the anapsid cranial configuration, which lacks temporal fenestrations, and the 43 presence of a bony shell formed by a dorsal carapace and a ventral plastron have long obfuscated the phylogenetic affinities of turtles (Rieppel, 2007; Lyson et al., 2010). While most molecular 44 45 studies have recovered turtles nested within diapsid reptiles and often as a sister-group to Archosauria (birds and crocodiles) (Hedges and Poling, 1999; Wang et al., 2013; Field et al., 2014), 46 47 most studies based on comparative anatomy have placed turtles outside of Diapsida (Gauthier et al., 48 1988; Lee, 1997; Werneburg and Sánchez-Villagra, 2009; Neenan et al., 2013; Scheyer et al., 2017) 49 or alternatively inside Lepidosauromorpha (deBraga and Rieppel, 1997; Rieppel and Reisz, 1999; 50 Li et al., 2008; Liu et al., 2011). The scant fossil record of stem-turtles (i.e., non-Testudines Testudinata) has further obscured the evolutionary origin of this group. Recent discoveries of new 51 52 species and the reanalysis of existing specimens with novel methodological approaches (e.g. 53 computed tomography and digital visualization) have provided new data to the debate of turtle 54 ancestry (Li et al., 2008; Bever et al., 2015; Schoch and Sues, 2015). These studies found support 55 for the diapsid origin of turtles and produced potential evidence for a closure of the temporal fenestrae early in their evolutionary history (Schoch and Sues, 2015; Lyson et al., 2016; 56 57 Werneburg, 2015). 58 Regarding the environmental origin of the group, although all Triassic turtles were clearly 59 terrestrial (Joyce, 2015), data provided by recently described taxa have painted an ambiguous 60 picture regarding the paleoecological setting in which the Testudinata ancestors evolved. While the 61 potentially earliest known potential proto-turtle (i.e., non-Testudinata Pantestudines) Eunotosaurus 62 africanus (ca. 260 Ma) has been found in terrestrial environments (Lyson et al., 2016), the 63 somewhat younger Pappochelys rosinae (ca. 240 Ma) and Odontochelys semitestacea (ca. 220 Ma) 64 were retrieved from lacustrine and deltaic deposits and were considered to have been semi-aquatic 65 (Li et al., 2008; Rieppel, 2013; Schoch and Sues, 2015). In the latter-last two taxa, the 66 dorsoventrally flattened, expanded ribs and thickened gastralia have been interpreted as 67 mechanisms to controladaptations for buoyancy control in an aquatic environment (Schoch and 68 Sues, 2015). In contrast, the morphology of the ribs, the as well as the more rigid body wall, 69 powerful forelimbs and a triangular skull, have been considered to represent adaptations to 70 fossoriality in E. africanus (Lyson et al., 2016). On the other hand, the type localities of both P. 71 rosinae and O. semitestacea have also yielded terrestrial taxa (Joyce, 2015; Schoch and Sues, 2017) 72 and, in fact, terrestrial diapsid remains are dominant in at the type locality of the former (Schoch

Formatted: Font color: Auto

73	and Sues, 2015). Additionally, Joyce (2015) argued in favor of Odontochelys semitestacea as a	
74	terrestrial proto-turtle, based on its phalangeal formula. Hence, terrestrial, fossorial or-and semi-	
75	aquatic habits were all previously have all been suggested as the ecological settings during for the	
76	early stages of turtle evolution, before the origin of a-the protective shell characteristic of the	
77	definitely terrestrial stem-turtles (Joyce and Gauthier, 2004; Scheyer and Sander, 2007; Joyce,	
78	2015).	
79	While research on early turtles has focused largely on the acquisition of the anapsid	
80	condition and the evolution of the postcranial anatomy employing comparative morphology,	
81	histology and genetics, little is known about the endocranial anatomy of stem-turtles (as well as or	
82	indeed turtles in general). Using micro-computed tomography (μCT) scanning and digital	
83	visualization, we here provide a reconstruction of the endocranial anatomy of Proganochelys	
84	quenstedti, one of the earliest testudinates from the Late Triassic of Germany. We further compare	Formatted: Font color: Auto
85	the reconstructed brain anatomy with different stem- and crown-turtles (Testudines) and other	
86	vertebrate taxa using endocast outline analysis to elucidate related anatomical and ecological	
87	aspects of turtle origins.	
88		
89		
90	Materials and Methods	
91	For the digital reconstruction of endocranial anatomy (brain, inner ear, neurovascular structures,	
92	nasal cavity) two specimens of Proganochelys quenstedti from the Late Triassic of Germany were	
93	studied: MB 1910.45.2 (Museum für Naturkunde Berlin) from the Baerecke and Limpricht Quarry,	
94	Halberstadt (Jaekel, 1918), and SMNS 16980 (Staatliches Museum für Naturkunde Stuttgart) from	
95	the Plateosaurus-quarry in Trossingen: (Gaffney, 1990). Both specimens consist of nearly	Formatted: Font color: Auto
96	complete and articulated cranial skeletons. MB 1910.45.2 shows substantial taphonomic arteifacts	
97	in the form of anteroposterior shearing and some moderate mediolateral crushing and deformation.	
98	However, these artiefacts only marginally affect the braincase and the digital reconstruction of the	
99	respective-various endocranial structures (see Results for more details).	
100	MB 1910.45.2 was CT scanned at the Leibniz-Institut für Zoo- und Wildtierforschung	Formatted: Font color: Auto
101	Berlin / Germany (IZW) using a Toshiba Aquilon ONE medical CT scanner. Scanning parameters	
102	properties were set at 225 kV and 300 μ A resulting in an image stack of 512 x 512 x 213 pixels and	
103	a voxel size of 2.0 mm per slice. The dataset was subsequently 'upsampled' (1024 x 1024 x 426	
104	pixels, 0.5 mm effective voxel size) by averaging the existing slice data. This process does not	
105	increase the actual resolution of the data, but provides more slices available for segmentation	
106	permitting clearer identification of features and resulting in smoother surface models.	

107	SMNS 16980 was scanned at the Riedberg Campus of Goethe-Universität Frankfurt /	Formattee
108	Germany using a Phoenix Nanotom m scanner. Due to the its relatively large size, the specimen	
109	was scanned in three stages. The resulting image stacks were combined into a single stack with	
110	3583_x_4011_x_5658 pixels and a voxel size of 0.025 mm per slice. The dataset was subsequently	
111	downsampled (870 x 954 x 1161 pixels, 0.1 mm voxel size) to permit further processing and	
112	segmentation.	
113	Datasets of-for both specimens were imported into Avizo 8 (Visualisation Science Group)	
114	for the segmentation of endocranial structures. Due to the poor greyscale grayscale attenuation (in	
115	particular for SMNS 16980), the segmentation process-was performed manually using the	
116	paintbrush and interpolation tools in the Avizo segmentation editor (both reconstructions performed	Formattee
117	by the first author for consistency following Balanoff et al. 2016. 3D surface models and volumes	Formattee
118	were created to visualize the endocranial components. In addition, surface models of the individual	
119	structures were downsampled to a degree that allowed for small file sizes but preserved all details,	
120	and were exported as separate OBJ-files for the creation of the interactive 3D-figures provided in	
121	the supplementary material as outlined in Lautenschlager (2014b) using Adobe 3D reviewer (Adobe	
122	Systems Inc.).	
123	To provide a basis for comparisons, the endocranial anatomy of nine extant turtles and of	
124	one additional stem-turtle, Naomichelys speciosa (FMNH PR273), was reconstructed in the same	
125	manner as described above. FMNH PR273 was scanned at the Institut für Naturwissenschaftliche	Formattee
126	Archäologie at the Universität Tübingen at a resolution of 0.1_mm resulting in an image stack with	
127	of 1068 x 1382 x 622 pixels. The following extant species were scanned at the Steinmann-Institut	Formattee
128	für Geologie, Mineralogie & Paläontologie / Rheinische Friedrich-Wilhelms-Universität Bonn /	
129	Germany and at the Museum für Naturkunde Berlin / Germany: Podocnemis unifilis (SMF 55470),	Formattee
130	Chelodina reimanni (ZMB Herpetologie 49659), Emydura subglobosa (PIMUZ lab# 2009.37),	
131	Pelodiscus sinensis (IW576-2), Chelonia mydas (ZMB 37416 MS), Macrochelys temminckii	
132	(TCGT, Teaching collection Geowissenschaften Towisse), Emys orbicularis (WGJ 1987a),	
133	Platysternon megacephalum (SMF 69684), Malacochersus tornieri (SMF 58702) (see	
134	Supplemental Information-Material for collection-Collection abbreviations). Data derived from the	
135	reconstructions was further used for a shape analysis of the brain morphology.	
136	Due to the absence of unambiguous and elearly consistently identifiable landmarks on the	
137	endocast across different amniote taxa, outline shape analysis was performed to quantify	
138	morphological differences. Although this approach uses only two-dimensional outlines (in contrast	
139	to three-dimensional landmarks), it allows for the quantification of shape data of for geometries	
140	lacking homologous landmarks (Haines & Crampton, 2000). For shape analysis, a sagittal cross-	

Formatted: Font color: Auto

Formatted: Font color: Auto
Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

141	sections through the surface models of each the brain (i.e., digital cast of the endocranial cavity)	
142	were-was produced in Avizo for all-each reconstructions. Contours of the two-dimensional cross-	
143	sections were imported into tpsDig2.16 (Rohlf, 2010), digitised digitized and saved as 1000 x/y-	
144	coordinate pairs. All outline data were subsequently analyzed in PAST <u>23,17</u> (Hammer et al.,	Formatted: Font color: Auto
145	2001) to performusing Efast Fourier transformation (FFT) and principal components analysis (PCA)	Formatted: Font color: Auto
46	usingwith, the hangle module as outlined in Crampton & Haines (1996) and Lautenschlager (2014a).	Formatted: Font color: Auto
47	Outlines were smoothed ten times to eliminate pixel noise, and <u>24-23</u> Fourier harmonics were found	Formatted: Font color: Auto Formatted: Font color: Auto
48	to describe the outlines of all sampled taxa <u>sufficiently (average Fourier power > 99%) (see also</u>	Formatted: Font color: Auto
49	<u>Supplementary Material</u>). In addition to the reconstructed endocasts, further outlines of 52 taxa	Formatted: Font color: Auto
50	were collected from the literature (Hopson, 1979; Franzosa, 2004; Neenan and Scheyer, 2012; Bona	Formatted: Font color: Auto
51	and Paulina-Carabajal, 2013; Carabajal et al., 2013; George and Holliday, 2013; Herrera et al.,	
52	2013; Holloway et al., 2013; Laaß et al., 2017; Paulina-Carabajal et al., 2017; von Baczko and	
53	Desojo, 2016; Lautenschlager and Butler, 2016; Jirak and Janacek, 2017; Pierce et al., 2017; and	
54	Digimorph) for different turtle, archosauromorph, lepidosauromorph and other amniote taxa (for list	
55	of taxa see Table S2). These outlines were redrawn in Adobe Illustrator to ensure sufficient	Formatted: Font color: Auto
56	resolution for the digitization process. For PCA, all taxa were each taxon was assigned to a	
57	phylogenetic and an ecological (marine, freshwater, terrestrial, fossorial) group. To test for	
58	significant differences between those groups, we also conducted a non-parametric MANOVA test	
59	(Anderson, 2001) using PC scores representing 95% of total variance transformed into an Euclidean	
60	distance matrix, and replicated with 10000 permutations and compared using Bonferroni correction	
61	for the post-hoc analyses for test significance of pairwise distances.	
62		
63	Results	
64		
65	Endocranial anatomy,	Formatted: Font color: Auto
66	The reconstruction of MB 1910.45.2 (Figures 1A–1D) provided most details of the endocranial	Formatted: Font: Italic, Font color: Auto
67	anatomy, but exhibited some moderate medio-lateral deformation. In comparison, the	
68	reconstruction of SMNS 16980 (Figures 1E–1H) showed no obvious artiefacts, but the poor	
.69 70	greyscale grayscale contrast permitted only a few structures (i.e., brain, pituitary fossa and some	
70	cranial nerves) to be visualized. In combination, both specimens allowed for a detailed	
71	reconstruction of most endocranial components.	
	The brain endocast is anteroposteriorly elongate and straight in both specimens, with only	
72 73 74	The brain endocast is anteroposteriorly elongate and straight in both specimens, with only moderate cephalic and pontine flexures (Figures 1B, 1F). The endocasts are tubular and mediolaterally narrow without prominent expansion or constriction of the fore-, mid- or hindbrain	

