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Abstract 

Refrigerant subcooling could increase the refrigerating capacity and potentially improve the 

performance of refrigeration systems. In this paper, a novel subcooling method is experimentally 

studied for the first time in a hybrid vapor compression refrigeration system. In this system, 

condensation heat (around 40 oC) is used to drive an integrated subcooling cycle to subcool the 

refrigerant leaving the condenser, which significantly increases the system performance. Changes in 

system performance are measured as functions of the following variables: the mass flow rates of the 

dehumidification air, ambient air, dehumidification solution, regeneration solution, and spraying water. 

Comparisons are made between the proposed system and the traditional water-cooled chiller. The 

proposed system can achieve a larger degree of subcooling (15-20 oC); what’s more, it shows much 

higher performances than the traditional water-cooled chiller: COP of the chiller is improved by 18.6%, 

and the exergy efficiency is increased up to 27.9%. Performance of the integrated subcooling cycle is 

also evaluated; it has a low COP, with the maximum value of 0.13, due to the low-grade condensation 

heat; however, it has a pretty high exergy efficiency, with the maximum value of 0.28, which indicates 

mailto:rachpe@seu.edu.cn
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the effective use of the low-grade heat. In addition, an economic analysis of the integrated subcooling 

cycle is made with a project life cycle of 15 years; the payback period varies from 2.4 to 3.2 years 

based on different electricity tariffs, and the savings to investment ratio is between 1.3 and 2.1, which 

indicates that the project is profitable. 

Keywords: subcooling; liquid desiccant; evaporative cooling; exergy analysis; economic analysis. 

Nomenclatures 

AS annual savings ($) 

aw specific surface area of the packing (m2/m3) 

COP coefficient of performance 

Cp specific heat capacity(kJ/kg oC) 

D depth (m) 

e specific exergy (kJ/kg) 

E error (%) 

G air mass flow rate (kg/s) 

h specific enthalpy (kJ/kg) 

H height (m) 

L length (m) 

M liquid mass flow rate (kg/s) 

N number of years 

NPV net present value ($) 

PVI present value of investment ($) 

PVS present value of savings ($) 
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Q heat capacity (kW) 

rd discount rate 

rin inflation rate 

s specific entropy (kJ/kg K) 

SIR savings to investment ratio 

SPP simple payback period (year) 

T temperature (oC) 

W power consumption (kW) 

X concentration (%) 

Greek symbols 

 difference 

 humidity ratio (kg/kg) 

Subscripts 

a air 

amb ambient air 

base traditional water-cooled chiller 

ch chiller cycle 

com compressor 

con condenser 

deh dehumidifier 

eva evaporator 

EC evaporative cooler 
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imp improvement 

in input 

lat latent 

out output 

r regeneration 

ref refrigerant 

reg regenerator 

s solution 

sen sensible 

sub integrated subcooling 

w water 

1. Introduction 

With the rapidly improving economy and increasing urbanization, energy consumption in 

buildings has increased significantly and accounts for 27% of the national energy consumption in 

China; energy consumption from air conditioning is about 53% of that consumed energy [1]. Therefore, 

it is urgent to reduce the energy consumption of air conditioning systems.  

Refrigerant subcooling can increase the refrigerating capacity and potentially improve the 

coefficient of performance (COP) of air conditioning systems. From the perspective of the second law 

of thermodynamics, refrigerant subcooling reduces throttling losses resulting from an isenthalpic 

expansion [2]. The traditional method usually adds a liquid-suction heat exchanger between the outlets 

of the condenser and evaporator [3-7]. Kleinet al. [3] analyzed how pressure drops through the 

liquid-suction heat exchanger affected the system performance with different refrigerants. Hermes [5] 
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reported a study of the potential for refrigerant charge reduction in vapor compression refrigeration 

systems by means of a liquid-suction heat exchanger. Experimental analysis of how a liquid-suction 

heat exchanger can affect the performance of a vapor compression refrigeration system was made using 

R1234yf [6], R1234ze(E) and R450A [7]. The liquid-suction heat exchanger achieves subcooling by 

transferring the refrigerant heat from the condenser outlet to the compressor inlet. The larger degree of 

superheat at the compressor inlet results in decreased refrigerant flow, thereby reducing the system 

performance. In order to eliminate the drawbacks of the liquid-suction heat exchanger, some 

researchers use a mechanical subcooling method, in a refrigeration system, to enhance the system COP 

and also to decrease the degree of superheat [8-12]. In the mechanical subcooling method, a small 

mechanical vapor compression cycle is coupled to the main refrigeration cycle, at the exit of the 

condenser, to provide subcooling to the main refrigeration cycle. Yang and Zhang [8] presented a 

model-based comprehensive analysis on such a subcooler design and discussed the optimal subcooling 

control. Qureshi and Zubair [9] analyzed the impact of fouling on performance of the vapor 

compression refrigeration system with integrated mechanical subcooling. Qureshiet al. [11] 

experimentally investigated how the use of a dedicated mechanical subcooling cycle affected the 

system performance. The experimental results indicated that the refrigerating capacity increased by 

approximately 0.5 kW, and the second-law efficiency of the cycle increased by an average of 21%. 

