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Aire controls the recirculation of murine Foxp3+
regulatory T-cells back to the thymus

Jennifer E. Cowan, Song Baik∗, Nicholas I. McCarthy∗, Sonia M. Parnell,
Andrea J. White, William E. Jenkinson and Graham Anderson

Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical
School, University of Birmingham, Edgbaston, Birmingham, UK

In the thymus, medullary thymic epithelial cells (mTEC) determine the fate of newly
selected CD4+ and CD8+ single positive (SP) thymocytes. For example, mTEC expression
of Aire controls intrathymic self-antigen availability for negative selection. Interestingly,
alterations in both Foxp3+ Regulatory T-cells (T-Reg) and conventional SP thymocytes in
Aire−/− mice suggest additional, yet poorly understood, roles for Aire during intrathymic
T-cell development. To examine this, we analysed thymocytes from Aire−/− mice using
Rag2GFP and Foxp3 expression, and a recently described CD69/MHCI subset definition of
post-selection CD4+ conventional thymocytes. We show that while Aire is dispensable
for de novo generation of conventional αβT-cells, it plays a key role in controlling the
intrathymic T-Reg pool. Surprisingly, a decline in intrathymic T-Reg in Aire−/− mice maps
to a reduction in mature recirculating Rag2GFP− T-Reg that express CCR6 and re-enter
the thymus from the periphery. Furthermore, we show mTEC expression of the CCR6
ligand CCL20 is reduced in Aire−/− mice, and that CCR6 is required for T-Reg recircula-
tion back to the thymus. Collectively, our study re-defines requirements for late stage
intrathymic αβT-cell development, and demonstrates that Aire controls a CCR6-CCL20
axis that determines the developmental makeup of the intrathymic T-Reg pool.
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� Additional supporting information may be found in the online version of this article at the
publisher’s web-site

Introduction

In the thymus, distinct stromal cell types support the gener-
ation of functionally competent αβT-cells. For example, corti-
cal thymic epithelial cells (cTEC) are specialised for positive
selection, and form ‘thymic nurse cell’ complexes [1, 2] with
DP thymocytes to enable secondary TCRα rearrangements and
enhance opportunities for further maturation [3]. Complemen-
tary to cortex specialisation are unique features of the thymus
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medulla that control later stages of thymocyte development. While
dendritic cells in the medulla mediate negative selection [4],
medullary thymic epithelial cells (mTEC) express MHCII and
CD80/CD86 [5, 6], Aire [7–11], and CCL21 [12, 13] to con-
trol the selection, differentiation and migration of newly gener-
ated CD4+ and CD8+ single positive (SP) thymocytes prior to
thymic exit. Thus, cTEC/mTEC specialisation is an important fea-
ture of intrathymic microenvironments that guide step-wise T-cell
development.
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In order to mediate negative selection, mTEC express Aire and
Fezf2 for the intrathymic expression of self-antigens that elimi-
nate autoreactive thymocytes by apoptosis [14–18]. Significantly,
while mTEC also support lineage divergence in CD4+ thymocytes
to create Foxp3+ Regulatory T-cells (T-Reg) [19, 20], their role
in this process is not fully understood. For example, while the
intrathymic generation of naturally diverse polyclonal Foxp3+ T-
Reg is dependent upon Aire in the neonate [21], the presence of
peripheral recirculating T-Reg in the adult thymus [22–26] makes
it difficult to accurately quantitate de novo T-Reg development
at this later stage of life. Thus, the impact of Aire on the adult
intrathymic T-Reg pool is unclear. In addition, the medulla has
also been linked to stages in the post-selection development of
conventional SP thymocytes [27, 28]. Importantly however, while
CCR4, CCR7, CCR9 [19, 29, 30] and CD69, 6C10, Qa2 [31] define
CD4+ SP thymocyte heterogeneity, recent work [28] has raised
doubts about the suitability of some of these markers (e.g. Qa2)
to identify specific developmental stages. Interestingly, the same
study described ‘Semi-Mature’ (SM, CD69+MHCIlo), ‘Mature 1’
(M1, CD69+MHCI+) and ‘Mature 2’ (M2, CD69−MHCI+) subsets
that represent an accurate developmental sequence of CD4+ SP
thymocytes, with functional maturation residing within M1 and
M2 cells [28, 32]. However, while these studies define SP thymo-
cyte heterogeneity, the role of the thymus medulla in controlling
transit through these stages is not clear. For example, while the
reduction in late-stage conventional CD4+ thymocytes in adult
Aire−/− mice suggests a role for mTEC and Aire in post-selection
conventional thymocyte differentiation [31, 33, 34], other studies
showed that mTEC are not required for conventional CD4+ thymo-
cyte development [19]. Consequently, the role of mTEC and Aire
in late stage CD4+ αβT-cell development is poorly understood.