175 regions. The close similarity of these features in both specimens confirms that this morphology is 176 natural and unlikely to be a result of taphonomic deformation. The olfactory nerve (CN I) 177 contributes approximately a third to half of the full endocast's length, but a clear distinction 178 between the base of the olfactory nerve and the cerebral hemispheres is not visible. The olfactory 179 bulbs are only weakly reproduced by the ventral surfaces of the nasals. Cerebral hemispheres or 180 distinct optic lobes are not visible in both either specimens, suggesting that either both structures 181 was were very small and/or that the venous sinus and the dura mater obscured the underlying 182 morphology.

183 The midbrain region is confluent with the forebrain and only weakly demarcated. The only 184 distinguishing feature is a dorsal expansion extending above the level of the olfactory nerve. This 185 dural peak or cartilaginous rider (Zangerl, 1960; Gaffney and Zangerl, 1968; Paulina-Carabajal et 186 al., 2017) is more prominently developed in MB 1910.45.2 (Figure 1B). In SMNS 16980, the dorsal 187 expansion is shallower and somewhat separated from the main body of the midbrain by a bony 188 margin, suggesting that this structure corresponds to the cartilaginous portion of the supraoccipital, 189 which ends abruptly anteriorly in Proganochelys quenstedti (Gaffney, 1990). The pituitary fossa is visible in SMNS 16980 and forms a pendant pocket, projecting ventrally from the main body of the 190 191 midbrain endocast.

192 The hindbrain region is anteroposteriorly short and not constricted mediolaterally between 193 the endosseous labyrinths. Floccular lobes are not visible. Posteriorly, the hindbrain exits the 194 braincase through the foramen magnum, which is oval and wider than high in SMNS 16980 and 195 slightly higher than wide in MB 1910.45.2. The latter may be the result of the mediolateral 196 compression of this specimen.

197 The nasal cavity is very enlarged when compared to the other sampled taxa (Figures 2, 3; 198 Table 1). The strong lateral compression of <u>MB 1910.45.2</u>the latter specimen_may be responsible 199 for the seemingly increased volume, and, hence, we consider the reconstruction of the nasal cavity 200 in SMNS 16980 more reliable. Usually, three portions of the nasal cavity can be identified in turtles 201 and other reptilians (Parsons, 1959, 1970; Halpern, 1992; Paulina-Carabajal et al., 2017): the 202 vestibulum nasi, which connects the nasal chamber to the external nares; the ductus 203 nasopharyngeus, connecting the nasal chamber to the choanae; and the cavum nasi proprium, the 204 chamber itself, bounded anteriorly by the vestibulum, posteroventrally by the ductus, and 205 posterodorsally by the olfactory nerve (CN I). The ductus nasopharyngeus can be distinguished 206 from the rest of the nasal cavity in P. quenstedti as two ventrolateral projections (Figure 1). A 207 proper duct was not expected (at least not bounded by bone) was not expected, since the choanae in 208 P. quenstedti are very extensive, and occupy almost the whole ventral surface of the nasal cavity.

Formatted: Font color: Auto

The vestibulum, on the other hand is short, as in most other turtles (Paulina-Carabajal et al., 2017), connected to the large cavum nasi proprium, which constitutes most of the nasal cavity. The cavity as a whole is considerably broad and also high in comparison <u>(Figures 2, 3) to several other taxa</u> (Carabajal et al., 2013; Paulina-Carabajal et al., 2017).

213 The endosseous labyrinth is reconstructed only for MB 1910.45.2-only, as the graey-scale attenuation did not allow a differentiation of the respective bony housing in SMNS 16980. It is 214 215 dorsoventrally compressed and compact. The anterior and posterior semicircular canals are small₁ 216 and anteroposteriorly longer than high and have low internal radii. The crus communis is also very 217 low in comparison to other taxa (Carabajal et al., 2013; Mautner et al., 2017; Paulina-Carabajal et 218 al., 2017; Ferreira et al., in press) and-which results in an almost horizontal orientation of the 219 anterior and posterior semicircular canals (Figure 4). The lateral semicircular canal barely extends 220 mediolaterally from the vestibulum. The cochlear duct is expanded ventrally, but short. The canal of 221 the fenestra ovalis is clearly visible projecting anterolaterally from the vestibulum.

222 The proximal portion of the majority of cranial nerves could be reconstructed for MB 223 1910.45.2 (Figure 1), whereas only some of the larger nerve canals are visible in SMNS 16980. The 224 optic nerves (CN II) exit the braincase through two large (3 mm in diameter each) foramina 225 anteriorly and ventrally from the cerebral region of the endocast in MB 1910.45.2. Posterior and 226 lateral to CN II, the oculomotor (CN III) and possibly the trochlear nerve (CN IV) (Gaffney, 1990) 227 originate ventrolaterally. In SMNS 16980, CN II-IV could not be reconstructed. The foramina 228 through which those three cranial nerves (II-IV) exit the braincase are formed by the laterosphenoid 229 (="pleurosphenoid") (Gaffney, 1990; Bhullar & Bever, 2009). This is the second P. quenstedti 230 specimen with a preserved laterosphenoid, however the fact that this ossification isits severely 231 erushing crushed refrain leads us to refrain from further commenting further on the its morphology 232 of this ossification. The trigeminal nerve (CN V) is large (ca. 6 mm in diameter) and exits the 233 braincase laterally in both specimens through the prootic foramen. Based on both specimens (as 234 well as other specimens described by Gaffney, 1990) we confirm that this foramen is surrounded 235 exclusively by the prootic bone, contrary to Bhullar & Bever's (2009) interpretation that the 236 laterosphenoid would form its anterior margin. A separation of the ophthalmic branch (CN V₁) is 237 apparent on the right side in MB 1910.45.2, but this could be the a result of the high degree of 238 distortion of this specimen.

The abducens nerve (CN VI), clearly visible in both specimens, originates from the ventral
surface of the endocast. It pierces the basisphenoid through the foramen nervi abducens and enters
<u>laterally</u> the pituitary fossa-<u>laterally</u>, which is bottomed by the sella turcica (Gaffney, 1990).
Posterior to CN V, the facial nerve (CN VII) exits the braincase laterally through the protic. In MB

Formatted: Font color: Auto

Formatted: Font color: Auto

243 1910.45.2, a distal branching of CN VII outside the braincase wall is visible, also on the prootic 244 bone. The vestibulocochlear nerves (CN VIII) could not be reconstructed in either specimen. The 245 foramina for the CN VIII branches are usually very small and may lie on cartilaginous structures 246 (Gaffney, 1979), so they are not expected to leave unambiguous traces on fossilized skulls. The 247 glossopharyngeal (CN IX), vagus (CN X) and accessory nerves (CN XI) originate immediately 248 posterior to the endosseous labyrinth and exit the braincase though the anterior jugular foramen in 249 MB 1910.45.2. Although the sutures are not very clear, this foramen is thought to be formed by the 250 exoccipital, basioccipital and opisthotic in P. quenstedti (Gaffney, 1990). In SMNS 16980, a large 251 nerve canal originates from-in a more dorsolateral position (Figure 1). Due to the low resolution, it 252 is unclear whether this canal represents the anterior jugular foramen or more likely parts of the 253 longitudinal sinus, though the latter is more likely. The hypoglossal nerve (CN XII) is transmitted 254 through a single foramen on each side of the basioccipital (posterior to the jugular foramen) in both 255 specimens.

257 <u>Endocast outline analysis</u>

256

258 The morphology of the endocast of *P.Proganochelys quenstedti* was compared to different turtles . 259 and other amniote taxa using shape analysis. The PCA results show that the first three PCs account 260 for 71.7% (Table 2) of the brain endocast outline shape variation (Figures 5, 6). In all-no PC plots is 261 there is no clear separation between either the phylogenetic or the ecological groups considered. 262 However, the PERMANOVA tests supports significant differences of that Lepidosauromorpha 263 differs significantly from Archosauromorpha (p = 0.0006) and from Testudinata (p = 0.003) and 264 noalthough these tests find no significant differences between the ecological groups (Table 3). The 265 outgroup *Diadectes* is recovered consistently in a position inside the morphospace occupied by the 266 other groups, whereas *P. guenstedti* is displaced from the occupied area in all plots; however, on the 267 PC1 axis, Kawingasaurus is even more displaced on-in the positive direction (Figures 5, 6). P. 268 quenstedti is distant from other turtles and the minimum spanning-tree (see Supplementary 269 Material) shows aplaces it closer position to the lepidosauromorphs Placodus and Chalarodon, and 270 to the archosauromorph Pseudopalatus, on the PC1/PC2, PC1/PC3 and PC2/PC3 plots, 271 respectively. Considering With regard to the ecological morphospaces, P. quenstedti is similarly found in a position outside of all the groups, except on the PC1/PC3 plot, in on which it is inside the 272 273 fossorial morphospace and much-very close to the terrestrial occupied morphospacesone (Figure 274 5D). 275

276 Discussion

Formatted: Font: Italic, Font color: Auto Formatted: Indent: First line: 0"