Because the mechanical subcooling method needs an additional compressor to provide the driving 

force of subcooling, the electricity consumption of the compressor will carry an undesirable effect on 

the system COP. Considering that, some researchers utilize phase change materials (PCM) and heat 

pipes, in cold storage units, as a subcooler [13-16]. Hsiao et al. [14] investigated the thermal 

performance of a heat pump system, with an ice storage subcooler, to supply heating and cooling 
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demands to two greenhouses, respectively. The results showed that in the charge mode, the heat pump 

COP of the ice storage system was 12% higher than that without the ice storage system; in the 

discharge mode, the ice storage system provided the refrigerator a COP 15% higher than that without 

the ice storage system. Huang et al. [15] experimentally investigated the performance of a cold storage 

air conditioning system that utilized a thermal battery as a subcooler, which gave 28% more 

refrigerating capacity and 8% higher COP.  

A novel subcooling method, based on liquid desiccant dehumidification, was proposed and 

analyzed in our previous work [17-20]. In this method, condensation heat from the condenser is used to 

drive liquid desiccant dehumidification for dry air, which is later to absorb moisture from spray water 

and low temperature cooling water is then obtained to subcool the refrigerant leaving the condenser. 

Thermodynamic analyses and optimizations of the proposed system have shown good performance 

improvement. However, these are only from theoretical perspectives, no experimental work is found in 

the literature. In this paper, an experimental setup is built and tested to complement the previous 

theoretical studies, and further provide proof of the proposed subcooling method in reality. Changes in 

system performance are measured as functions of mass flow rates for the following entities: the 

dehumidification air (Ga), the ambient air (Gamb), the dehumidification solution (ms,deh), the 

regeneration solution (ms,reg), and the spraying water (mw,EC). Both the first law and second law 

thermodynamic analyses are conducted on the proposed system, and comparisons are made between 

the proposed system and the traditional water-cooled chiller. In addition, economic benefits of the 

proposed system are also evaluated with a life cycle of 15 years.  

2. Experimental setup and procedure 

2.1. System description 
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The hybrid vapor-compression refrigeration system, realizing the proposed subcooling method, 

consists of a chiller cycle and an integrated subcooling cycle, as shown in Fig. 1. The integrated 

subcooling cycle is similar to the double-stage absorption refrigeration cycle driven by low-grade heat, 

and can be divided into an evaporative cooling cycle and a liquid desiccant dehumidification cycle. The 

liquid desiccant dehumidification cycle driven by condensation heat (around 40 oC) is used to produce 

dry air for the evaporative cooling cycle, where low-temperature cooling water is obtained to subcool 

the refrigerant leaving the condenser and correspondingly the increase of the refrigerating capacity is 

expected.  

Fig. 2 is the picture of the experimental setup of the proposed system. In the chiller cycle, the 

refrigerant temperature is measured using a Pt100 platinum resistor, and pressure is measured by the 

pressure transmitter. Power consumption of the compressor is measured by a WT230 power meter. The 

chilled water temperature is measured using a type-T thermocouple, and the mass flow rate is measured 

using a turbine flowmeter. In the evaporative cooling cycle, the temperature and humidity, of the air 

leaving the evaporative cooler and dehumidifier, are measured by a Rotronic temperature and humidity 

transmitter. The air temperature entering the evaporative cooler and dehumidifier is measured by a 

type-T thermocouple. The mass flow rate of the air is measured by the KIMO flow meter. In the liquid 

desiccant dehumidification cycle, the solution temperature is measured using type-T thermocouples, 

and the mass flow rate is measured using an electromagnetic flow meter. The temperature and humidity 

of the ambient air at the inlet and outlet of the regenerator are measured using the Rotronic temperature 

and humidity transmitter, while the mass flow rate is measured by the KIMO flow meter. The cooling 

water temperature, at the inlet and outlet of the solution cooler, is measured using a type-T 

thermocouple. Parameters of the measuring instruments are shown in Table 1. 
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R22 is used in the chiller cycle which is due to the fact that, for such a small chiller, R22 is 

commonly used for the compressor in the market of China. The properties of R22 are obtained from 

REFPROP 8.0. LiCl solution is chosen for the liquid desiccant dehumidification cycle, and its 

properties could be found in the literature [21]. Fig. 3 shows the P-h diagram of refrigerants and T-d 

diagram of air and solution. 

2.2. The first law thermodynamic performance index 

The humidity ratio difference of air (a), between the inlet and outlet of the dehumidifier, and 

moisture removal rate in the dehumidifier (mdeh) are calculated using the following equations, 

                            8 9a                                     (1) 

                            d e h a am G                                  (2) 

where, Ga is the mass flow rate of the air in the dehumidifier. The humidity ratios, 8 and 9, are 

located at the inlet and outlet of the dehumidifier, respectively.  

The difference in humidity ratio for the ambient air (amb), between the outlet and inlet of the 

regenerator, and moisture removal rate in the regenerator (mr) are obtained by Eqs. (3) and (4), 

respectively, 

                           2 0 1 9a m b                                  (3) 

                           r a m b a m bm G                                (4) 

where, Gamb is the mass flow rate of ambient air in the regenerator, and humidity ratios of the ambient 

air, 19 and 20, are located at the inlet and outlet of the regenerator, respectively.  

In the evaporative cooler, the dry air absorbs moisture (mEC) from the spraying water via latent 

heat transfer (QEC,lat), one part of which is to cool the air (QEC,sen), and the other part is to subcool the 

refrigerant (Qsub). 
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                          7 1 0( )EC am G                             (5) 

                          , 2500EC lat ECQ m                           (6) 

                        , 1 0 7( )EC sen a aQ Cp G T T                         (7) 

where, humidity ratios of the air, 10 and 7, are located at the inlet and outlet of the evaporative cooler, 

respectively. The specific heat capacity of the air is denoted by Cpa , while air temperatures T10 and T 7 

are located at the inlet and outlet of the evaporative cooler, respectively. 