Given these uncertainties, we have studied mechanisms con-
trolling the developmental progression of CD4+ thymocytes, and
examined the impact of the thymus medulla on this process. By
analysing Rag2GFP expression in intrathymic Foxp3+ T-Reg and
SM/M1/M2 CD4+ SP conventional thymocyte subsets in adult
Aire−/− mice, we show that Aire is dispensable for de novo con-
ventional and Foxp3+ T-Reg development. In contrast, we find
that Aire exerts a surprising influence on the intrathymic T-Reg
pool, by controlling recirculation of peripheral CCR6+ T-Reg back
to the thymus. Moreover, we show this involves Aire-mediated
regulation of the chemokine CCL20 in mTEC, and identify a novel
CCR6-CCL20 axis for T-Reg thymus recirculation. Collectively,
our study redefines the requirements of post-selection intrathymic
T-cell development, and describes a new role for Aire in controlling
migration of T-Reg between peripheral tissues and the thymus.

Results

Aire controls developmental heterogeneity in the
intrathymic Foxp3+ T-Reg pool

The thymus medulla contains Foxp3+ T-Reg that branch off from
the programme of conventional thymocyte development during

the CD4+ stage [19, 35, 36], and mTEC play an essential role in
the generation of Foxp3+ T-Reg and their precursors [19, 20].
Consistent with this, Aire influences Foxp3+ T-Reg generation in
neonatal mice [21]. However, as the naturally diverse T-Reg pool
in the adult thymus consists of both newly produced cells and recir-
culating T-Reg that have re-entered from the periphery [22–24],
the requirement for Aire during adult intrathymic T-Reg develop-
ment is not clear. To address this directly, we crossed Aire−/− mice
with Rag2GFP mice, providing an accurate means to distinguish
newly produced (GFP+) and recirculating (GFP−) cells in the thy-
mus [22, 23], and examined the developmental makeup of thymic
T-Reg. The gating strategy used to define intrathymic Foxp3+

T-Reg development is shown in Supporting Information Fig.
1. Interestingly, while total T-Reg numbers showed a signifi-
cant reduction in Aire−/−Rag2GFP mice (Fig. 1A), the numbers
of CD25+Foxp3− and CD25−Foxp3+ thymocytes that represent
T-Reg progenitors [35, 36] were unchanged (Fig. 1A). More-
over, when we analysed GFP expression in both T-Reg and T-
Reg progenitor populations from thymuses of WTRag2GFP and
Aire−/−Rag2GFP mice, we saw no differences in the absolute num-
bers of GFP+ thymocytes representing de novo generated cells
(Fig. 1B and C). Thus, newly generated Rag2GFP+ T-Reg and
T-Reg progenitors develop effectively in the absence of Aire, indi-
cating that the reduction in total T-Reg in Aire−/− mice cannot be
explained by a role for Aire in intrathymic T-Reg development.
Surprisingly, further analysis of Aire−/−Rag2GFP mice revealed
a significant decrease in the number of intrathymic T-Reg that
lacked GFP expression (Fig. 1D), indicating that a selective decline
in Rag2GFP− T-Reg provides an explanation for the reduction in
overall intrathymic T-Reg numbers in Aire−/− mice. As these cells
have been shown previously to represent thymus-recirculating
cells [22, 23], this suggests that Aire influences the thymus re-
entry of mature T-Reg from the periphery.

