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A Practical Cryptanalysis of WalnutDSATM

Daniel Hart1, DoHoon Kim1, Giacomo Micheli1, Guillermo Pascual Perez1,
Christophe Petit2, and Yuxuan Quek1

1 University of Oxford.
2 University of Birmingham.

Abstract. We present a practical cryptanalysis of WalnutDSA, a digital
signature algorithm trademarked by SecureRF. WalnutDSA uses tech-
niques from permutation groups, matrix groups and braid groups, and is
designed to provide post-quantum security in lightweight IoT device con-
texts. The attack given in this paper bypasses the E-MultiplicationTM

and cloaked conjugacy search problems at the heart of the algorithm and
forges signatures for arbitrary messages in approximately two minutes.
We also discuss potential countermeasures to the attack.

1 Introduction

Most of the cryptosystems in use today are based on two difficult problems: the
integer factorization problem and the Discrete Logarithm Problem (DLP). Both
of these problems can be solved efficiently by running Shor’s algorithm [1] on a
sufficiently large quantum computer. As of now, such quantum computers do not
exist, but organisations such as NIST and the NSA are striving for cryptosystems
resilient to quantum attacks to prepare for the time when they become a reality
[2,3,4].

The problem at the heart of Shor’s algorithms, the so-called hidden subgroup
problem, can be solved in polynomial time on a quantum computer for any finite
abelian group, but has so far appeared much harder in the case for non-abelian
groups. Cryptography based on non-abelian groups is therefore considered an
appealing direction for post-quantum cryptography. Braid groups have tradi-
tionally been used in non-abelian group based cryptography: for example, the
Anshel-Anshel-Goldfeld (AAG) key-exchange protocol and the Diffie-Hellman-
type key-exchange protocol are both based on the conjugacy search problem
(or at least one of its variants) in a braid group [5, Section 1.6]. Today, more
advanced protocols have evolved from these schemes.

SecureRF [6] is a corporation founded in 2004 specializing in security for
the Internet of Things (IoT), i.e. devices with low processing power that require
ultra-low energy consumption, whose partners include the US Air Force. Wal-
nutDSA [7] is a digital signature algorithm developed by SecureRF that was
presented at the NIST Lightweight Cryptography Workshop in 2016. SecureRF



has collaborated with Intel [8] to develop an implementation of WalnutDSA
on secure field-programmable gate arrays (FPGAs). Thus, WalnutDSA’s impor-
tance as a cryptosystem today is established, as corporations and government
agencies push for security in a post-quantum world.

1.1 Our Contribution

We provide a universal forgery attack on WalnutDSA. Our attack does not re-
quire a signing oracle: in fact, having access to a small set of random message-
signature pairs suffice. In principle, the security of WalnutDSA is based on the
difficulty of reversing E-Multiplication and the cloaked conjugacy search prob-
lem [7, Problems 1, 2], but we go around this by reducing the problem of forging
a WalnutDSA signature to an instance of the factorization problem in a non-
abelian group (given a group element g ∈ G and a generating set Γ for G, find a
word w over Γ such that w = g). While this problem is plausibly hard in general,
we give an efficient algorithm for solving the particular instance occurring in this
context. Given a couple of valid signatures on random messages, our attack can
produce a new signature on an arbitrary message in approximately two minutes.
We also discuss countermeasures to prevent this attack.

Responsible Disclosure Process. Since WalnutDSA is advertised as a security
product by SecureRF, we notified its authors of our findings before making them
available to the public. We informed them by email on October 17th 2017 with
full details of our attack. They acknowledged the effectiveness of our attack on
October 19th 2017, and we agreed to postpone our publication until November
26th 2017.

Two countermeasures are discussed here, namely checking the signature length
and increasing the parameters. SecureRF have communicated to us that they
have always had a limit on signature lengths in their product offerings, and that
the increase in parameter sizes we suggest may still allow for many applica-
tions in devices with limited computing power. These two countermeasures can
prevent our attack for now. As we briefly argue in Section 5 below, improved
versions of the attack might be able to defeat them, but we leave these to further
work.

In reaction to our attack, SecureRF have also developed a new version of Wal-
nutDSA using two private keys (instead of conjugation), such that Proposition 4
of this paper fails to apply.