The degree of subcooling (Tsub), performance of the chiller cycle (COPch), and performance of 

the integrated subcooling cycle (COPsub), are calculated as follows, 

                            s u b 4-c o nT T T                                (8) 

 , 22 21( )w w eva

ch

com

Cp m T T
COP

W

  
                      (9) 

, 6 5

, 14 13

( )

( )

w w EC

sub

s s reg

Cp m T T
COP

Cp m T T

  


  
                   (10) 

where, T4 is the refrigerant temperature at the outlet of the subcooler; the mass flow rate of chilled 

water is mw,eva; ms,reg is the mass flow rate of the solution in the condenser; mw,EC is the mass flow rate of 

the low temperature cooling water in the subcooler; and the power consumption of the compressor is 

Wcom.  

Comparisons are made between the proposed system and the traditional water-cooled chiller. To 

allow for comparison, several assumptions are made on the water-cooled chiller: (1) condensing 

temperature is 11 oC higher than the cooling water temperature at the outlet of cooling tower [22]; (2) 

the evaporating temperature and compressor efficiency are the same as that of the proposed system; (3) 

both the degree of refrigerant superheat and degree of subcooling are 5 oC. 

Chiller performance improvement (COPimp) is defined in the following manner, 
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c h b a s e

i m p

b a s e

C O P C O P
C O P

C O P


                          (11) 

where, COPbase is the performance of the traditional water-cooled chiller. 

2.3. The second law thermodynamic performance index 

Besides the COP, exergy efficiency is also an important performance index which indicates the 

irreversible energy loss during heat transfer. In the chiller cycle, the input exergy includes the power 

consumption of the compressor and the exergy of the spaying water in the subcooler; the output exergy 

consists of the exergy of the chilled water in the evaporator and the exergy of the solution in the 

condenser. Therefore, the exergy efficiency of the chiller cycle is defined as, 

                 
  

, 21 22 , 14 13

, 5 6

( ) ( )

( )

w eva s reg

ch

w EC com

m e e m e e

m e e W


    


  
                    (12) 

where, e13 and e14 are the exergy of the solution at the inlet and outlet of the condenser, respectively; e5 

and e6 are the exergy of the spray water at the inlet and outlet of the subcooler, respectively; e21 and e22 

are the exergy of the chilled water at the outlet and inlet of the evaporator, respectively; both the exergy 

of water and solution can be calculated in the following equation: 

                 
  (( ) ln )amb amb

amb

T
e Cp T T T

T
                            (13) 

Exergy efficiency improvement (imp) of the chiller is defined as, 

                     

c h b a s e

i m p

b a s e

 





                               (14) 

where, base is the exergy efficiency of the traditional water-cooled chiller. 

For the integrated subcooling cycle, the exergy input is the exergy of the condensing heat in the 

condenser and the exergy output is the exergy of the increased refrigerating capacity in the evaporator. 

Hence, the exergy efficiency of the integrated subcooling cycle is defined as,  

                     

4 3

2 3

sub

e e

e e
  




                              (15) 

where, e2-e3 is the specific exergy input of the refrigerant in the condenser, and e4’-e3’is the specific 
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exergy output of the refrigerant in the evaporator; the specific exergy of the refrigerant is calculated by, 

  ( )ref amb amb ambe h h T s s                         (16) 

where, Tamb and hamb are the temperature and specific enthalpy of the refrigerant at ambient conditions, 

respectively. 

2.4. Economic performance index 

In order to evaluate the economic benefit of the use of the integrated subcooling cycle, an 

economic analysis with life cycle costs is carried out using the annualized cash flows [23].  

The present value of investments (PVI) is:  

1

I

0

1+ Res. Val.
PV I ( ) -

1 (1 )

N
tin

t N
t d d

r

r r





 
 

                         (17) 

The present value of savings (PVS) is:  

S

1

1
PV AS

(1 )

N

t t
t dr

 


                            (18) 

where, N is the number of years of the project life-span; rd is the discount rate; rin is the inflation rate; 

AS is the annual savings; Res. Val. is the residual value of the component. 

The net present value (NPV) is the life cycle net savings of a project and is calculated by, 

 S INPV PV PV                                (19) 

The savings to investment ratio (SIR) is another parameter which indicates the profitability of a 

project, and is defined as, 

S

I

PV
SIR

PV
                                  (20) 

Simple payback period (SPP), expressed in years, refers to the length of time that it takes for a 

project to recoup its initial investment.  

Capital cost
SPP

Savings/year
                             (21) 

2.5. Energy balance 
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Before analyzing the experimental data, it is necessary to study the energy balance of the proposed 

system. Here, the chiller cycle is studied; the refrigerant pipes, evaporator, condenser, and subcooler 

are covered by thermal insulation materials. In the chiller cycle, the input energy (Qin) includes 

refrigerating capacity (Qeva) and power consumption of the compressor (Wcom). The output energy (Qout) 

consists of the condensation heat capacity (Qcon) and subcooling capacity (Qsub). 

in eva comQ Q W 
                          (22) 

                      o u t c o n s u bQ Q Q                             (23) 

The energy balance error (E) is defined as follows: 

                    

( )

max( , )

in out

in out

abs Q Q
E

Q Q




                       
 (24) 

Table 2 shows the energy balance of the experimental chiller cycle with different working 

conditions. As shown, the energy balance error (E) is within 10% of theory; therefore, the experimental 

data is reliable for the following analysis. 

3. Experimental results and discussion 

In the hybrid vapor compression refrigeration system, several working parameters affect the 

system performance. The key parameters include the mass flow rate of the dehumidification air (Ga), 

the mass flow rate of ambient air (Gamb), the mass flow rate of dehumidification solution (ms,deh), the 

mass flow rate of regeneration solution (ms,reg), and the mass flow rate of the spraying water (mw,EC). 