Aire controls recirculation of peripheral T-Reg back to
the thymus

To directly examine the requirement for Aire in thymus T-Reg
recirculation, we performed thymus transplantation experiments
to visualise and quantitate peripheral T-Reg homing to the thy-
mus. Thus, freshly isolated WT embryonic day 18 (E18) thymus
lobes from BoyJ mice, which contain a cohort of CD45.1+ con-
genically marked thymocytes, were transplanted under the kidney
capsule of CD45.2+ WT or CD45.2+ Aire−/− adult mice. In this
way, grafted thymuses generate a single wave of T-cell develop-
ment, and so allow direct analysis of thymus recirculation through
the identification of graft-derived CD45.1+ T-cells within the host
thymus [22]. After 5 weeks, host thymus and spleen tissues were
harvested from WT and Aire−/− hosts, and CD45.1 expression was
used to identify graft-derived cells alongside analysis of CD4, CD8,
TCRβ and Foxp3 by flow cytometry. When we analysed host thy-
muses from WT and Aire−/− mice, we saw striking differences
in the frequency of graft-derived T-cells. Thus, the numbers of
both total donor T-cells and Foxp3+ T-Reg, were significantly

C© 2017 The Authors. European Journal of Immunology published by
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Figure 1. Selective reduction in Rag2GFP− Foxp3+ thymic T-Reg
in Aire−/− mice. Flow cytometric analysis of CD4+CD8−

TCRβ+CD25+Foxp3+, CD4+CD8−TCRβ+CD25+Foxp3− and CD4+CD8−

TCRβ+CD25−Foxp3+ thymocytes from both WTRag2GFP (white) and
Aire−/−Rag2GFP (black) mice. Gating strategy is shown in Supporting
Information Fig. 1. Bar graphs in panel (A) show total numbers of
each population, and panel (B) shows representative examples of
Rag2GFP expression within each population, gray histograms indicated
fluorescence levels on GFP− thymocytes. Panel (C) shows numbers of
Rag2GFP+ T-Reg, CD25+Foxp3− and CD25−Foxp3+ cells in WTRag2GFP
(white) and Aire−/−Rag2GFP (black) mice. Panel (D) shows numbers of
Rag2GFP− T-Reg, CD25+Foxp3− and CD25−Foxp3+ cells in WTRag2GFP
(white) and Aire−/−Rag2GFP (black) mice. Error bars indicate SEM, using
an unpaired Student’s two-tailed t-test: *p < 0.05; ***p < 0.001. Data are
pooled from at least three separate experiments, with at least 6 mice
of each strain in total.

reduced in the Aire−/− host thymus (Fig. 2A). Moreover, while
in the WT host thymus, graft-derived T-Reg:T-conv were present
at a ratio of 3:1, in the thymus of Aire−/− hosts we saw a markedly
skewed ratio of 1:1, indicating reduced graft-derived T-Reg entry
to the Aire−/− thymus (Fig. 2A). Importantly, in the spleens of
both WT and Aire−/− mice, the numbers of total graft-derived
CD45.1+ donor cells and CD45.1+Foxp3+ T-Reg, were compara-
ble (Fig. 2B). Moreover, splenic ratios of T-Reg:T-conv CD45.1+

graft-derived T-cells were comparable in both WT and Aire−/−

mice (Fig. 2B). Thus, WT thymus-graft derived T-Reg are repre-
sented equally in the spleen of WT and Aire−/− hosts, indicating
that limitations in their availability cannot explain the reduction in
thymus-recirculating cells in Aire−/− mice. Rather, these findings
indicate that absence of Aire limits the entry of peripheral T-Reg
to thymus.

Aire controls a CCL20-CCR6 axis for thymus T-Reg
recirculation

Within the intrathymic T-Reg pool, recirculating T-Reg can be
distinguished from newly generated T-Reg by their differen-
tial expression of chemokine receptors. Thus, while newly pro-
duced Rag2GFP+ T-Reg contain CCR6−CCR7+ cells, recirculating
Rag2GFP− cells are CCR6+CCR7− [22]. As CCR6 is expressed by
peripherally-derived T-Reg within the intrathymic pool, we next
examined the involvement of this chemokine receptor in thymic
recirculation. Initially, we transplanted lymphoid CD45.2+ embry-
onic thymus lobes from either WT or Ccr6−/− mice into congeni-
cally marked CD45.1+ WT mice. After 5 weeks, thymus and spleen
from host mice was harvested, and the frequency and phenotype
of graft-derived CD45.2+ T-cells was determined by flow cytom-
etry. In the spleen, donor-derived Foxp3+ T-Reg numbers from
Ccr6−/− thymus grafts were only slightly lower than those from
WT grafts (Fig. 3A). However, when we analysed the number of
graft-derived cells in the host thymus, we saw a far greater reduc-
tion in Ccr6−/− graft-derived T-Reg compared to WT graft-derived
cells (Fig. 3B).