1.2 Related Work

Ben-Zvi, Blackburn and Tsaban [9] provide a complete attack on a version of Se-
cureRF’s Algebraic Eraser scheme, a public key encryption protocol also based
on E-Multiplication. Other attacks on the Algebraic Eraser include those by
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Myasnikov and Ushakov [10], which is a length-based attack on SecureRF’s spe-
cific realisation of the general scheme, and by Kalka, Teicher and Tsaban [11],
which is a cryptanalysis for arbitrary parameter sizes.

Other important work includes Garside’s and Birman-Gebhardt-Gonzalez-
Meneses’ [12,13] on solving the conjugacy search problem in braid groups using
Summit Sets, the Garside normal form [12] and Dehornoy Handle Reduction [14].

Other instances of factorization problems in non-abelian groups have been
solved previously, in both cryptographic contexts [15,16,17] and in mathemati-
cal literature [18]. The algorithms we develop in this paper for factorization in
GLN (Fq) belongs to the family of subgroup attacks [19].

1.3 Outline

In Section 2, we provide the definition of security for signature schemes, and
introduce the factorization problem as well as some preliminary results about
braid groups. In Section 3, we introduce the WalnutDSA protocol. In Section
4, we provide a cryptanalysis of WalnutDSA by first reducing the problem to
a factorization problem in GLN (Fq) (Section 4.1) and then solving it (Section
4.2). In Section 5, we describe possible countermeasures to prevent the attack.
We conclude the paper in Section 6.

2 Preliminaries

2.1 Security Definition

The standard security definition for signatures is existential unforgeability under
chosen message attacks [20, Introduction]. An adversary can ask for polynomially
many signatures of messages of its choice to a signing oracle. The attack is then
considered successful if the attacker is able to produce a valid pair of message
and signature for a message different from those queried to the oracle. We will
show that the version of WalnutDSA proposed in [7] is not resistant to this kind
of attack and propose a modification to the scheme that fixes this weakness.

Definition 1. A signature scheme Π = (Gen,Sign,Verify) is said to be existen-
tially unforgeable under adaptive chosen-message attacks (or secure, for short)
if for all probabilistic polynomial time adversaries A with access to Signsk(·),∣∣∣∣∣∣∣Pr

(pk, sk)← Gen(1λ); si ← Signsk(mi) for 1 ≤ i ≤ k;

(m, s)← A
(
pk, (mi)

k
i=1, (si)

k
i=1

)
:

Verifypk(m, s) = 1 and m 6∈ M


∣∣∣∣∣∣∣ ≤ negl(λ) .

where M = {m1, . . . ,mk} is the set of messages queried by A to the oracle, and
k = #M is polynomial in the security parameter λ.
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For our cryptanalysis, the mi can actually be random messages, leading to a
stronger attack.

2.2 Braid Groups

For N ≥ 2, the braid group [5] on N strands, denoted BN , is a group with
presentation

BN =

〈
b1, . . . , bN−1

∣∣∣∣ bibi+1bi = bi+1bibi+1

bibj = bjbi for |i− j| ≥ 2

〉
, (1)

where the bi are called Artin generators. There are other presentations for the
braid group, but unless otherwise stated, we will use the definition provided in (1)
and “generators” will refer to the Artin generators. Geometrically, the elements
of a braid group are the equivalence classes of N strands under ambient isotopy,
and the group operation is concatenation of the N strands. More precisely, the
generator bi corresponds to the (i + 1)-th strand crossing over the i-th strand.
Note that there is a natural homomorphism from BN onto the symmetric group
SN : if β = bi1 · · · bik , then the permutation induced by β is precisely

k∏
j=1

(ij , ij + 1) ,

where (ij , ij + 1) is the standard transposition in SN .

Notation. Let p : BN → SN be the above map, which sends a braid to its
induced permutation.

Braids that induce trivial permutations are called pure braids. The set of pure
braids is exactly the kernel of the homomorphism p, hence it forms a normal
subgroup of BN . We will denote this subgroup by PBN .

Garside Normal Form. A normal form of an element in a group is a canonical
way to represent the element. One known normal form for braid groups is Garside
normal form. The details can be found in Appendix A. We can compute the
Garside normal form of a braid with complexity O(|W |2N logN) where |W | is
the length of the word in Artin generators [21]. Such a normal form is important
for WalnutDSA, but the cryptanalysis we provide in Section 4 is independent of
the choice of it.