Formatted: Font color: Auto
Formatted: Font color: Auto

278 Ancestral condition for Testudinata

277

279 Even though more taxa have been assigned to the turtle stem-lineage recently (Li et al., 2008; 280 Lyson et al., 2010; Schoch and Sues, 2015), Proganochelys quenstedti remains one of the most 281 important stem-turtles, given its phylogenetic position as the earliest shelled turtle with a 282 completely preserved skull (Parsons, 1959, 1970; Halpern, 1992; Joyce et al., 2016). Its endocast is 283 a relatively simple structure when compared to that of crown-turtles (Carabajal et al., 2013; 284 Mautner et al., 2017; Paulina-Carabajal et al., 2017; Ferreira et al., in press). It has a tube-like 285 shape, with only small pontine and cephalic flexures and poorly differentiated brain regions. As in 286 other amniotes, the portion between the fore- and midbrain is the most voluminous, but this is 287 achieved exclusively by an increase in height, since the endocast its width is nearly constant in 288 width as long as theover its entire endocast-length (Figure 1). Another striking feature is the pendant 289 pituitary fossa, which is very common in archosaurs (Witmer et al., 2008; Lautenschlager and 290 Butler, 2016; Araújo et al., 2017; Pierce et al., 2017), but does not occur in extant turtles, in which 291 the dorsum sellae and the sella turcica are aligned, positioning the pituitary fossa approximately at 292 the same level as the posterior portions of the endocast (Figures 2, 3). Although the pituitary fossa 293 of turtles can also house other smaller structures (e.g., internal carotid and abducens nerve) the size 294 of the pituitary gland should be at least partially responsible for a-the larger size of the fossa in P. 295 quenstedti. A similar condition was found for sauropod and theropod dinosaurs (Witmer et al., 296 2008), in which enlarged pituitary glands have been linked to larger body sizes (Edinger, 1942). 297 While P. quenstedti reached a carapace length size of at least 67 cm of carapace length (based on 298 MB 1910.45.2) (Gaffney, 1990), it was not one of the largest turtles, being much smaller than some 299 extant turtles (e.g., up to 150-200 cm in Chelonia mydas and Pelochelys cantorii) (Angielczyk et 800 al., 2015) and meiolanids (Gaffney, 1996). Turtles included in our sample with that are comparable 801 in size to P. quenstedti, such as Podocnemis unifilis and Macrochelys temminckii (up to 68 and 66 302 cm of carapace length) (Angielczyk et al., 2015), and also Chelonia mydas, do not show a pendant 303 pituitary fossa (Figures 2, 3). An alternative explanation is that it is not the pituitary fossa that is 304 larger in P. quenstedti, but rather the brain that was comparatively smaller. Indeed, in our sample, 305 this taxon has the lowest value for the ratio endocast volume/basicranial length (Table 1), 306 supporting the hypothesis that the brain increased in size during turtle evolution. 307 The brain endocast in turtles does not seem to be consistent with general skull anatomy.

- 308 Taxa with higher/lower and wider/thinner endocasts do not possess similar skull proportions,
- which, on the contrary, seems more related to the size and shape of the adductor chamber and the
- 310 associated supraoccipital and squamosal crests (Figure 7). Proportional changes observed in the

311 adductor chamber throughout the turtle lineage rather reflect the distinct volume and size of the 312 external jaw adductor musculature in different taxa (Claude et al., 2004; Foth and Joyce, 2016; Foth 313 et al., 2017; Ferreira and Werneburg, in press). Also, the position of the exits of the cranial nerves 814 change only slightly-change, even with profound changes in the arrangement of related structures 815 such as the eyes position and muscles anatomy. For example, in *P. quenstedti* the external jaw 316 adductor musculature innervated by the trigeminal nerve (CN V₃) is vertically oriented and entirely 317 positioned anteriorly to the quadrate (Ferreira and Werneburg, in press), while in crown-turtles it 318 extends far posteriorly, following the enlargement of the supraoccipital and squamosal crests 319 (Poglayen-Neuwall, 1953; Werneburg, 2011, 2013). However, the relative position of the exit of 320 CN V remains roughly the same through turtle evolution when compared to the remainder of the 321 endocast and the surrounding bones (Figure 7). Hence, the actual change that occurs when the 822 muscles expand posteriorly involves only a-growth and reorientation of distal V₃-branches and not 323 a repositioning of the trigeminal nerve foramen (Poglayen-Neuwall, 1953; Schumacher, 1973). 324 325 Sensory capabilities of Proganochelys 326 The endosseous labyrinth of Proganochelys quenstedti is slightly distinct from that of crown-turtles 327 in being more compact and robust, with short and thick semicircular canals and a low crus 328 communis resulting in almost horizontally oriented canals (Figure 4). The anterior and posterior 329 semicircular canals (ASC and PSC, respectively) are nearly at the same level as the lateral 830 semicircular canal (LSC), whereas in other turtles the former-first two run dorsally in relation to the 331 latter-last (Carabajal et al., 2013; Mautner et al., 2017; Paulina-Carabajal et al., 2017; Ferreira et al., 832 in press). The angle between the ASC and LSC is also very wide (Table 1), with similar values to 333 meiolaniids and tortoises (Paulina-Carabajal et al., 2017). This combination of features suggests 334 that the semicircular canals of P. quenstedti were not very sensitive during movements along within 335 the sagittal (head moving up and down) and coronal planes (head tilt) (Brichta et al., 1988; Spoor et 336 al., 2007; David et al., 2010). Instead, the LSC was likely more effective in stabilizing gaze during 337 yaw movements (head moving left and right). Thus, the labyrinth anatomy of P. quenstedti 338 indicates it asthis species was slow and non-agile (Spoor et al., 2007; David et al., 2010), 339 compatible with a highly terrestrial and possibly fossorial lifestyle. This is also tentatively indicated 840 by the its position in morphospace occupation outside of, but close to, a terrestrial and fossorial

- habitat groupings in the shape analysis (Figure 6).
- Although *P. quenstedti* cervical vertebrae were capable of <u>a certain level of</u> mobility
- (Werneburg et al., 2015a), its short neck coupled with <u>the</u> relatively low carapace, strong
- 344 osteoderms on the dorsal neck surface and cervical ribs (Gaffney, 1990) imply restricted mobility

along the same planes (sagittal and coronal) (Werneburg et al., 2015a, 2015b) as-indicated by its
labyrinth morphology. Crown-turtles, however, evolved longer necks and several taxa are capable
of complex and, sometimes, very fast neck and head movements (Poglayen-Neuwall, 1953; Herrel
et al., 2008; Werneburg et al., 2015a, 2015b). This could be related to the apparent increase in size
of the semicircular canals in crown-turtles (Spoor, 2003; Spoor et al., 2007) when compared to
those of *P. quenstedti* (although when compared to more agile reptiles, all turtles possess short
canals; Witmer et al., 2008).

352 Hearing was likely not well-developed in *P. quenstedti*, given the small overall size of the 353 endosseous cochlear duct (Walsh et al., 2009) in comparison to other turtles. Even though its 354 quadrate does not form the characteristic lateral round structure that encloses the cavum tympani in 855 crown-turtles (Figures 4F–H), it possibly had a tympanic ear₃ similar to those of extant squamates 356 and cheloniids, in which it-the tympanum is supported by both bone and connective tissue (Henson, 357 1974; Gaffney, 1990). However, the stapes of P. quenstedti was much stouter than that of crown-358 turtles (Figures 4D, E), and possibly articulated with the quadrate (Gaffney, 1990), suggesting that 359 it was not as effective as the thin vibratory element characteristic of extant amniotes with tympanic 360 hearing, including modern turtles (Baird, 1970; Clack, 1997). As proposed by Clack (1997) for 861 diapsids, the elongation of the paraoccipital process of the opisthotic and its tight suture suturing to 362 the squamosal, that which occurred in the group including all testudinates but Proganochelys 363 quenstedti (Sterli et al., 2010), may have completely released the stapes from its ancestral structural 364 function (connecting the quadrate to other elements of the braincase) during turtle evolution.

365 The nasal cavity of P. quenstedti represents at least 42.2% of the total endocast volume 366 (Table 1), fitting in the volume spectrum of terrestrial turtle taxa, which ranges from 29-43% in 367 tortoises and 58.5-64% in meiolaniids (Carabajal et al., 2013). Larger nasal cavities have been 368 related to occupation of arid environments, thermoregulation, sound-production or higher olfactory 369 capabilities (Parsons, 1959, 1970; Paulina-Carabajal et al., 2017). In P. quenstedti, the cavum nasi 370 proprium represents most of the volume of the nasal cavity and extends far dorsally and posteriorly. 871 Within the nasal cavity, Sensory sensory epithelium on the nasal cavity occurs only on the cavum 872 walls (Parsons, 1970), and, as such, its-the cavum's relative size could be used as a proxy for 373 inferences on-about olfactory capability in extinct reptiles. This connection, however, should be 874 taken-interpreted cautiously, due to its the possible relation between cavum size and to-other 375 functions, such as thermoregulation or vocalization (Bourke et al., 2014; Paulina-Carabajal et al., 376 2017).

The size and volume of the olfactory bulbs have been shown to be related to a greater reliance on the olfactory sense in mammals and birds (Bang, 1971; Bang & Wenzel, 1985; Healy 379 and Guilford, 1990; Gittleman, 1991). In a series of studies the olfactory ratio (ratio between 380 olfactory bulb and cerebral hemisphere maximum diameters; OR values) were used as a proxy to 381 study the olfactory acuity and capacity in theropod dinosaurs (including birds) and crocodilians 882 (Zelenitsky et al., 2009, 2011). More recently this has also been applied for-to turtles (Paulina-383 Carabajal et al., 2017), showing that tortoises and meiolaniids (both terrestrial taxa) show have the 384 highest OR values (36-62% and 20-45%, respectively). Even though OR may not be an exact 385 measure of olfactory acuity it is currently the best available proxy and its use for a variety of 386 reptilian taxa (Zelenitsky et al., 2009, 2011; Paulina-Carabajal et al., 2017) makes it a useful 887 comparable comparative metric. Here, we show that the OR is even higher in P. quenstedti, 388 between 57-62% (Table 1), but in this case, these values may be also related to the less-developed 389 cerebral hemispheres rather than to larger olfactory bulbs. Nevertheless, its-the large nasal cavity in 890 association with the high OR values supports our hypothesis that the olfaction was possibly the 391 most developed sense in P. quenstedti. 392

393 Evolution of the turtle brain endocast

As demonstrated by the results of In the shape analysis, *Proganochelys quenstedti* is not contained in the morphospace occupied by any of the considered phylogenetic groups (Figure 5). There is extensive overlap in the PCA plots, but, at the same time, the PERMANOVA test shows a separation between Lepidosauromorpha, Testudinata and Archosauromorpha (Table 3). These results suggest that all amniotes (excluding dinosaurs and mammals) share a similar plesiomorphic brain endocast morphology, but that those lineages evolved in different directions in the morphospace.