During the experiment, there are no devices to control the temperature and humidity of the ambient air 

(Tamb and amb). As a result, such ambient air parameters are slightly variable. Working parameters, 

including the solution concentration (Xs) and chilled water mass flow rate (mw,eva), are shown in Table 3, 

where the solution mass flow rate in the solution heat exchanger is 0.28 kg/s. 

3.1 Effects of varying the mass flow rate of the dehumidification air 
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Fig. 4(a) shows how varying the mass flow rate of the dehumidification air (Ga) affects the 

difference in the humidity ratio between the inlet and outlet of the dehumidifier (a) and the moisture 

removal rate in the dehumidifier (mdeh). When Ga increases from 0.14 kg/s to 0.33 kg/s, a decreases 

significantly from 2 g/kg to 1.7 g/kg. This is because the increase of Ga makes the air flow faster for a 

given dehumidifier packing size. This leads to shorter contact time between the air and the solution, 

resulting in lower dehumidification of the air per unit mass. In addition, with the increase of Ga, mdeh 

increases significantly from 0.27 g/s to 0.57 g/s. Despite the decreased a, the increase of Ga results in 

the increase of mdeh.  

Fig. 4(b) shows how varying the mass flow rate of dehumidification air (Ga) affects the 

performance of the evaporative cooler. When Ga increases from 0.14 kg/s to 0.33 kg/s, the sensible 

heating of air (QEC,sen) increases significantly from 0.26 kW to 0.94 kW, and latent heating (QEC,lat) rises 

dramatically from 0.68 kW to 1.43 kW. The increase of sensible heating is due to more air needing to 

be cooled with the increased Ga, and the increase of latent heating results from the increase of moisture 

removal rate in the evaporative cooler. In addition, with the increase of Ga, the subcooling (Qsub) 

increases gradually from 0.43 kW to 0.56 kW, and then decreases generally to 0.48 kW, which comes 

from the combined effects of latent and sensible heating.  

Fig. 5 shows how varying the mass flow rate of dehumidification air (Ga) affects system 

performance. As shown in Fig. 5(a), with the increase of Ga, the condensing temperature (Tcon) 

decreases gradually and then increases, which is mainly due to changes in the condenser’s solution 

temperature. With the increase of Ga, the moisture removal rate in the dehumidifier increases. 

Correspondingly, the solution temperature at the outlet of the dehumidifier increases, and the solution 

concentration becomes weaker. This improves the regeneration effect in the regenerator, and decreases 
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the solution temperature at the outlet of the regenerator. Due to the changes of solution temperature at 

the outlet of the regenerator and dehumidifier, the temperature of the mixed solution at the inlet of the 

condenser decreases initially and subsequently increases. In addition, the degree of subcooling (Tsub) 

shows the same trends as the condensing temperature.  

Fig. 5(b) shows how varying the mass flow rate of dehumidification air (Ga) affects the 

refrigerating capacity (Qeva) and power consumption of the compressor (Wcom). When Ga increases from 

0.14 kg/s to 0.27 kg/s, Qeva increases gradually from 4.38 kW to 4.59 kW; while Ga increases from 0.27 

kg/s to 0.33 kg/s, Qeva decreases gradually to 4.42 kW. In addition, with the increase of Ga, Wcom 

initially decreases and then increases, which is mainly affected by the condensing temperature. When 

Ga is 0.2 kg/s, Wcom has a minimum value 1.28 kW. 

Varying the mass flow rate of the dehumidification air (Ga) affects the COPch and COPsub as 

shown in Fig. 5(c). When Ga increases from 0.14 kg/s to 0.27 kg/s, COPch increases gradually from 

3.29 to 3.54 and COPsub increases generally from 0.08 to 0.12, which is mainly due to the decrease of 

condensing temperature; while Ga increases from 0.27 kg/s to 0.33 kg/s, COPch decreases gradually to 

3.36 and COPsub decreases to 0.1, which mainly results from the increase of condensing temperature. 

When Ga is around 0.25 kg/s, system performance achieves a maximum value. In addition, compared 

with the traditional water-cooled chiller, the proposed system has a higher COPch. As shown in Fig. 

5(d), the maximum chiller performance improvement (COPimp) is 9.2%. 

3.2 Effects of varying the mass flow rate of the ambient air 

Fig. 6 shows how varying the mass flow rate of ambient air (Gamb) affects the humidity ratio 

difference of the ambient air between the outlet and inlet of the regenerator (amb) and the moisture 

removal rate in the regenerator (mr). With the increase of Gamb, amb decreases significantly from 6.1 
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g/kg to 2.9 g/kg. This is because the ambient air and solution have less contact time when the packing 

size of the regenerator is held constant; correspondingly the humidification effect of ambient air per 

unit mass will decrease. When Gamb increases from 0.16 kg/s to 0.25 kg/s, mr decreases significantly 

from 0.98 g/s to 0.76 g/s, due to the accompanying decrease of amb. As Gamb increases from 0.25 kg/s 

to 0.27 kg/s, mr increases gradually to 0.8 g/s, because Gamb increases more than the associated decrease 

in amb. 