As the above findings suggest that entry of peripheral Ccr6−/−

T-Reg into the host thymus is impaired, and to further examine
the role of CCR6 in thymus T-Reg recirculation, we next generated
Ccr6−/−Rag2GFP mice and analysed developmental heterogene-
ity within the intrathymic T-Reg pool (Fig. 4A and B). Impor-
tantly, by discriminating between recirculating GFP− cells and
newly produced GFP+ cells, we saw a significant reduction in both
the percentage and number of Rag2GFP− T-Reg in the thymus of
Ccr6−/−Rag2GFP mice (Fig. 4C). Thus, by both thymus transplan-
tation and Rag2GFP expression analysis, these findings suggest
that CCR6 is involved in the migration of peripheral T-Reg back to
the thymus. Finally, we next examined how CCR6 may be linked to
the requirement for Aire in this process. As Aire has been shown
to influence expression of intrathymic chemokines [33, 37–39],
we analysed expression of the CCR6 ligand, CCL20, in purified
TEC populations isolated from WT and Aire−/− mice. Interest-
ingly, we found that Ccl20 mRNA was selectively expressed by

C© 2017 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

www.eji-journal.eu



Eur. J. Immunol. 2018. 48: 844–854 Leukocyte and lymphoid organ ontogeny 847

Figure 2. Aire regulates the thymus recirculation of peripheral Foxp3+ T-Reg. panel (A) shows flow cytometric analysis of the host thymus of
either CD45.2+ WT or Aire−/− mice, previously grafted with an embryonic CD45.1+ WT thymus. Upper panels show representative examples of the
detection of graft-derived CD45.1+CD45.2− thymic cells in the host mouse thymus, and detection of CD25+Foxp3+ T-Reg within these cells. Lower
panels show absolute cell numbers of graft-derived donor cells, and the ratio of donor T-Reg:T-conv present in the thymus of WT (white bars) and
Aire−/− (black bars) mice. Panel (B) shows identical analysis of splenocytes from WT (white bars) and Aire−/− (black bars) mice transplanted with a
CD45.1+ WT embryonic thymus. Error bars indicate SEM, using an unpaired Student’s two-tailed t-test: *p < 0.05; **p < 0.01. Data are representative
of at least two separate experiments, with at least 5 mice of each strain in total.

mTEChi (Fig. 4D), the subset that contains Aire-expressing cells.
Moreover, direct comparison of mTEChi from WT and Aire−/− mice
showed a striking reduction of Ccl20 mRNA in the latter (Fig. 4D).
Thus, mTEChi express CCL20, which is reduced in the absence of

Aire. Taken together with the expression of CCR6 by recirculating
T-Reg, and the diminished thymus recirculation of Ccr6−/− T-Reg,
our data suggest that Aire regulates a CCL20-CCR6 axis required
for peripheral T-Reg homing to the thymus.

C© 2017 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 3. CCR6 controls the thymus homing of peripheral Foxp3+ T-
Reg. panel (A) shows flow cytometry analysis of splenocytes obtained
from CD45.1+ WT mice previously grafted with either CD45.2+ WT
(white bars) or Ccr6−/− (black bars) embryonic thymus lobes. Graphs
show the absolute numbers of indicated donor cell populations. Panel
(B) shows similar analysis of graft-derived donor cells in the host thy-
mus harvested from the same mice. Error bars indicate SEM using an
unpaired Student’s two-tailed t-test: *p < 0.05; ***p < 0.001. Data are rep-
resentative of at least two separate experiments, with at least 5 mice
of each strain in total.

Aire is not required for conventional CD4+ thymocyte
development

In addition to housing conventional Foxp3+ T-Reg, the thymus
medulla contains conventional CD4+ and CD8+ thymocytes that
consist of a series of subsets that are phenotypically and devel-
opmentally distinct [19, 27, 28]. While the mechanisms con-
trolling conventional post-selection thymocyte development are
not fully understood, a reduction in Qa2+CD4+ thymocytes in
Aire−/− mice suggests a role for Aire in this process [31]. How-
ever, as recent studies have raised doubts about the suitability of
some previously used markers as indicators of maturation status
[28], we adopted a method involving Rag2GFP, MHCI and CD69
expression that robustly identifies a developmental programme for
CD4+ thymocytes [28]. To directly assess the role of Aire in con-
ventional thymocyte development, we analysed Aire−/−Rag2GFP
mice in relation to semi-mature (SM, CD69+MHCIlo), mature 1
(M1, CD69+MHCIhi) and mature 2 (M2, CD69+MHCIhi) CD4+