401 Comparing general ecological groups (freshwater, marine, terrestrial and fossorial) provided 402 similar results, with extensive overlap among the occupied morphospaces (Figure 6). P. quenstedti 403 is contained in the morphospace occupied by the fossorial group considering on the PC1/PC3 plot, 404 but it falls outside every group on the other plots. Additionally, the statistical tests do not support 405 significant differences between any of the considered groups (Table 3). On the other hand, the 406 minimum spanning trees (see Supplementary Material) show that even when inside the fossorial 407 morphospace P. quenstedti is eloser closest to Placodus, a marine lepidosauromorph, and 408 Pseudopalatus, an aquatic archosauromorph. A phylogenetic proximity to Sauropterygia (the 409 lepidosauromorph lineage that includes Placodus) has been proposed previously (deBraga and 410 Rieppel, 1997) and is associated to-with the hypothesis that turtles originated in marine 411 environments (Joyce and Gauthier, 2004; Joyce, 2015). The proximity of P. quenstedti and 412 Placodus in our PC1/PC2 plot (Figure 6) may recall this hypothesis, but the poor sampling of

413 sauropterygians together with the extensive overlap between all groups (phylogenetic and 414 ecological) cause us to refrain us from considering this a robust interpretation. 415 The shape analysis presented here is the first attempt to explore the evolution of 416 neuroanatomy in amniotes with a quantitative approach. Even though our results do not support 417 inferences about lifestyles from neuroanatomical data, the significant separation of between some of 418 the considered phylogenetic groups (Figure 5, Table 3) seems promising. We can identify some 419 caveats in our sample (e.g., few marine reptiles, synapsids and early amniotes) that can be easily 420 overcome with the increasing use of computer tomography in paleontological and anatomical 421 studies. Our approach using sagittal cross-section outlines could have also influenced the results, 422 since there is a loss of information when the 3D endocast is simplified to a 2D outline. 423 More recently, Lyson et al. (2016) thoroughly analyzed the morphology of Eunotosaurus 424 africanus, identifying some osteological correlates that led them to conclude that it was likely well-425 adapted for fossoriality. The authors also identified some of those correlates (e.g., large claws) in 426 other proto- (e.g., Odontochelys semitestacea) and stem-turtles (Proganochelys quenstendti and 427 Palaeochersis talampayensis), concluding that "fossoriality played an important role in the early 428 evolution of turtles" (Lyson et al., 2016). Although in the PC1/PC3 plot (Figure 6) P. quenstedti is 429 contained in the fossorial morphospace, the minimum spanning tree (see Supplementary Material) 430 shows it to be closester to the terrestrial non-fossorial taxon Chalarodon and the statistical analyses 431 do not support any significant differences between the considered groups (Table 3). While the shape 432 analyses do not shed light on this problem conclusively, other sources of data are more convincing. 433 Proganochelys quenstedti fossils were found in terrestrial continental deposits (Gaffney, 1990) and 434 analyses of forelimb proportions (Joyce and Gauthier, 2004) and paleohistology (Scheyer and 435 Sander, 2007) support it as a terrestrial turtle. The morphology of its endosseous labyrinth with 436 short semicircular canals oriented with at high angles to each other and the large cavum nasi 437 proprium (Parsons, 1970; David et al., 2010; Paulina-Carabajal et al., 2017) agrees with these 438 previous studies, strongly supporting the interpretation that P. quenstedti was a well-adapted 439 terrestrial turtle. However, since its vestibule is not particularly large, in contrast to the condition of 440 truly fossorial taxa (Yi and Norell, 2015) or of the semi-fossorial tortoise Gopherus (Paulina-441 Carabajal et al., 2017), we conclude the present data suggest it that it was likely not a fossorial 442 taxon. In P. quenstedti, the seeminglythe relatively enlarged vestibule in comparison to the other 443 turtles in this study results from the relatively small semicircular canals. Thus, even if fossoriality 444 had an important role during the early evolution of shell components (Lyson et al., 2016), our data 445 suggests the complete turtle shell first appeareds in a terrestrial taxon, with no evident link to 446 fossoriality but most likely not fossorial turtle (i.e., at the Testudinata node).

Formatted: Font color: Auto
Formatted: Font color: Auto

Formatted: Font color: Auto, English (United States)

447 If we assume that the relatively simple morphology of *P. quenstedti* more-closely resembles 448 that of the testudinate ancestors, some trends can be inferred for the evolution of endocranial 449 structures in turtles. An increase in overall encephalization, for example, with longer and more 450 voluminous endocasts in relation to skull length is found already in the stem-turtle Naomichelys 451 speciosa and is extended continues in crown-turtles (Figures 2, 3). Some regions became more 452 pronounced as well. In N. speciosa, meiolaniids (Paulina-Carabajal et al., 2017), as well-as 453 Plesiochelys etalloni (Carabajal et al., 2013) and all other crown-turtles (Mautner et al., 2017; 454 Ferreira et al., in press) the cerebral hemispheres are clearly distinguishable from the remainder of 455 the endocast and they are wider in relation to skull and endocast length when compared to than in P. 456 quenstedti (Figures 2, 3). The olfactory bulb can also be seen in the endocasts of some taxa, e.g., 457 Testudo graeca and Plesiochelys etalloni (Carabajal et al., 2013; Paulina-Carabajal et al., 2017). 458 However, this does not seem to be a general trend but rather one of the features that show 459 noteworthy variations among crown-turtles, as are the degree of development of the cephalic and 460 pontine inflexions and the sizes of the nasal cavity and the orbits. Considering that the brain of P. 461 quenstedti was a simple tube-like structure with poorly differentiated regions, an increase in size 462 and in regionalization of the brain took place later during the course of turtle evolution, similarly 463 (although in a much lesser degree) to the trend observed during bird evolution (Balanoff et al., 464 2013), and achieved an endocast diversity comparable to other groups of amniotes, such as 465 lepidosaurs and archosaurs (excluding dinosaurs; Figures 5, 6). Indeed, extant turtles possess high 466 brain weights in relation to body weight, comparable to that of crocodiles (Gürtürkün et al. 2016), 467 but that was not the ancestral condition of the group based on our analyses. -Given the recurrent 468 results of phylogenetic analyses suggesting that turtles have parareptilian affinity of turtles (e.g., 469 Laurin and Piñeiro, 2017), it is important to sample the endocast diversity in that clade and explore 470 the similarities between turtles and all other reptilian lineages. The simpler brain structure together 471 with the large nasal cavity and nearly horizontal and short semicircular canals of the inner ear 472 supports a picture of *P. quenstedti* as a terrestrial but most likely not fossorial turtle, with likely 473 mediocre hearing and vision, but a well-developed olfactory sense. 474

Acknowledgements. We thank Daniela Schwarz for sharing the μCT-scan of the Berlin specimen,
and Rainer Schoch for the possibility-permission to μCT the Stuttgart specimen of *Proganochelys*.
We thank Walter G. Joyce, Bill Simpson and Virginie Volpato for access to the specimens and CT
scan data of *Naomichelys* and *Emys*. Adrian Tröscher, Jan Prochel, Irina Ruf and Kristin Mahlow
are thanked for help with μCT-scans of extant species. We thank Gabe S. Bever and Walter G.
Joyce for useful comments on a previous version of the manuscript and the three anonymous

481	reviewers that provided insightful comments and suggestions on the latest version of the	
482	manuscript.	
483		
484	Author contribution statement. Author contributions. S.L. and I.W. conceived and designed the	
485	study, S.L. performed the three-dimensional reconstruction, I.W. provided digital datasets, S.L.,	
486	G.S.F. and I.W. collected, analyzed and interpreted the data. S.L. and G.S.F. created figures and	
487	supplementary data. S.L., G.S.F. and I.W. contributed equally to the discussion, preparation and	
488	writing of the paper.	
489		
490	Competing interests statement: There are no competing interests.	
491		
492	References	
493	Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral	
494	<i>Ecol.</i> 26, 32–46.	
495	Angielczyk, K.D., Burroughs, R.W., and Feldman, C. (2015). Do turtles follow the rules?	
496	Latitudinal gradients in species richness, body size, and geographic range area of the world's	
497	turtles. J. Exp. Zool. B Mol. Dev. Evol. 324, 270-294. doi:10.1002/jez.b.22602	
498	Anquetin, J. (2012). Reassessment of the phylogenetic interrelationships of basal turtles	
499	(Testudinata). J. Syst. Palacontol. 10, 3-45. doi:10.1080/14772019.2011.558928	
500	Araújo, R., Fernandez, V., Polcyn, M.J., Fröbisch, J., and Martins, R.M. (2017). Aspects of	Formatted: English (United States)
501	gorgonopsian paleobiology and evolution: insights from the basicranium, occiput, osseous	Formatted: English (United States)
502	labyrinth, vasculature, and neuroanatomy. PeerJ 5, e3119. doi:10.7717/peerj.3119	
503	Baird, I.L. (1970). "The anatomy of the reptilian ear," in Biology of the Reptilia, eds. C. Gans and	
504	T.S. Parsons (Academic Press, London), 193–275.	
505	Balanoff, A. M., Bever, G. S., Colbert, M. W., Clarke, J. A., Field, D. J., Gignac, P. M., &	Formatted: Font: 12 pt, Not Italic, Font color: Auto
506	Walsh, S. (2016). Best practices for digitally constructing endocranial casts: examples from	
507	birds and their dinosaurian relatives. Journal of Anatomy, 229(2), 173-190,	Formatted: Font: 12 pt, Not Italic, Font color: Auto
508	Bang, B.G. (1971). Functional anatomy of the olfactory system in 23 orders of birds. Acta Anat. 79,	Formatted: Font: 14 pt
509	1–76. doi:10.1159/000143668	
510	Bang, B.G., and Wenzel, B.M. (1985). "Nasal cavity and olfactory system," in Form and function	
511	in birds, eds. A.S. King and J. McLelland (Academic Press, New York, NY), 195-225.	
512	Bever, G.S., Lyson, T.R., Field, D.J., and Bhullar, BA.S. (2015). Evolutionary origin of the turtle	
513	skull. Nature 525,239-242. doi:10.1038/nature14900	