The Colored Burau Representation. Let q be an arbitrary prime power,
and let Fq be the finite field with q elements. Let Fq[t±11 , . . . , t±1N ] be the ring
of Laurent polynomials with coefficients in Fq. Note that there is a natural
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action of SN on GLN
(
Fq[t±11 , . . . , t±1N ]

)
, where a permutation acts on a Laurent

polynomial by permuting its variables. In other words, we have an action f 7→ σf
where f(t1, . . . , tN ) is mapped to f(tσ(1), . . . , tσ(N)). Similarly, a permutation

may act on a matrix M in GLN
(
Fq[t±11 , . . . , t±1N ]

)
entrywise, and we will denote

the image of M under this action as σM.

Proposition 1. There exists a group homomorphism, called the colored Burau
representation [7],

Φ: BN → GLN
(
Fq[t±11 , . . . , t±1N ]

)
o SN ,

where o denotes the semidirect product.
Let m be the projection of Φ on GLN

(
Fq[t±11 , . . . , t±1N ]

)
. Then Φ is defined as

follows:

– For the generator b1 ∈ BN , define

m(b1) =



−t1 1
. . .

1
. . .

1

 ,

and

m(b−11 ) =



− 1
t2

1
t2
. . .

1
. . .

1

 .

– For 2 ≤ i < N, define

m(bi) =



1
. . .

ti −ti 1
. . .

1

 ,

where the −ti occurs in the i-th row. Also define

m(b−1i ) =



1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

 .
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– Define
Φ(bi) :=

(
m(bi), p(bi)

)
.

– Given generators b±1i , b±1j , we define Φ(b±1i b±1j ) to be(
m(b±1i ), p(bi)

)
·
(
m(b±1j ), p(bj)

)
=
(
m(b±1i ) ·

(
p(bi)m(b±1j )

)
, p(bi)p(bj)

)
.

For a general braid β, we extend this definition inductively to define Φ(β).

Note that Φ and p are homomorphisms, but m is not a homomorphism in
general. However, the following lemma shows that its restriction to pure braids
is a homomorphism.

Lemma 1. Let φ : PBN → GLN
(
Fq[t±11 , . . . , t±1N ]

)
be the restriction map of m

to PBN . This map is a group homomorphism.

Proof. Let β1, β2 be pure braids. Then, if IdSN is the identity permutation,

φ(β1β2) = m(β1β2)

= m(β1) ·
(
IdSNm(β2)

)
= m(β1)m(β2) = φ(β1)φ(β2) ,

and so φ is indeed a homomorphism. ut

Previous Cryptosystems Based on Braid Groups A problem that is
generally difficult to solve in non-abelian groups is the conjugacy search problem
(CSP), i.e. given conjugate elements u,w ∈ BN , find v ∈ BN such that w =
v−1uv. This motivated the development of several cryptosystems based on the
CSP in braid groups, some of which are given in [5]. Techniques such as summit
sets [13,22,23], length-based attacks [24,25,26], and linear representations [27,
28,29], have been developed to attack the CSP in braid groups however, and so
those cryptosystems have been rendered impractical. The design of WalnutDSA
uses a variant of the CSP, the cloaked conjugacy search problem, to avoid these
attacks.

2.3 Factorization Problem in Non-Abelian Groups

Factorization Problem in Groups. Let G be a group, let Γ = {g1, . . . , gγ}
be a generating set for G, and let h ∈ G. Find a “small” integer L and sequences
(m1, . . . ,mL) ∈ {1, . . . , γ}L and (ε1, . . . , εL) ∈ {±1}L such that

h =

L∏
i=1

gεimi .
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Depending on the context, “small” may refer to a concrete practical size, or
it may mean polynomial in log |G|. The existence of products of size polynomial
in log |G| for any finite simple non-abelian group, any generating set, and any
element h was conjectured by Babai [30]. This conjecture has attracted consid-
erable attention from the mathematics community in the last fifteen years, and
has now been proven for many important groups [31,32].