thymocyte subsets. In all cases, conventional CD4+ thymocytes
were identified as CD4+8−TCRβ+Rag2GFP+CD25− cells (Fig. 5A
and B). As shown previously [31], analysis of CD69 and Qa2
expression showed a marked reduction in Qa2hiCD69− cells in
Aire−/−Rag2GFP mice, reported to represent the most mature
CD4+ cells (Fig. 5A and B). In contrast, SM, M1 and M2 CD4+

subsets defined by MHCI, CD69 and Rag2GFP were readily
detectable in both WTRag2GFP and Aire−/−Rag2GFP mice, which
also showed a comparable progressive reduction in Rag2GFP lev-
els (Fig. 5C and D). Moreover, while the percentage of SM cells
in Aire−/−Rag2GFP mice showed a slight increase, no significant
differences in the absolute numbers of SM, M1 and M2 CD4+ cells
from WTRag2GFP and Aire−/− Rag2GFP mice were seen (Fig. 5D).
Thus, our analysis of Aire−/− mice using Rag2GFP as a reporter of
developmental status in association with SM/M1/M2 subset detec-
tion indicates that Aire is not required for conventional CD4+ thy-
mocyte development. Moreover, that an unperturbed programme
of maturation in Aire−/− mice is still accompanied by alterations in
Qa2+ thymocyte frequency confirms the limited suitability of this
marker to examine post-selection thymocyte differentiation [28].

In addition to phenotypic changes, CD4+ thymocytes undergo
functional maturation as they progress through post-selection
stages of development [27, 28, 32, 40]. This includes the ability
to produce the cytokine TNFα in response to TCR stimulation, a
process termed cytokine licencing [28]. To examine whether Aire
plays a role in the functional maturation of CD4+ thymocytes, we
next assessed the cytokine licencing capabilities of SM, M1 and M2
subsets from WT and Aire−/− mice. Thymocytes were stimulated
with anti-CD3/anti-CD28 and TNFα production was analysed fol-
lowing cell permeabilisation [28]. Interestingly, CD4+ thymocytes
from both WTRag2GFP and Aire−/−Rag2GFP mice were compara-
ble in their TNFα production (Fig. 5E and F). Thus, consistent with
their immature status, stimulation of the least mature SM CD4+

cells from both WTRag2GFP and Aire−/−Rag2GFP mice failed to
induce TNFα expression. However, more mature M1 and M2 sub-
sets from both WTRag2GFP and Aire−/−Rag2GFP mice generated
TNFα-producing cells at similar frequencies (Fig. 5E and F). Thus,

C© 2017 The Authors. European Journal of Immunology published by
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Figure 4. Recirculating T-Reg are reduced in the thymus of
Ccr6−/−Rag2GFP mice. Flow cytometry analysis of CD4, CD8 expres-
sion in WTRag2GFP (Panel A) and Ccr6−/−Rag2GFP (Panel B) thymocytes,
together with Rag2GFP levels on CD25+Foxp3+ SP4 thymic T-Reg. Panel
(C) shows percentages (upper panels) and absolute numbers (lower pan-
els) of Rag2GFP+ and Rag2GFP− thymic T-Reg in WTRag2GFP (white
bars) and Ccr6−/−Rag2GFP (black bars) mice. Error bars indicate SEM
using an unpaired Student’s two-tailed t-test: *p < 0.05. Data are pooled
from at least three separate experiments, with at least 6 mice of each
strain in total. Panel (D) shows qPCR analysis of Ccl20 mRNA levels in
indicated TEC populations isolated from WT mice, and in mTEChi iso-
lated from either WT or Aire−/− mice. Fold levels represent the mean
+/-SEM of replicate reactions. Data is representative of at least 2 inde-
pendent experiments, where cDNA samples were prepared from sorted
cells from at least 3 mice.

the ability of CD4+ thymocytes to acquire cytokine licencing prop-
erties, and the developmental timing of this process, occurs nor-
mally in Aire−/− mice. Taken together with our phenotypic analy-
sis of post-selection maturation stages, these findings demonstrate
that Aire is not required for completion of intrathymic CD4+ thy-
mocyte development.