Fig. 7 shows how varying the mass flow rate of ambient air (Gamb) affects the performance of the 

proposed system. As shown in Fig. 7(a), when Gamb increases from 0.16 kg/s to 0.21 kg/s, Tcon 

decreases from 41.3 oC to 38.9 oC; while Gamb increases from 0.21 kg/s to 0.27 kg/s, Tcon decreases 

from 38.9 oC to 38.1 oC. The decreased condensing temperature is due to the enhanced heat transfer 

between the ambient air and solution, which is a result of the increased Gamb. This leads to the decrease 

in solution temperature at the outlet of the regenerator, and further affects the condensing temperature. 

When Gamb is higher than 0.19 kg/s, condensing temperature of the proposed system is lower than that 

of the water-cooled chiller.  

Fig. 7(b) shows how varying the mass flow rate of the ambient air (Gamb) affects the COPch and 

COPsub. When Gamb increases from 0.16 kg/s to 0.21 kg/s, COPch increases from 3.67 to 4.16, which is 

due to the decrease of power consumption of compressor, while COPsub decreases from 0.13 to 0.1, 

which mainly results from the decrease of subcooling capacity. When Gamb is higher than 0.21 kg/s, 

both COPch and COPsub change slightly.  

Fig. 7(c) shows the effect of varying the mass flow rate of the ambient air (Gamb) on the exergy 

efficiency of the chiller cycle (ch) and the integrated subcooling cycle (sub). With the increase of Gamb, 

ch increases slightly from 0.269 to 0.275 and then decreases to 0.269, which is a combined result of 
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the exergy decrease of the condensing heat and the power consumption decrease of the compressor; 

sub increases significantly from 0.19 to 0.23, which is mainly due to the exergy decrease of the 

condensing heat. It can be seen that the exergy efficiency of the integrated subcooling cycle is pretty 

high, only a little lower than that of the chiller cycle, which indicates the effective utilization of the 

condensing heat. In addition, the proposed system has a much better performance than the traditional 

water-cooled chiller. As shown in Fig. 7(d), the improvement of the exergy efficiency (imp) varies 

between 24% and 26.7%, and that of the coefficient of performance (COPimp) could reach up to 18.6%. 

3.3 Effects of varying the mass flow rate of the dehumidification solution 

Fig. 8 shows the effect of varying the dehumidification solution mass flow rate (ms,deh) on the 

humidity ratio difference of air between the inlet and outlet of the dehumidifier (a) and the moisture 

removal rate in the dehumidifier (mdeh).With the increase of ms,deh, a decreases slowly from 2.5 g/kg 

to 2.3 g/kg, and mdeh decreases slightly from 0.68 g/s to 0.61 g/s. This is because the increase of ms,deh 

(point 17) will increase the self-circulation of the dehumidifier solution (point 11r) when the solution 

mass flow rate in the solution heat exchanger (point 16) is held constant. This leads to the decreased 

solution concentration in the dehumidifier, and correspondingly decreases the dehumidification effect.  

Fig. 9 shows the effect of varying the dehumidification solution mass flow rate (ms,deh) on the 

condensing temperature (Tcon), degree of subcooling (Tsub), COPch, and COPsub of the proposed 

system. As shown in Fig. 9(a), with the increase of ms,deh, Tcon increases slightly from 38.3 oC to 38.6 oC, 

and then decreases to 38.1 oC, which is the joint result of the decrease of solution temperature leaving 

the dehumidifier (point 11) and increase of solution temperature leaving the regenerator (point 15). 

Tsub shows the same trends as Tcon. Fig. 9(b) shows the effect of changing ms,deh on the COPch and 

COPsub. With the increase of ms,deh, the COPch increases gradually from 3.44 to 3.59, which is mainly 
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due to the increase of refrigerating capacity, while COPsub decreases slightly at first, and then increases 

slightly, which mainly results from the changes of condensing temperature.  

3.4 Effects of varying the mass flow rate of the regeneration solution 

Fig. 10 shows how varying the mass flow rate of the regeneration solution (ms,reg) affects the 

humidity ratio difference of the ambient air between the outlet and inlet of the regenerator (amb) and 

the moisture removal rate in the regenerator (mr). When ms,reg increases from 0.4 kg/s to 0.52 kg/s, 

amb increases from 4.26 g/kg to 4.32 g/kg. This is mainly due to the higher ms,reg being beneficial to 

the regeneration process. When ms,reg increases from 0.52 kg/s to 0.85 kg/s, amb decreases from 4.32 

g/kg to 3.92 g/kg. This is because, with the increase of ms,reg, the solution mass flow rate of 

self-circulation in the regenerator (point 15r) will increases when the solution mass flow rate in the 

solution heat exchanger (point 12) is constant. Therefore, the mixed solution concentration entering the 

condenser (point 13) is stronger, which decreases the regeneration effect. In addition, mr shows the 

same trends as amb.  

Fig. 11 shows how varying the mass flow rate of regeneration solution (ms,reg) affects the degree of 

subcooling (Tsub), condensing temperature (Tcon), COPch and COPsub of the proposed system. As 

shown in Fig. 11(a), when ms,reg increases from 0.4 kg/s to 0.66 kg/s, Tcon decreases from 39 oC to 38 oC; 

while ms,reg is higher than 0.66 kg/s, Tcon remains almost constant. The gradual decrease of Tcon is 

mainly due to the fact that as ms,reg increases, the solution temperature leaving the condenser decreases. 

The solution temperature at the outlet of the regenerator will be lower when the regeneration effect 

does not significantly vary. Therefore, the temperature of the mixed solution entering the condenser 

will decrease, which leads to the gradual decrease of Tcon. In addition, Tsub decreases slowly with the 

increase of ms,reg. Fig. 11(b) shows how varying ms,reg affects the COPch and COPsub. When ms,reg 
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increases from 0.4 kg/s to 0.66 kg/s, COPch increases from 2.9 to 3.1 which is mainly due to the 

decrease of condensing temperature, while COPsub decreases slightly from 0.11 to 0.1 which mainly 

results from the decrease of subcooling capacity; when ms,reg is higher than 0.66 kg/s, both COPch and 

COPsub do not significantly vary.  