514	Bhullar, BA.S., Bever, G.S. (2009). An Archosaur-Like Laterosphenoid in Early Turtles (Reptilia:	
515	Pantestudines). Breviora 518, 1–11.	
516	Bona, P., and Paulina-Carabajal, A. (2013). Caiman gasparinae sp. nov., a huge alligatorid	Formatted: Font color: Auto, English (United States)
517	(Caimaninae) from the late Miocene of Paraná, Argentina. Alcheringa 37,1-12.	
518	doi:10.1080/03115518.2013.785335	
519	Bourke, J.M., Ruger Porter, W.M., Ridgely, R.C., Lyson, T.R., Schachner, E.R., Bell, P.R., and	
520	Witmer, L.M. (2014). Breathing Life Into Dinosaurs: Tackling Challenges of Soft-Tissue	
521	Restoration and Nasal Airflow in Extinct Species. Anat. Rec. 297,2148-2186.	
522	doi:10.1002/ar.23046	
523	Brichta, A., Acuna, D., and Peterson, E. (1988). Planar relations of semicircular canals in awake,	
524	resting turtles, Pseudemys scripta. Brain Behav. Evolut. 32,236-245.	
525	Carabajal, A.P., Sterli, J., Müller, J., and Hilger, A. (2013). Neuroanatomy of the marine Jurassic	
526	turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae). PLoS One 8, e69264.	
527	doi:10.1371/journal.pone.0069264	
528	Clack, J. (1997). The evolution of tetrapod ears and the fossil record. Brain Behav. Evolut. 50, 198-	
529	212.	
530	Claude, J., Pritchard, P.C., Tong, H., Paradis, E., and Auffray, JC. (2004). Ecological correlates	
531	and evolutionary divergence in the skull of turtles: a geometric morphometric assessment.	
532	Syst. Biol. 53,933–948.	
533	Crampton, J.S., and Haines, A.J. (1996). Users' manual for programs Hangle, Hmatch and Hcurve	
534	for the Fourier shape analysis of two-dimensional outlines. Institute of Geological and	
535	Nuclear Sciences, Science Report 96, 1–28.	
536	David, R., Droulez, J., Allain, R., Berthoz, A., Janvier, P., and Bennequin, D. (2010). Motion from	
537	the past. A new method to infer vestibular capacities of extinct species. <u>C. R. Palevol. 9</u> ,	Formatted: Font color: Auto, Portuguese (Brazil)
538	397-410. doi:10.1016/j.crpv.2010.07.012	Formatted: Portuguese (Brazil)
539	deBraga, M., and Rieppel, O. (1997). Reptile phylogeny and the interrelationships of turtles. Zool.	Formatted: Font color: Auto, Portuguese (Brazil)
540	J. Linn. SocLond. 120, 281–354.	Formatted: Portuguese (Brazil)
541	DigiMorph. Digital Morphology - A unique biological visualization library.	Formatted: Font color: Auto, Portuguese (Brazil) Formatted: Portuguese (Brazil)
542	http://www.digimorph.org/. Last access 15.08.2017.	
543	Edinger, T. (1942). The pituitary body in giant animals fossil and living: a survey and a suggestion.	
544	Q. Rev. Biol. 17, 31–45.	
545	Ferreira, G.S., and Werneburg, I. (in press). "Evolution, diversity, and development of the	
546	craniocervical system in turtles with special reference to jaw musculature," in Heads, Jaws	

C 47	
547	and Muscles – Evolution, development, anatomical diversity and function, eds. J. Ziermann,
548	R.R. Diaz Jr, and R. Diogo (Springer, Heidelberg).
549	Ferreira, G.S., Iori, F.V., Hermanson, G., and Langer, M.C. (in press). New turtle remains from the
550	Late Cretaceous of Monte Alto-SP, Brazil, including cranial osteology, neuroanatomy and
551	phylogenetic position of a new taxon. Paläontol. Zeit.
552	Field, D.J., Gauthier, J.A., King, B.L., Pisani, D., Lyson, T.R., and Peterson, K.J. (2014). Toward
553	consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for
554	turtles. Evol. Dev. 16, 189–196. doi:10.1111/ede.12081
555	Foth, C., and Joyce, W.G. (2016). Slow and steady: the evolution of cranial disparity in fossil and
556	recent turtles. P. Roy. Soc. Lond. B Bio. 283m 20161881. doi:10.1098/rspb.2016.1881
557	Foth, C., Rabi, M., and Joyce, W.G. (2017). Skull shape variation in extant and extinct Testudinata
558	and its relation to habitat and feeding ecology. Acta ZoolStockholm 98, 310-325.
559	doi:10.1111/azo.12181
560	Franzosa, J.W. (2004). Evolution of the brain in Theropoda (Dinosauria). [PhD dissertation].
561	[Austin (TX)]: University of Texas.
562	Gaffney, E.S. (1979). Comparative cranial morphology of Recent and fossil turtles. B. Am. Mus.
563	Nat. Hist. 164, 65–376.
564	Gaffney, E.S. (1982). Cranial morphology of the baenid turtles. Am. Mus. Novit. 2737, 1-22.
565	Gaffney, E.S. (1990). The comparative osteology of the Triassic turtle Proganochelys. B. Am. Mus.
566	Nat. Hist. 194, 1–263.
567	Gaffney, E.S. (1996). The postcranial morphology of Meiolania platyceps and a review of of the
568	Meiolaniidae. B. Am. Mus. Nat. Hist. 229, 1-166.
569	Gaffney, E.S., and Zangerl, R. (1968). A Revision of the Chelonian Genus Bothremys: (Pleurodira:
570	Pelomedusidae). Chicago: Field Museum of Natural History.
571	Gaffney, E.S., Meylan, P.A., and Wyss, A.R. (1991). A computer assisted analysis of the
572	relationships of the higher categories of turtles. Cladistics 7, 313-335.
573	Gauthier, J.A., Kluge, A.G., and Rowe, T. (1988). "The early evolution of the Amniota," in The
574	phylogeny and classification of the tetrapods, vol. 1, ed. M.J. Benton (Oxford: Oxford
575	University Press) 103–155.
576	George, I.D., and Holliday, C.M. (2013). Trigeminal nerve morphology in Alligator mississipiensis
577	and its significance for crocodyliform facial sensation and evolution. Anat. Rec. 296, 670–
578	680. doi:10.1002/ar.22666
579	Gittleman, J.L. (1991). Carnivore olfactory bulbs: allometry, phylogeny and ecology. J. Zool. 225,
580	253–272.

5 01	Criller I.M. Crifer I. Hulis V. and Cinerdat M. (2012). A large shall some of further	
581	Guillon, JM., Guéry, L., Hulin, V., and Girondot, M. (2012). A large phylogeny of turtles	
582	(Testudines) using molecular data. <i>Contrib. Zool.</i> 81, 147–158.	
583	Güntürkün, O., Stacho, M., and Ströckens, F. (2016). "The brains of reptiles and birds," in	
584	<i>Evolution of Nervous Systems – the evolution of the nervous systems in nonmammalian</i>	
585	vertebrates, vol. 1, ed. J.H. Kaas (Oxford: Academic Press), 171–221.	
586	Haines, A.J., and Crampton, J.S. (2000). Improvements to the method of Fourier shape analysis as	
587	applied in morphometric studies. Palaeontology, 43, 765–783.	
588	Halpern, M. (1992). "Nasal chemical senses in reptiles," in Biology of the Reptilia, vol. 18, eds. C.	
589	Gans, and D. Crews (Chicago and London: University of Chicago Press), 423-523.	
590	Hammer, Ø., Harper, D.A.T., and Ryan, P.D. (2001). Past: Paleontological Statistics Software	
591	Package for Education and Data Analysis. Palaeontol. Electron. 4, 1-9.	
592	Healy, S. and Guilford, T. (1990). Olfactory-bulb size and nocturnality in birds. Evolution 44, 339-	
593	346. doi:10. 2307/2409412.	
594	Hedges, S.B., and Poling, L.L. (1999). A molecular phylogeny of reptiles. Science 283, 998–1001.	
595	Henson Jr, O. (1974). "Comparative anatomy of the middle ear," in Auditory System, eds. W.D.	
596	Keidel, and W.D. Neff (Berlin: Springer Verlag), 39–110.	
597	Herrel, A., Van Damme, J., and Aerts, P. (2008). "Cervical anatomy and function in turtles," in	
598	Biology of Turtles, eds. J. Wyneken, M.H. Godfrey, and V. Bels (New York: CRC Press,.	
599	163–185.	
600	Herrera, Y., Fernández, M.S., and Gasparini, Z. (2013). The snout of Cricosaurus araucanensis: a	Formatted: Font color: Auto, English (United States)
601	case study in novel anatomy of the nasal region of metriorhynchids. <i>Lethaia</i> 46, 331–340.	
602	doi:10.1111/let.12011	
603	Holloway, W.L., Claeson, K.M., and O'Keefe, F.R. (2013). A virtual phytosaur endocast and its	
604	implications for sensory system evolution in archosaurs. J. Vertebr. Paleontol. 33, 848–857.	
605	doi:10.1080/02724634.2013.747532	
606	Hopson, J.A. (1979). "Palaeoneurology," in Biology of the reptilia, vol. 9, ed. C. Gans (New York:	
607	Academic Press), 39–146.	
608	Jaekel, O. (1918). Die Wirbeltierfunde aus dem Keuper von Halberstadt. Serie II. Testudinata. Teil	
609	1. Stegochelys dux, n.g., n.sp. Paläontol. Zeit. 2, 88–214.	
610	Jirak, D., and Janacek, J. (2017). Volume of the crocodilian brain and endocast during ontogeny.	Formatted: Font color: Auto, German (Germany)
611	PLoS One 12, e0178491. doi:10.1371/journal.pone.0178491	Comatea Font Color. Auto, German (Germany)
612	Joyce, W.G. (2015). The origin of turtles: a paleontological perspective. J. Exp. Zool. B Mol. Dev.	
613	<i>Evol.</i> 324, 181–193. doi:10.1002/jez.b.22609	

614	Joyce, W.G., and Gauthier, J.A. (2004). Palaeoecology of Triassic stem turtles sheds new light on
615	turtle origins. P. Roy. Soc. Lond. B Bio. 271, 1-5.
616	Joyce, W.G., Parham, J.F., and Gauthier, J.A. (2004). Developing a protocol for the conversion of
617	rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles.
618	J. Paleontol. 78, 989–1013.
619	Joyce, W.G., Rabi, M., Clark, J.M., and Xu, X. (2016). A toothed turtle from the Late Jurassic of
620	China and the global biogeographic history of turtles. BMC Evol. Biol. 16, 236.
621	doi:10.1186/s12862-016-0762-5
622	Laaß, M., Schillinger, B., and Kaestner, A. (2017). What did the "unossified zone" of the non-
623	mammalian therapsid braincase house? J. Morphol. 278, 1020-1032.
624	doi:10.1002/jmor.20583
625	Laurin, M., and Piñeiro, G.H. (2017). A reassessment of the taxonomic position of mesosaurs, and a
626	surprising phylogeny of early amniotes. Front. Earth Sci. 5: 88. doi:
627	10.3389/feart.2017.00088.
628	Lautenschlager, S. (2014a). Morphological and functional diversity in therizinosaur claws and the
629	implications for theropod claw evolution. P. Roy. Soc. Lond. B Bio. 281, 20140497.
630	doi:10.1098/rspb.2014.0497
631	Lautenschlager, S. (2014b). Palaeontology in the third dimension: a comprehensive guide for the
632	integration of three-dimensional content in publications. Paläontol. Zeit. 88, 111–121.
633	doi:10.1007/s12542-013-0184-2
634	Lautenschlager S, Butler RJ. 2016. Neural and endocranial anatomy of Triassic phytosaurian
635	reptiles and convergence with fossil and modern crocodylians. PeerJ 4:e2251.
636	doi:10.7717/peerj.2251
637	Lee, M.S. (1997). Reptile relationships turn turtle. <i>Nature</i> 389, 245–245.
638	Li, C., Wu, XC., Rieppel, O., Wang, LT., and Zhao, LJ. (2008). An ancestral turtle from the
639	Late Triassic of southwestern China. Nature 456, 497-501. doi:10.1038/nature07533
640	Liu, J., Rieppel, O., Jiang, DY., Aitchison, J.C., Motani, R., Zhang, QY., Zhou, CY., and Sun,
641	YY. (2011). A new pachypleurosaur (Reptilia: Sauropterygia) from the Lower Middle
642	Triassic of Southwestern China and the phylogenetic relationships of Chinese
643	pachypleurosaurs. J. Vertebr. Paleontol. 85, 32–36.
644	Lyson, T.R., Bever, G.S., Bhullar, BA.S., Joyce, W.G., and Gauthier, J.A. (2010). Transitional
645	fossils and the origin of turtles. Biol. Letters. rsbl20100371. doi:10.1098/rsbl.2010.0371