Discussion

The thymus medulla houses both conventional and Foxp3+ T-Reg
generated during T-cell development [41, 42]. As a consequence,
medullary functions are diverse in order to influence multiple
events within distinct αβT-cell lineages. The importance of the
medulla is well studied, which is due at least in part to mTEC
expression of Aire, and its control of intrathymic availability of
self-antigens for negative selection [11, 15, 16]. Interestingly,
Aire has been implicated in other aspects of medulla function,
including post-selection development of conventional CD4+ thy-
mocytes and Foxp3+ T-Reg development [21, 31, 33]. However,
understanding these additional roles for Aire has been limited
by uncertainty in identifying post-selection stages in T-cell devel-
opment [28], and the presence of recirculating peripheral T-Reg
in the adult thymus, that hinder accurate analysis of de novo T-
Reg selection [22–25]. Here, we used a variety of approaches to
examine mechanisms regulating CD4+ conventional and Foxp3+

T-Reg in the thymus. For conventional thymocytes, we adopted an
approach in which step-wise progression through three SM, M1
and M2 CD4+ stages was examined alongside de novo Rag2GFP+

thymocyte maturation and the timing of acquisition of functional
competency [28]. By performing this analysis in Aire−/− mice, we
show that SM/M1/M2 post-selection phenotypic progression, and
acquisition of TNFα cytokine licencing, both occur independently
of Aire. Thus, Aire is not a key regulator of post-selection thymo-
cyte differentiation. This conclusion differs from earlier studies
where a reduction in Qa2hiCD69− CD4+ thymocytes in Aire−/−

mice (also shown here) was taken as evidence for a role for Aire
in post-selection thymocyte maturation [31]. Importantly, as Qa2
expression has recently been shown to indicate type 1 interferon
signalling in thymocytes rather than their maturation status [28],
its suitability as a marker to identify stages in post-thymic differen-
tiation is uncertain. Indeed, our finding that post-selection thymo-
cyte maturation is regulated by Aire-independent mechanisms is
compatible with studies showing that mTEC, major expressers of
Aire in the thymus, are not required for the generation of mature
CD4+ thymocytes [19]. As such, our data suggest the primary role
of Aire in conventional adult αβT-cell development is tolerance
induction, and not post-selection differentiation.

Foxp3+ T-Reg require the medulla, and mTEC in particular, for
their development [19]. Here, using Rag2GFP expression and thy-
mus transplantation approaches, we reveal an unexpected impact
of Aire on the developmental makeup of the intrathymic T-Reg
pool in adult mice, and show it controls the frequency of mature
T-Reg entering the thymus from the periphery. Thus, a reduc-
tion in T-Reg recirculation, not de novo production, may explain

C© 2017 The Authors. European Journal of Immunology published by
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Figure 5. Aire is dispensable for post-selection maturation and cytokine licencing in conventional thymocytes. Flow cytometric detection of
CD4+CD8−TCRβ+CD25−Rag2GFP+ conventional CD4+ SP thymocytes in WTRag2GFP (A) and Aire−/−Rag2GFP (B) mice. Analysis of Qa2/CD69 expres-
sion in these cells is also shown. Panel (C) shows conventional CD4+ SP thymocytes from WTRag2GFP and Aire−/−Rag2GFP mice, analysed for
expression of CD69 and MHCI to detect: SM (CD69+MHCIlow), M1 (CD69+MHCI+) and M2 (CD69−MHCI+) subsets. Histograms show the Rag2GFP lev-
els in the indicated populations. Panel (D) shows proportions, numbers and Rag2GFP levels of populations identified in (C). Panels (E) and (F) show
analysis of TNFα production in SM, M1 and M2 subsets of conventional CD4+ SP thymocytes from WTRag2GFP (white bars) and Aire−/−Rag2GFP
(black bars) mice. Error bars indicate SEM, and a one-way ANOVA was used, *p< 0.05. Data are pooled from at least three separate experiments,
with at least 6 mice of each strain in total.