3.5  Effect of varying the mass flow rate of the evaporative cooler’s spraying water 

Fig. 12 shows how varying the mass flow rate of spraying water in the evaporative cooler (mw,EC) 

affects the performance of the evaporative cooler. As shown in Fig. 12(a), with the increase of mw,EC, 

the relative humidity of the air at the outlet of the evaporative cooler increases from 76.2% to 84.5%; 

correspondingly, the temperature of the cooling water at the outlet of the evaporative cooler decreases 

from 19.8 oC to 19.3 oC, and the temperature of the cooling water at the inlet of the evaporative cooler 

decreases from 22 oC to 20.4 oC. Fig. 12(b) shows how varying mw,EC affects the humidity ratio 

difference of the air between the outlet and inlet of the evaporative cooler (a) and the moisture 

removal rate in the evaporative cooler (mEC). When mw,EC increases from 0.16 kg/s to 0.27 kg/s, a 

increases from 1.63 g/kg to 1.73 g/kg; when mw,EC is higher than 0.27 kg/s, a remains stable. With 

the increase of mw,EC, mEC initially increases and then remains constant.  

Fig. 13 shows how varying the mass flow rate of the spraying water, in the evaporative cooler, 

(mw,EC) affects the system performance. As shown in Fig. 13(a), when mw,EC increases from 0.16 kg/s to 

0.33 kg/s, Tcon decreases from 41.4 oC to 40.3 oC. This is because the moisture removal rate in the 

evaporative cooler (mEC) increases with the increasing mw,EC, and the air temperature leaving the 

evaporative cooler decreases. This enhances the dehumidification effect and decreases both the solution 

temperature and the solution concentration at the outlet of the dehumidifier (point 11). The regeneration 

effect is enhanced due to the decrease of solution concentration entering the regenerator, which results 
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in a decreased solution temperature at the outlet of the regenerator (point 15). The temperature of the 

mixed solution (point 13) at the inlet of the condenser decreases, which affects the condensing 

temperature. In addition, mw,EC does not have much effects on Tsub. Fig. 13(b) shows how the COPch 

and COPsub are affected by varying mw,EC. With the increase of mw,EC, COPch increases from 3.4 to 3.55, 

which is mainly affected by the decrease of the condensing temperature, while COPsub decreases 

slightly from 0.13 to 0.11 and then increases slightly to 0.12.  

Fig. 13(c) shows the effect of varying the mass flow rate of the spraying water (mw,EC) on the 

exergy efficiency of the chiller cycle (ch) and the integrated subcooling cycle (sub). When mw,EC 

increases from 0.16 to 0.33 kg/s, ch decreases slightly from 0.258 to 0.252 and then increases to 0.261, 

which is a joint result of the exergy changes of the condensing heat and power consumption of the 

compressor; meanwhile, sub increases significantly from 0.268 to 0.28 and then decreases to 0.266, 

which mainly results from the exergy changes of the condensing heat. It should be noted that sub is 

pretty high, even higher than ch, which indicates that the integrated subcooling cycle is an efficient 

way to make use of the condensing heat. In addition, the proposed system has a better performance 

than the traditional water-cooled chiller. As shown in Fig. 13(d), the maximum performance 

improvement (COPimp) is 8% and the exergy efficiency improvement (imp) varies from 23.5% to 

27.9%.  

3.6 Economic evaluation of the use of the integrated subcooling cycle 

From the above experimental results, the proposed system, with the use of the integrated 

subcooling cycle, could achieve a performance improvement of 18.6% under optimized working 

parameters. Therefore, it is of interest to evaluate the economic benefits of the integrated subcooling 

cycle. The proposed system is considered to supply cold energy for cooling or freezing applications all 



  

20 
 

the day, such as data centers and supermarkets, and will run 300 days/year, considering two months of 

maintenance and noneffective working each year. The performance improvement is assumed to be 15% 

considering the effect of ambient air parameters. The proposed system has a cooling capacity of 8 kW, 

with a project life time of 15 years. The component costs of the integrated subcooling cycle are shown 

in Table 4. For a complete financial analysis, some additional costs, such as mechanical costs, electrical 

costs, site works and commissioning costs, are considered to be 25% of the initial capital cost [24]. The 

residual value of the components is assumed to be 4% of the original capital cost. In China, the daily 

average commercial electricity rate is $0.169/kWh, $0.137/kWh and $0.129/kWh in Beijing, Shanghai 

and Nanjing, respectively [25]. 

Table 5 shows the results of the economic analysis, where the inflation rate and discount rate are 

set to 2% and 5%, respectively. The payback period varies from 2.4 to 3.2 years based on different 

electricity tariffs in different cities; correspondingly, the savings to investment ratio is between 1.41 

and 1.84, which indicates that the project is profitable. Effects of inflation rates and discount rates on 

the economic benefits of the integrated subcooling cycle are also considered for Beijing, as shown in 

Fig. 14. Higher inflation rates or discount rates significantly decrease the savings to investment ratio 

(SIR); with a given inflation rate of 4%, SIR decreases significantly from 1.81 to 1.48 as the discount 

rate increases gradually from 3% to 11%. 