646	Lyson, T.R., Rubidge, B.S., Scheyer, T.M., de Queiroz, K., Schachner, E.R., Smith, R.M.H., Botha-
647	Brink, J., and Bever, G.S. (2016). Fossorial origin of the turtle shell. Curr. Biol. 26, 1887-
648	1894. doi:10.1016/j.cub.2016.05.020
649	Mautner, A.K., Latimer, A.E., Fritz, U., and Scheyer, T.M. (2017). An updated description of the
650	osteology of the pancake tortoise Malacochersus tornieri (Testudines: Testudinidae) with
651	special focus on intraspecific variation. J. Morphol. 278, 321-333. doi:10.1002/jmor.20640
652	Neenan, J.M., and Scheyer, T.M. (2012). The braincase and inner ear of <i>Placodus gigas</i>
653	(Sauropterygia, Placodontia)-a new reconstruction based on micro-computed tomographic
654	data. J. Vertebr. Paleontol. 32, 1350-1357. doi:10.1080/02724634.2012.695241
655	Neenan, J.M., Klein, N., and Scheyer, T.M. (2013). European origin of placodont marine reptiles
656	and the evolution of crushing dentition in Placodontia. Nat. Commun. 4, 1621.
657	doi:10.1038/ncomms2633
658	Parsons, T.S. (1959). Nasal anatomy and the phylogeny of reptiles. <i>Evolution</i> 13, 175–187
659	Parsons, T.S. (1970). "The Nose and Jacobson's Organ," in Biology of the Reptilia, Vol. 2B, ed. C.
660	Gans (New York: Academic Press), 99–191.
661	Paulina-Carabajal, A., Sterli, J., Georgi, J., Poropat, S.F., and Kear, B.P. (2017). Comparative
662	neuroanatomy of extinct horned turtles (Meiolaniidae) and extant terrestrial turtles
663	(Testudinidae), with comments on the palaeobiological implications of selected endocranial
664	features. Zool. J. Linn. SocLond. zlw024. doi:10.1093/zoolinnean/zlw024
665	Pierce, S.E., Williams, M., and Benson, R.B. (2017). Virtual reconstruction of the endocranial
666	anatomy of the early Jurassic marine crocodylomorph Pelagosaurus typus (Thalattosuchia).
667	PeerJ 5, e3225. doi:10.7717/peerj.3225
668	Poglayen-Neuwall, I. (1953). Untersuchungen der Kiefermuskulatur und deren Innervation bei
669	Schildkröten. Acta ZoolStockholm 34, 241–292.
670	Rieppel, O. (2007). "The Relationships of Turtles within Amniotes," in Biology of turtles: from
671	structures to strategies of life, eds. J. Wyneken, M.H. Godfrey, and V. Bels (Boca Raton:
672	CRC Press), 345–353.
673	Rieppel, O. (2013). "The evolution of the turtle shell," in Morphology and evolution of turtles, eds.
674	D.B. Brinkman, P.A. Holroyd, and J.D. Gardner (Heidelberg: Springer), 51-61.
675	doi:10.1007/978-94-007-4309-0_5
676	Rieppel, O., and Reisz, R.R. (1999). The origin and early evolution of turtles. Annu. Rev. Ecol. Syst.
677	30, 1–22.
678	Rohlf, F. (2010). TPSDig2, version 2.16. New York: Stony Brook.

679	Scheyer, T.M., Neenan, J.M., Bodogan, T., Furrer, H., Obrist, C., and Plamondon, M. (2017). A
680	new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida)
681	and implications for Mesozoic marine diapsid phylogeny. Sci. Rep. 7, 4406.
682	doi:10.1038/s41598-017-04514-x
683	Scheyer, T.M., and Sander, P.M. (2007). Shell bone histology indicates terrestrial palaeoecology of
684	basal turtles. P. Roy. Soc. Lond. B Bio. 274, 1885-1893. doi:10.1098/rspb.2007.0499
685	Schoch, R.R., and Sues, HD. (2015). A Middle Triassic stem-turtle and the evolution of the turtle
686	body plan. Nature 523, 584-587. doi:10.1038/nature14472
687	Schoch, R.R., and Sues, HD. (2017). Osteology of the Middle Triassic stem-turtle Pappochelys
688	rosinae and the early evolution of the turtle skeleton. J. Syst. Palaeontol.
689	doi:10.1080/14772019.2017.1354936
690	Schumacher, G.H. (1973). "The head muscles and hyolaryngeal skeleton of turtles and
691	crocodilians," in Biology of the Reptilia, eds. C. Gans, and T.S. Parsons (London and New
692	York: Academic Press), 101–200.
693	Spoor, F. (2003). The semicircular canal system and locomotor behaviour, with special reference to
694	hominin evolution. Courier-Forschungsinstitut Senckenberg 93-104.
695	Spoor, F., Garland, T., Krovitz, G., Ryan, T.M., Silcox, M.T., and Walker, A. (2007). The primate
696	semicircular canal system and locomotion. P. Acad. Nat. Sci. Phila. 104, 10808–10812.
697	doi:10.1073/pnas.0704250104
698	Sterli, J., Müller, J., Anquetin, J., and Hilger, A. (2010). The parabasisphenoid complex in
699	Mesozoic turtles and the evolution of the testudinate basicranium. Can. J. Earth Sci. 47,
700	1337–1346. doi:10.1139/E10-061
701	von Baczko, M.B., and Desojo, J.B. (2016). Cranial Anatomy and Palaeoneurology of the
702	Archosaur Riojasuchus tenuisceps from the Los Colorados Formation, La Rioja, Argentina.
703	PLoSOne 11, e0148575. doi:10.1371/journal.pone.0148575
704	Walsh, S.A., Barrett, P.M., Milner, A.C., Manley, G., and Witmer, L.M. (2009). Inner ear anatomy
705	is a proxy for deducing auditory capability and behaviour in reptiles and birds. P. Roy. Soc.
706	Lond. B Bio. 276, 1355-1360. doi:10.1098/rspb.2008.1390
707	Wang, Z., Pascual-Anaya, J., Zadissa, A., Li, W., Niimura, Y., Huang, Z., Li, C., White, S., Xiong,
708	Z., Fang, D. (2013). The draft genomes of soft-shell turtle and green sea turtle yield insights
709	into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701-
710	706. doi:10.1038/ng.2615
711	Werneburg, I. (2011). The cranial musculature of turtles. Palaeontol. Electron. 14, 1–99.
712	doi:10.5167/uzh-48569

713	Werneburg, I. (2013). Jaw musculature during the dawn of turtle evolution. Org. Divers. Evol. 13,	
714	225-254. doi:10.1007/s13127-012-0103-5	
715	Werneburg, I. (2015). Neck motion in turtles and its relation to the shape of the temporal skull	
716	region. C. R. Palevol 14, 527-548. doi:10.1016/j.crpv.2015.01.007	Format
717	Werneburg, I., and Sánchez-Villagra, M.R .(2009). Timing of organogenesis support basal position	
718	of turtles in the amniote tree of life. BMC Evol. Biol. 9, 82. doi:10.1186/1471-2148-9-82	
719	Werneburg, I., Hinz, J.K., Gumpenberger, M., Volpato, V., Natchev, N., and Joyce, W.G 2015a.	
720	Modeling neck mobility in fossil turtles. J. Exp. Zool. B Mol. Dev. Evol. 324, 230-243.	
721	doi:10.1002/jez.b.22557	
722	Werneburg, I., Wilson, L.A., Parr, W.C., and Joyce, W.G. (2015b). Evolution of Neck Vertebral	
723	Shape and Neck Retraction at the Transition to Modern Turtles: an Integrated Geometric	
724	Morphometric Approach. Syst. Biol. 64, 187-204. doi:10.1093/sysbio/syu072	
725	Witmer, L.M., Ridgely, R.C., Dufeau, D.L., and Semones, M.C. (2008). "Using CT to Peer into the	
726	Past: 3D Visualization of the Brain and Ear Regions of Birds, Crocodiles, and Nonavian	
727	Dinosaurs," in Anatomical imaging, eds. H. Endo, and R. Frey (Tokyo: Springer), 67-87.	
728	Yi, H., and Norell, M.A. (2015). The burrowing origin of modern snakes. Sci. Adv. 1, e1500743.	
729	doi: 10.1126/sciadv.1500743	
730	Zangerl, R.A. (1960). A new specimen of Desmatochelys lowii Williston; a primitive sea turtle	
731	from the Cretaceous of South Dakota. Fieldiana, Geology 14, 7-40.	
732	Zelenitsky, D.K., Therrien, F., and Kobayashi, Y. (2009). Olfactory acuity in theropods:	
733	palaeobiological and evolutionary implications. Proc. R. Soc. B. 276, 667-673.	
734	Zelenitsky, D.K., Therrien, F., Ridgely, R.C., McGee, A.R., and Witmer, L.W. (2011). Evolution of	
735	olfaction in non-avian theropod dinosaurs and birds. Proc. R. Soc. B. 278, 3625-3634.	
736	doi:10.1098/rspb.2008.1075	
737		

Formatted: Portuguese (Brazil)

738 Tables

- 739 Table 1. Measurements and ratios for sampled taxa. ASC-PSC, angle between anterior and
- 740 posterior semicircular canals; BL, basicranial length; CE/BL, cubic root of endocast
- volume/basicranial length; CE/SL, cubic root of endocast volume/skull length; EV, endocast 741
- 742 volume; NV, nasal cavity volume; N/E, nasal cavity/endocast volume ratio; OR, olfactory ratio; SL,

skull length. 743

Taxon	Specimen ID	SL [mm]	BL [mm]	EV [mm ³]	NV [mm ³]	N/E	CE/SL	CE/BL	OR [%]	ASC-PSC
Proganochelys	MB1910.45.2	175	148.75	8170.84	12209.34	1.49	11.51	13.54	62.5	107°
Proganochelys	SMNS 16980	97	85.36	3790.56	3709.39	0.98	16.07	18.27	57.14	-
Naomichelys	FMNH PR273	117	103.50	9805.97	4077.77	0.42	18.29	20.68	15-19	79°
Podocnemis	SMF 55470	67	51.32	1732.45	531.57	0.31	17.93	23.40	13.39	81°
Chelodina	ZMB H 49659	36	36.00	760.10	140.84	0.18	25.35	25.35	11.34	98°
Chelonia	ZMB 37416 MS	112	80.64	7077.93	2667.23	0.38	17.14	23.81	31.65	94°
Macrochelys	GPIT/RE/10801	120	105.88	9583.53	3568.33	0.37	17.70	20.06	38.18	88°
Platysternon	SMF 69684	60	46.43	898.13	314.33	0.35	16.08	20.78	28.23	82°
Malacochersus	SMF 58702	35	40.92	1364.13	669.45	0.49	31.69	27.11	16.06	86°
Emys	WGJ 1987a	31	30.42	668.07	118.54	0.18	28.20	28.74	17.31	102°
Emydura	PIMUZ 2009.37	35	35.00	1556.29	160.65	0.10	33.11	33.11	9.80	90°
Pelodiscus	IW576-2	59	39.48	707.23	444.09	0.63	15.10	22.57	20.25	79°
744										
745										