C© 2017 The Authors. European Journal of Immunology published by
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Figure 6. Aire controls A CCR6-CCL20 axis for Foxp3+ T-Reg recircula-
tion to the thymus. In the model shown, mTEC produce the chemokine
CCL20 in an Aire-dependent manner. This enables mature CCR6+ T-
Reg to recirculate back to the thymus from peripheral tissues. Newly
produced T-Reg within peripheral tissues are CCR7+CCR6−, and so do
not undergo CCL20-mediated thymus recirculation.

the smaller T-Reg pool size in the thymus of adult Aire−/− mice.
In addition, it has also been shown that T-Reg can be retained
within the thymus for longer periods compared to conventional
thymocytes [43]. While these findings emphasise the develop-
mental heterogeneity that exists within T-Reg in the thymus, it
is currently unclear whether Aire impacts the intrathymic T-Reg
pool by influencing both intrathymic retention and re-entry from
peripheral tissues. Importantly, these findings on the role of Aire
in T-Reg recirculation may still be consistent with studies demon-
strating a requirement for Aire in TCR-transgenic T-Reg develop-
ment in adult mice [20, 44–46]. Thus, while we show naturally
diverse intrathymic T-Reg are produced in comparable numbers
in WT and Aire−/− mice, they may differ in the αβTCR repertoires
they express. This would be consistent with Aire controlling the
development of those cells selected by Aire-dependent TRAs. In
addition, by demonstrating Aire-dependent expression of CCL20
for entry of CCR6+ peripheral T-Reg, we provide new insight
into Aire’s ability to exert influence on thymus populations by
affecting intrathymic chemokine availability. Thus, while Aire con-
trols XCL1-mediated thymic DC positioning [37] and CCR4/CCR7
ligand-mediated thymocyte migration [33, 38], we now show that
Aire also controls CCL20 for T-Reg migration between the thy-
mus and periphery (Fig. 6). That CCR6 is expressed by recircu-
lating cells within intrathymic T-Reg [22] is consistent with this,
and further highlights Aire’s impact on T-Reg extends beyond any
influence on their intrathymic production. It is interesting to note
that while thymic T-Reg recirculation is reduced in both Aire−/−

and Ccr6−/− mice, some peripherally-derived thymic T-Reg are
still detectable. Whether this reflects additional roles for other
Aire-dependent and –independent chemokines is unclear.

The functional relevance of T-Reg recirculation to the thymus
is not fully understood. However, recent studies have shown that

it may control de novo T-Reg development by creating intrathymic
competition for IL-2 [23, 24]. However, despite reduced recircu-
lating T-Reg in Aire−/− mice, we saw no changes in the numbers
of de novo produced T-Reg precursors or more mature Foxp3+

T-Reg. Whether the reduced peripheral T-Reg numbers in the thy-
mus of Aire−/− mice are still able to effectively compete for IL-2
and limit new T-Reg production is not clear. Interestingly, CCL20
directs CCR6+ T-Reg to peripheral inflammatory sites [47], and
its expression by mTEC for the attraction of CCR6+ T-Reg corre-
lates with conditions within medullary thymic microenvironments
that support constitutive MHC class II expression and elevated co-
stimulatory molecules on thymic APC [48]. Whether recirculating
T-Reg influence the thymic medullary microenvironments they
reside within is currently not known.

In conclusion, by analysing conventional and Foxp3+

thymocytes and separating intrathymic production from thymic
recirculation, we have examined the requirement for Aire in spe-
cialisation of the thymus medulla during αβT-cell development.
Collectively, our findings support models in which the major role
of Aire+ medullary microenvironments in adult thymus is the con-
trol of tolerance induction and not thymocyte differentiation. In
contrast, by revealing an Aire-mediated mechanism that controls
the entry of peripherally derived T-Reg to the thymus, we demon-
strate the ability of Aire to regulate communication between sites
of T-cell production and function.

Materials and methods

Mice

Wildtype (WT) C57BL/6, Rag2GFP [49], Aire−/− [50] and Ccr6−/−

mice (obtained from The Jackson Laboratory, stock number
005793 [51] on a C57BL/6 background were used at 8–12
weeks of age. All mice were housed at the Biomedical Services
Unit at The University of Birmingham, and all procedures were
performed with permission for the UK Home Office. Rag2GFP
mice were interbred with Aire−/− and Ccr6−/− mice to generate
Aire−/−Rag2GFP and Ccr6−/−Rag2GFP mice respectively. Embryos
from WT CD45.1+ BoyJ and C57BL/6 CD45.2+ mice were gener-
ated from timed matings, with the day of vaginal plug detection
designated as day 0.