4. Conclusions 

In this paper, an experimental setup of a hybrid vapor compression refrigeration system is built 

and tested for the first time to prove a novel refrigerant subcooling method. In this method, the heat 

from the condenser is used to drive liquid desiccant dehumidification for dry air which is then to absorb 

moisture from spray water, by which low temperature cooling water could be obtained to subcool the 
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refrigerant leaving the condenser. The proposed system includes a chiller cycle and an integrated 

subcooling cycle. Varying several key parameters affects the proposed system; these parameters 

include the mass flow rates of the dehumidification air (Ga), ambient air (Gamb), dehumidification 

solution (ms,deh), regeneration solution (ms,reg), and the spraying water (mw,EC). Comparisons are made 

between the proposed system and the traditional water-cooled chiller. The main conclusions are as 

follows: 

(1) The proposed system can achieve a larger degree of subcooling, namely 15-20 oC, using the 

low-grade condensing heat (around 40 oC). What’s more, it has much higher performances 

than the traditional water-cooled chiller, with the maximum chiller performance improvement 

(COPimp) of 18.6% and the maximum exergy efficiency improvement (imp) of 27.9%. 

(2) The integrated subcooling cycle has a low COPsub, around 0.1, which is due to the low-grade 

condensing heat. However, it has a pretty high exergy efficiency, with the maximum value of 

0.28, which indicates that the integrated subcooling cycle is an efficient way to make use of 

the low-grade heat.  

(3) The flow rate of the dehumidification air (Ga) has a large effect on the system performance. 

With the increase of Ga, both the COPch and COPsub increase initially and subsequently 

decrease. The optimum Ga is around 0.25 kg/s under studied working conditions. Varying the 

mass flow rate of ambient air (Gamb) significantly affects the system performance. With the 

increase of Gamb, the COPch increases gradually, while COPsub decreases generally; when Gamb 

is higher than 0.21 kg/s, both COPch and COPsub change slightly.  

(4) The system performance is sensitive to the mass flow rates of the dehumidification solution 

(ms,deh), regeneration solution (ms,reg) and spraying water (mw,EC). With the increase of ms,deh, 
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COPch increases gradually from 3.44 to 3.59, while COPsub decreases slightly at first, and then 

increases slightly. When ms,reg increases from 0.4 kg/s to 0.66 kg/s, COPch increases from 2.9 

to 3.1, while COPsub decreases slightly from 0.11 to 0.1; when ms,reg is higher than 0.66 kg/s, 

both COPch and COPsub do not significantly vary. With the increase of mw,EC, COPch increases 

from 3.4 to 3.55, while COPsub decreases slightly from 0.13 to 0.11 and then increases slightly 

to 0.12. In general, a higher mw,EC is better for the system performance. 

(5) Economic analysis of the integrated subcooling cycle, with a project life-span of 15 years, 

shows that the payback period varies from 2.4 to 3.2 years based on different electricity tariffs 

in different cities in China; correspondingly, the savings to investment ratio is between 1.41 

and 1.84, which indicates that the project is profitable. Both inflation rates and discount rates 

have a large effect on the economic benefits; the savings to investment ratio (SIR) varies 

significantly from 1.3 to 2.1 under studied conditions.  
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Figure Captions 

Fig. 1. Schematic diagram of the hybrid vapor-compression refrigeration system 

Fig. 2. Experimental setup of the hybrid vapor-compression refrigeration system 

Fig. 3. P-h diagram of refrigerants (a) and T-d diagram of air and solution (b) 

Fig. 4. Dehumidifier response (a) and evaporative cooler response (b) due to varying the mass flow rate 

of dehumidification air  

Fig. 5. Change in system performance due to varying the mass flow rate of dehumidification air  

Fig. 6. Regenerator response due to varying the mass flow rate of ambient air  

Fig. 7. Change in system performance due to varying the mass flow rate of ambient air 

Fig. 8. Change in the dehumidifier performance due to varying the mass flow rate of dehumidification 

solution 

Fig. 9. Change in system performance due to varying the mass flow rate of dehumidification solution  

Fig. 10. Regenerator response due to varying the mass flow rate of regeneration solution 

Fig. 11. Change in system performance due to varying the mass flow rate of regeneration solution 

Fig. 12. Change in evaporative cooler performance due to varying the mass flow rates of spraying 

water  

Fig. 13. Change in system performance due to varying the mass flow rate of spraying water 

Fig. 14. Effects of inflation rates and discount rates on the economic benefits of the integrated 

subcooling cycle. 
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Fig. 1. Schematic diagram of the hybrid vapor-compression refrigeration system. 

 

 

 

Fig. 2. Experimental setup of the hybrid vapor-compression refrigeration system. 
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(a)                                      (b) 

Fig. 3. P-h diagram of refrigerants (a) and T-d diagram of air and solution (b). 

 

 

 

   (a)                                          (b) 

Fig. 4. Dehumidifier response (a) and evaporative cooler response (b) due to varying the mass flow rate 

of dehumidification air.  
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(a)                                       (b) 

  

    (c)                                       (d) 

Fig. 5. Change in system performance due to varying the mass flow rate of dehumidification air.  

 

 

Fig. 6. Regenerator response due to varying the mass flow rate of ambient air.  
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 (a)                                      (b) 

 

(c)                                      (d) 

Fig. 7. Change in system performance due to varying the mass flow rate of ambient air. 

 

 

Fig. 8. Change in the dehumidifier performance due to varying the mass flow rate of dehumidification 

solution. 
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  (a)                                      (b) 

Fig. 9. Change in system performance due to varying the mass flow rate of dehumidification solution.  

 

 

 

 

Fig. 10. Regenerator response due to varying the mass flow rate of regeneration solution. 
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 (a)                                        (b) 

Fig. 11. Change in system performance due to varying the mass flow rate of regeneration solution. 