Table 2, Summary of the results of the principal component analyses of the brain outlines of

Formatted: Font color: Auto

747 <u>different turtles specimens of turtles and other groups. Summary of the results of the Principal</u>

748 Component Analyses.

		%	% cumulative
PC	Eigenvalue	variance	variance
1	0.01042	41.4	41.4
2	0.00464	18.5	59.9
3	0.00298	11.8	71.7
4	0.00174	6.9	78.7
5	0.00137	5.5	84.1
6	0.00093	3.7	87.8
7	0.00067	2.6	90.5
8	0.00042	1.7	92.1
9	0.00032	1.3	93.4
10	0.00028	1.1	94.5
11	0.00021	0.8	95.4

751 Table 3. Results of one-way PERMANOVA test (10000 permutations) with 95% of variance (PC1-

752 PC11), excluding *Proganochelys* and *Diadectes* (for phylogenetic groups only).

		0 0 1	•
Phylogenetic groups			
Permutation N	10000		
Total sum of squares (SQ)	1,901		
Within-group SQ	1,599		
F	3,653		
р	1.00E-01		
	Testudinata	Archosauromorpha	Lepidosauromorpha
Testudinata			
Archosauromorpha	0.8423		
Lepidosauromorpha	0.003	0.0005999	
Synapsida	0.327	0.1056	0.4488
Ecological groups			
Permutation N	10000		
Total SQ	77		
Within-group SQ	72		
F	1		
p	0.1656		
	Terrestrial	Aquatic	Marine
Terrestrial			
Aquatic	1		
Marine	0.252	1	
Fossorial	0.6485	1	0.8387

⁷⁵³

754

755 Figures

756 Figure 1. Endocranial anatomy of *Proganochelys quenstedti* specimens (A-D) MB 1910.45.2

757 and (E-H) SMNS 16980. Endocast and nasal cavity (A, B) in situ in left lateral oblique view with

bone rendered semi-transparent and isolated endocast in (B, F) left lateral, (C, G) dorsal and (D, H)

ventral views. Abbreviations: car, carotid artery; <u>duc, ductus nasopharyngeus;</u> dur, dural peak;

rendo, brain endocast; lab, endosseous labyrinth; nas, endocast of nasal cavity; pit, pituitary fossa; I,

761 olfactory nerve; II, optic nerve canal; oculomotor nerve canal; IV, trochlear nerve canal; V,

trigeminal nerve canal; VI, abducens nerve canal; VII, facial nerve canal; IX-XI shared canal for the

763 glossopharyngeal, vagus and spinal accessory nerve; XII, hypoglossal nerve canal.

764 765 Figure 2. Comparative endocranial anatomy of different stem-Testudines and pleurodiran 766 taxa. Original reconstructions and redrawn endocasts (Plesiobaena antiqua from Gaffney, 1982; 767 Meiolania platyceps from Paulina-Carabajal et al., 2017; Yuraramirim montealtensis from Ferreira 768 et al., in press) in left lateral view. Topology based on Joyce et al. (2016), Guillon et al. (2012) and Ferreira et al. (in press). Heat mapping on branches based on the ratio (CE/BL) between cubic root 769 770 of endocast volume and basicranial length (Table 1). 771 772 Figure 3. Comparative endocranial anatomy of different pan-cryptodiran taxa. Original 773 reconstructions and redrawn endocasts (Plesiochelys etalloni from Carabajal et al., 2013; Gopherus 774 berlandieri from Paulina-Carabajal et al., 2017) in left lateral view. Topology based on Joyce et al. 775 (2016),-and Guillon et al. (2012). Heat mapping on branches based on the ratio (CE/BL) between 776 cubic root of endocast volume and basicranial length (Table 1). 777 778 Figure 4. Inner ear and otic region anatomy of Proganochelys quenstedti. Digital reconstruction 779 of the right endosseus labyrinth of P. quenstedti in (A) right lateral, (B) dorsal, and (C) anterior 780 views. Skulls of (D) P. quenstedti and (E) Eubaena cephalica in posterior view, redrawn from 781 Gaffney (1990) with opisthotic and stapes coloured in green and blue, respectively. Skulls of (F) 782 Sphenodon punctatus, (G) Emydura macquarii, and (H) P. quenstedti in lateral view, redrawn from 783 Ferreira & Werneburg (in press), with quadrate coloured in red. Note the larger proportions of the 784 stapes and its contact with the quadrate bone in P. quenstedti, and its slender and tall quadrate, 785 similar to that of S. punctatus, and distinct from the round one of other turtles, that which 786 completely encloses the tympanic membrane. Abbreviations: asc, anterior semicircular canal; cc, 787 crus communis; ex, exoccipital; fo, fenestra ovalis; lsc, lateral semicircular canal; pa, parietal; psc, 788 posterior semicircular canal; qu, quadrate; sq, squamosal; ves, vestibulum. 789 790 Figure 5. Two dimensional morphospace plots of brain endocast outlines based on the first 791 three PC axes using a priori defined phylogenetic groups. Diadectes is shown as a black cross, 792 Proganochelys quenstedti (SMNS 16980) in bold. The symbols are used to identify the clade to 793 which a point was assigned. Different vertebrate groups are indicated by convex hulls. 794 795 Figure 6. Two dimensional morphospace plots of brain endocast outlines based on the first 796 three PC axes using a priori defined ecological groups. Diadectes is shown as a black cross, 797 Proganochelys quenstedti (SMNS 16980) in bold. The symbols are used to identify the clade to

which a point was assigned. <u>Different vertebrate groups are indicated by convex hulls.</u>

Formatted: Font: Not Italic
Formatted: Font: Not Italic

Formatted: Font color: Auto

- **Figure 7.** Overall skull shape and proportional-relation to cranial structures in different turtle taxa.
- 801 Brain endocast and adductor chamber plotted in left lateral (first and third rows) and dorsal (second
- and fourth rows) views. Note the similar position of the trigeminal nerve exit regardless of the
- 803 changes in surrounding structures.