Thymocyte cytokine licencing

TNFα production in freshly isolated thymocytes was performed as
described [28]. Briefly, 5 × 106 thymocytes were cultured with
plate-bound anti-CD3 (10 ug/ml, clone 145-2C11, eBioscience)
and anti-CD28 (20 ug/ml, clone 37.51, eBioscience) for 6 hours
in GolgiPlug (BD Bioscience). Cells were stained with antibodies
described below to detect SM, M1 and M2 CD4+ cells, fixed using
BD Cytofix/Cytoperm (BD Bioscience) for 30 min on ice, and TNFα
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production was detected by flow cytometry using an anti-TNFα

antibody (MP6-XT22, BD Bioscience).

Antibodies, immunoconjugates and flow cytometry

Thymus and spleen were mechanically teased with glass slides
to acquire single cell suspensions and cells were stained
with antibodies to the following: CD45.1 (A20, eBioscience),
CD45.2 (104, eBioscience), CD4 (RM4-5, Biolegend), CD8 (53-
6.7, Biolegend), CD25 (PC61.5, Biolegend), CD44 (IM7, eBio-
science), Qa2 (695H1-9-9, Biolegend), TCRβ (H57-597, eBio-
science), CD69 (H1.2F3, eBioscience), and H-2Kb (AF6-88.5,
Biolegend). Reagents were conjugated to Pacific Blue, Brilliant
Violet (BV) 421, BV510, BV711, PE, PE-Cy7, PerCP–eFluor 710,
allophycocyanin– eFluor 780 and Alexa Fluor 700. Streptavidin
PE-Cy7 (eBioscience) was used to detect biotinylated antibodies.
A Foxp3 fixation kit (eBioscience) was used in conjunction with
anti-Foxp3 (FJK-16s, eBioscience) or the BD Cytofix/Cytoperm Kit
(BD Biosciences) to preserve the GFP signal. Data were acquired
using a BD LSR Fortessa and FACSDiva 2.6 software and analysed
using FloJo software (Tree Star).

Preparation and purification of thymic epithelial cells

Thymus tissue was enzymatically digested with Collage-
nase/Dispase (2.5 mg/ml; Roche) and DNase 1 (40 mg/ml;
Roche). After digestion, CD45+ thymocytes were depleted using
anti-CD45 microbeads and LS columns (Miltenyi Biotec). Anti-
bodies against the following were used to sort TEC populations:
CD45 (30-F11, eBioscience), EpCAM1 (G8.8, eBioscience), I-Ab

(AF6-120.1, BD Bioscience), Ly51 (6C3, Biolegend), CD80 (16-
10A1, Biolegend). Reagents were conjugated to Pacific Blue, BV
421, BV605, PE, PerCP–eFluor 710, allophycocyanin–eFluor 780.
Streptavidin PE-Cy7 was used to detect biotinylated antibodies.
Sorting was performed using a FACS Aria Fusion 1 sorter (BD)
with a purity typically >98%.

qPCR

The following FACS-sorted TEC populations were
analysed by qPCR: cTEC: CD45−EpCAM1+Ly51+;
mTEClo: CD45−EpCAM1+Ly51−MHCIIloCD80lo; mTEChi:
CD45−EpCAM1+Ly51−MHCIIhiCD80hi. mRNA isolation, cDNA
synthesis and qPCR were performed exactly as described [29].
Primer sequences are as follows:

Actb (NM 007393)
QuantiTect Mm Actb 1 SG primer assay (Qiagen QT00095242)
Ccl20 (NM 016960)
Forward primer 5′-ACTGTTGCCTCTCGTACATACA-3′;
Reverse primer 5′-GAGGAGGTTCACAGCCCTTTT-3′

Thymus transplantation

Freshly isolated embryonic day (E) 18 thymus lobes were used as
thymus transplants. To assess the role of Aire in thymus recircu-
lation, thymus lobes from WT CD45.1+ mice were transplanted
under the kidney capsule [52] of congenically marked CD45.2
WT or Aire−/− mice. To assess the role of CCR6, CD45.2+ WT or
Ccr6−/− thymus lobes were transplanted into WT CD45.1+ adult
mice. After 5 weeks, host thymus and spleen tissues were har-
vested and graft derived T-cell subsets identified by expression of
CD45.1 or CD45.2, as appropriate.
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