 

 

 

 

 

(a)                                       (b) 

Fig. 12. Change in evaporative cooler performance due to varying the mass flow rates of spraying water.  
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(a)                                      (b) 

 

(c)                                      (d) 

Fig. 13. Change in system performance due to varying the mass flow rate of spraying water. 

 

 

Fig. 14. Effects of inflation rates and discount rates on the economic benefits of the integrated 

subcooling cycle. 
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Table 1 Parameters of measuring instruments. 

Devices Parameters Range Uncertainty 

Turbine flowmeter Water flow rate  0.6-6.0 m3/h 

0.2-1.2 m3/h 

±0.38%RD 

±0.56%RD  

KIMO flow meter Air flow rate  0-99999 m3/h ±1.5%RD 

Electromagnetic flow meter Solution flow rate  0.16-2.5 m3/h 

0.4-6.0 m3/h 

±0.5%FS 

±0.5%FS  

WT230 power meter Power consumption  Auto ±0.1%RD 

Rotronic temperature and 

humidity transmitter 

Air temperature and 

humidity 

-40-60 oC 

0-100% RH 

±0.1 oC 

±0.8% RH 

Thermocouple (T-type) Water/solution temperature -10-120 oC ±0.1 oC 

Pt100 platinum resistor Refrigerant temperature -200-350 oC ±0.15 oC  

Pressure transmitter Refrigerant pressure 0-2.5 MPa ±0.1%RD 
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Table 2 Energy balance of the chiller cycle. 

mw,eva 

(kg/s) 

T22 

(oC) 

T21 

(oC) 

Wcom 

(kW) 

ms,reg 

(kg/s) 

T13 

(oC) 

T14 

(oC) 

mw,EC 

(kg/s) 

T5 

(oC) 

T6 

(oC) 

Qin 

(kW) 

Qout 

(kW) 

E 

(%) 

0.42 15.6 12.2 1.4 0.56 31.7 34.8 0.27 20.6 22.2 7.4 7.1 4.1 

0.42 15.7 12.3 1.4 0.56 32.3 35.4 0.27 21.1 22.6 7.4 7.0 5.4 

0.42 15.7 12.5 1.5 0.56 34.4 37.9 0.27 20.5 21.4 7.1 7.1 0 

0.42 15.9 12.6 1.4 0.56 33.3 36.4 0.27 21.6 23.2 7.1 7.2 1.4 

0.42 16.0 12.5 1.4 0.56 32.7 35.9 0.27 21.4 23.0 7.4 7.4 0 

0.43 16.0 13.0 1.5 0.58 34.8 38.1 0.22 19.8 21.4 6.8 7.4 8.1 

0.43 9.9 7.5 1.3 0.58 27.2 30.1 0.27 16.6 17.7 5.7 6.3 9.5 

0.45 12.6 9.6 1.4 0.58 32.0 34.5 0.27 19.0 21.1 6.8 6.9 1.4 

0.45 13.0 10.2 1.4 0.58 32.3 35.0 0.27 19.1 21.2 6.7 7.1 5.6 

0.45 13.0 10.2 1.4 0.58 32.3 35.0 0.27 19.1 21.1 6.8 7.1 4.2 
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Table 3 Working parameters of the hybrid vapor-compression refrigeration system. 

Ga 

(kg/s) 

Gamb 

(kg/s) 

ms,deh 

(kg/s) 

ms,reg 

(kg/s) 

mw,EC 

(kg/s) 

Xs 

(%) 

mw,eva 

(kg/s) 

Tamb 

(oC) 

amb 

(g/kg) 

0.14-0.33 0.25 0.57 0.57 0.27 27.3 0.42 29.5-30.6 7-7.5 

0.27 0.16-0.27 0.56 0.56 0.27 25.6 0.42 31.6-32 13-13.3 

0.27 0.24 0.33-0.65 0.58 0.27 27.5 0.45 31.5-32 9-9.3 

0.27 0.24 0.57 0.4-0.85 0.27 27.7 0.45 31-31.7 8.3-8.7 

0.27 0.24 0.54 0.59 0.16-0.33 28.5 0.42 31.7-32.4 12.9-13.2 

 

 

Table 4 Component cost summary (net present cost) of the integrated subcooling cycle in the project 

life time. 

Component Capital ($) Replacement ($) O&M ($) Residual value ($) 

Regenerator 292 232  78 -6 

Dehumidifier 249 197  66 -5 

Evaporative cooler 253 201  68 -5 

Heat exchangers 1,293 2,086  345 -25 

Fans 200 323  53 -4 

Pumps 563 908  150 -11 

Additional cost 713 - - - 

Note: Capital and replacement costs are from the manufacturers. 
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Table 5 Financial analysis results of the integrated subcooling cycle. 

Performance indexes Cities in China 

 Beijing Shanghai Nanjing 

Total present value of investment ($) 8,215 8,215 8,215 

Total present value of savings ($) 15,156 12,286 11,569 

Net present value ($) 6,941 4,071 3,354 

Savings to investment ratio 1.84 1.5 1.41 

Simple payback period (years) 2.4 3.0 3.2 
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Highlights 

 A novel refrigerant subcooling method is experimentally studied for the first time. 

 Condensation heat is used to drive an integrated cycle to subcool the refrigerant.  

 COP and exergy efficiency are improved by 18.6% and 27.9% respectively. 

 Effects of key parameters on the system performance are disclosed. 

 Economic analysis shows payback period varies from 2.4 to 3.2 years. 

 

 

 