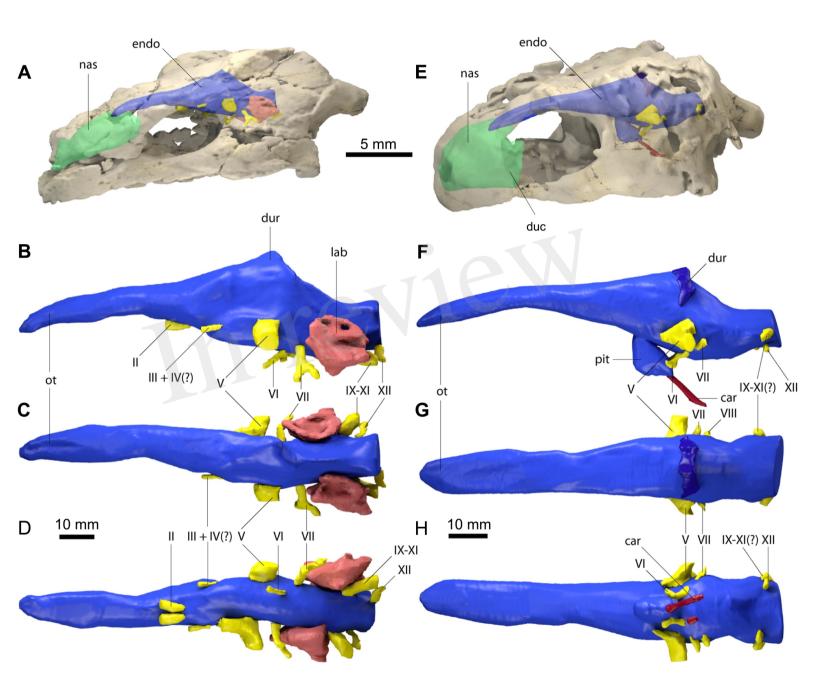
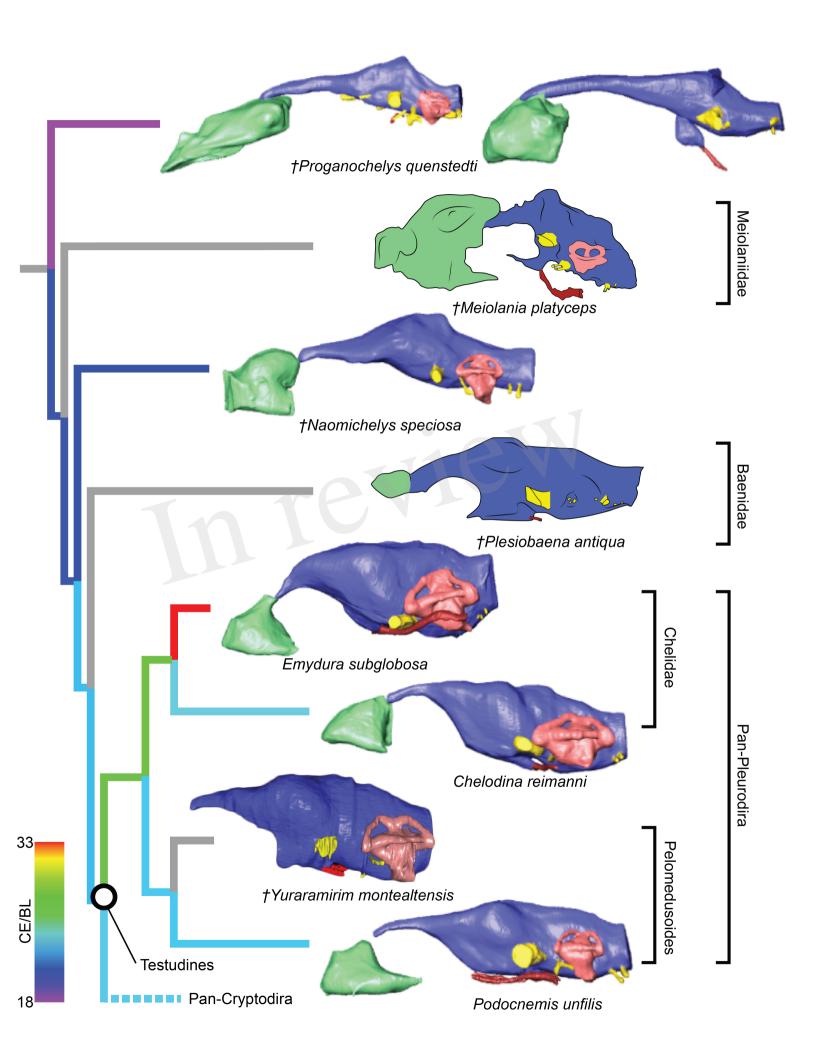
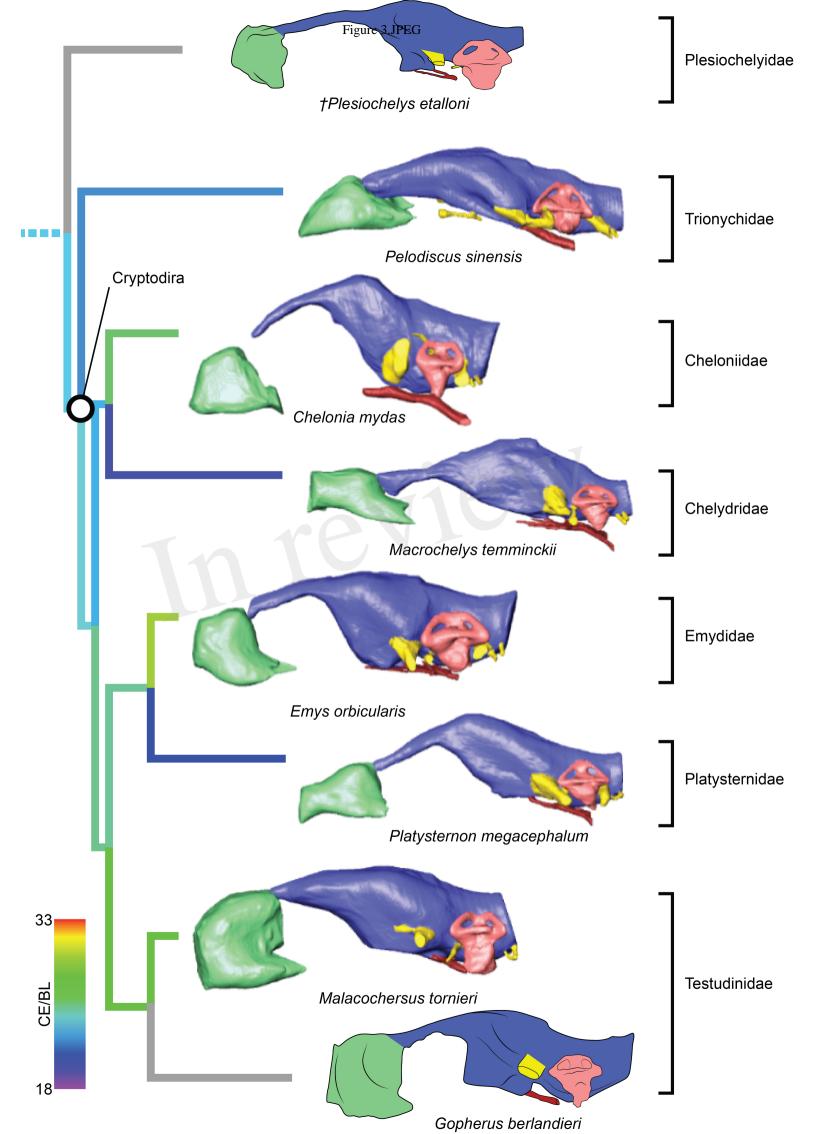
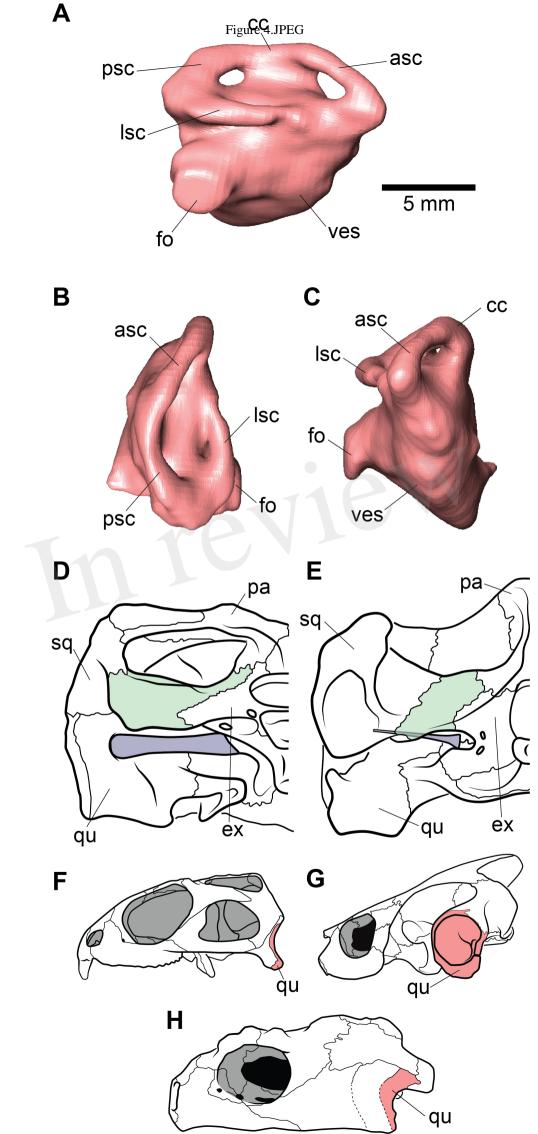
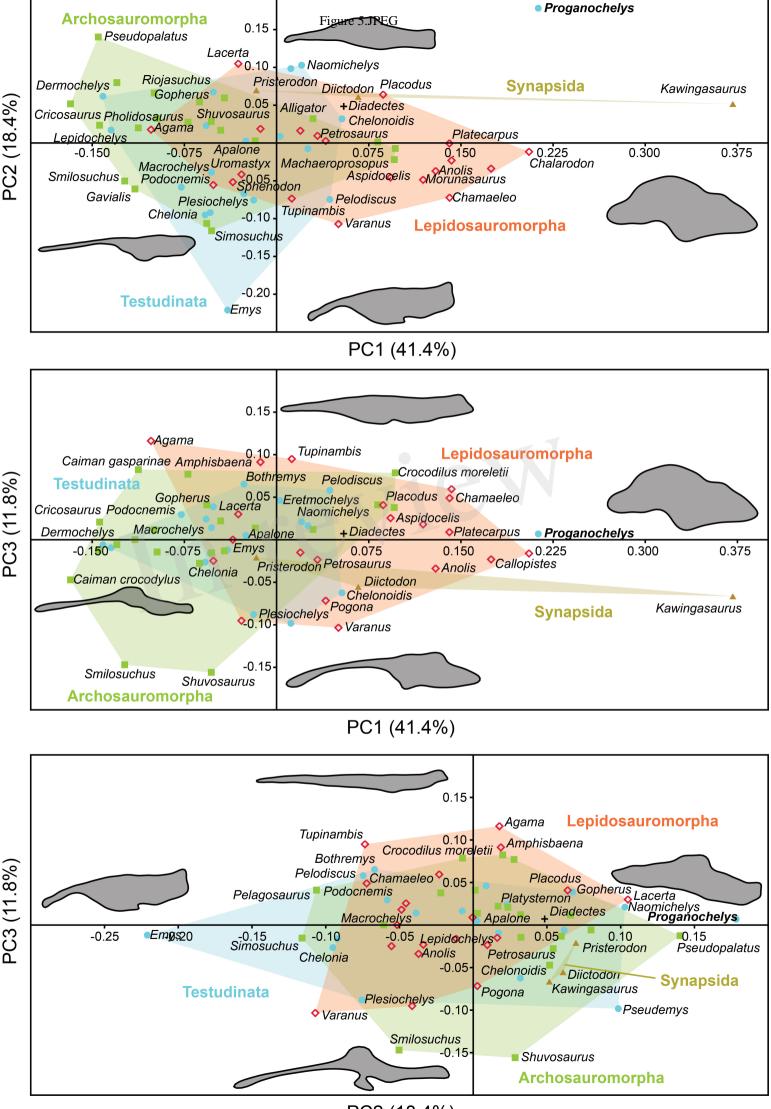
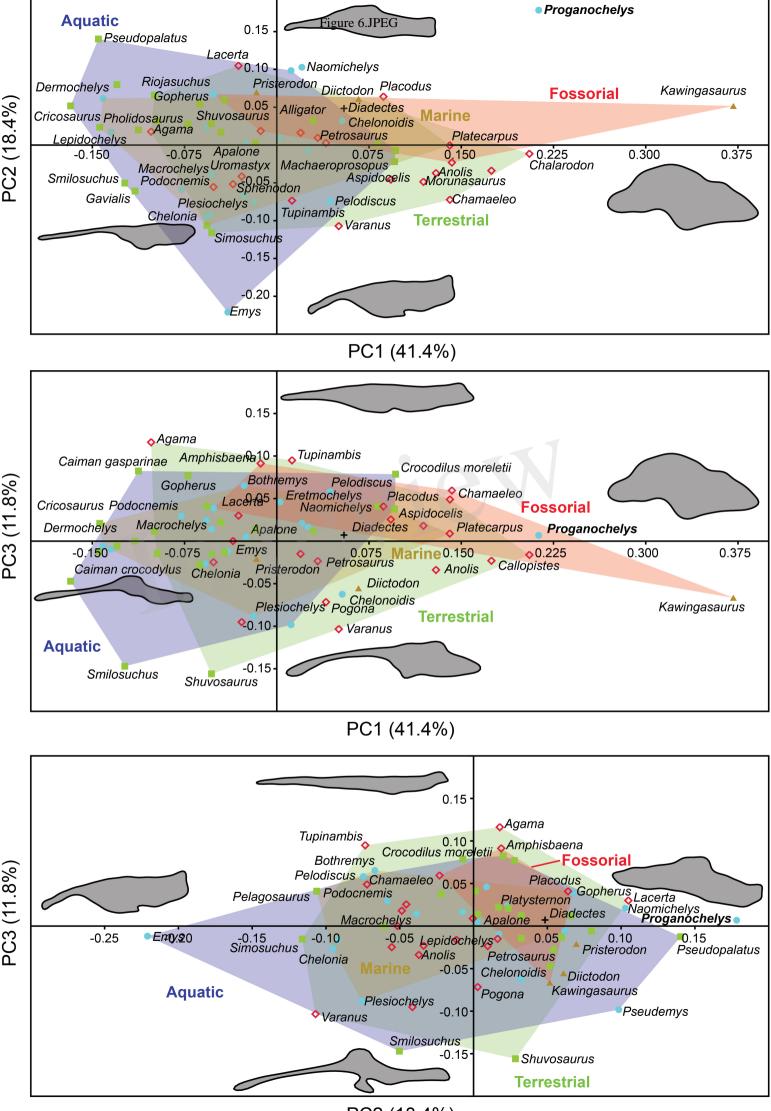
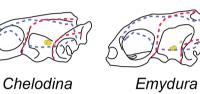
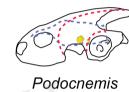
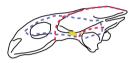






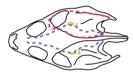
Figure 2.JPEG



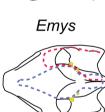



PC2 (18.4%)


PC3 (11.8%)

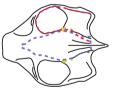

PC2 (18.4%)

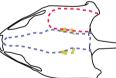
Pelodiscus



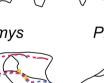
(

Macrochelys


†Naomichelys


Malacochersus

--- adductor chamber


- --- brain endocast trigeminal nerve

†Proganochelys

Ď

Ď