The potential hardness of the factorization problem for non-abelian groups
underlies the security of Cayley hash functions [33]. The problem was solved in
the particular cases of the Zémor [34,35], Tillich-Zémor [15,17,36], and Charles-
Goren-Lauter [16,37,38] hash functions, and to a large extent in the case of
symmetric and alternating groups [18], but it is still considered a potentially hard
problem in general. Over cyclic groups, this problem is known to be equivalent
to the discrete logarithm problem when removing the constraint on L [39]. We
refer to [19] for a more extensive discussion of the factorization problem and its
connection with Babai’s conjecture.

The instance of the factorization problem that appears in our attack is over
GLN (Fq), the general linear group of rank N over the finite field Fq. Our solution
for it exploits the particular subgroup structure of this group.

3 WalnutDSA

WalnutDSATM is a digital signature scheme proposed by Anshel, Atkins, Gold-
feld and Gunnells in [7], based on braid groups, E-MultiplicationTM and cloaked
conjugacy.

3.1 E-Multiplication

Let BN be the braid group on N braids, let q be a prime power and let F×q denote
the non-zero elements of the finite field Fq. Define a sequence of “T-values”:

τ = (τ1, τ2, . . . , τN ) ∈ (F×q )N .

Given the T-values, we can evaluate any Laurent polynomial f ∈ Fq[t±11 , . . . , t±1N ]
to produce an element of Fq:

f
y
τ

:= f(τ1, . . . , τN ) .

We can similarly evaluate any matrix M in GLN
(
Fq[t±11 , . . . , t±1N ]

)
entrywise to

produce a matrix M
y
τ

in GLN (Fq).

E-Multiplication [40] is a right action, denoted by ?, of the colored Burau
group GLN

(
Fq[t±11 , . . . , t±1N ]

)
o SN on GLN (Fq)× SN . In other words, it takes

two ordered pairs

(M,σ0) ∈ GLN (Fq)× SN ,(
m(β), p(β)

)
∈ GLN

(
Fq[t±11 , . . . , t±1N ]

)
o SN ,
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and produces another ordered pair

(M ′, σ′) = (M,σ0) ?
(
m(β), p(β)

)
in GLN (Fq)× SN .

E-Multiplication is defined inductively. For a single generator bi,

(M,σ0) ?
(
m(bi), p(bi)

)
:=
(
M · σ0

(
m(bi)

)y
τ
, σ0 · p(bi)

)
.

For a general braid β = bε1i1 · · · b
εk
ik
,

(M,σ0) ?
(
m(β), p(β)

)
= (M,σ0) ?

(
m(bε1i1 ), p(bε1i1 )

)
? · · · ?

(
m(bεkik ), p(bεkik )

)
,

where the successive E-Multiplications are performed left to right. This is well-
defined, as it is independent of how we write β in terms of the generators [7,
Section 3].

Lemma 2. For any pure braid β, any permutation σ, and any τ ∈ (F×q )N ,((σ
m(si)

)y
τ

)−1
=
(
σm(s−1i )

)y
τ
.

Proof. Let M ∈ GLN (Fq) and let σ ∈ SN . Then,

(M,σ) = (M,σ) ? (si · s−1i ) =
(
M ·σm(si)

y
τ
·σm(s−1i )

y
τ
, σ
)
,

which implies ((σ
m(si)

)y
τ

)−1
=
(
σm(s−1i )

)y
τ
.

ut

Notation. We will follow the notation in [7] and write

(M,σ0) ? β

instead of (M,σ0) ?
(
m(β), p(β)

)
for a braid β ∈ BN .

Notation. For ξ = (M,σ) in GLN (Fq) × Sn, let m(ξ) denote the matrix part
of ξ, i.e. m(ξ) = M.

3.2 Key Generation

Before the signer generates the private-/public-key pair, some public parameters
are fixed:

– An integer N and the associated braid group BN ;
– A rewriting algorithm R : BN → BN , such as the Garside normal form;
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– A prime power q defining a finite field Fq of q elements;

– Two integers 1 < a < b < N ;

– T-values τ = (τ1, τ2, . . . , τN ) ∈ (F×q )N with τa = τb = 1;

– An encoding function E : {0, 1}∗ → BN taking messages to braids.

The signer then chooses a random freely-reduced braid sk ∈ BN (of the desired
length to prevent brute force attacks from being effective) to be the private-key,
and calculates the public-key as

pk = (IdN , IdSN ) ? sk .

Notation. We follow the notation in [7] and write Pub(β) := (IdN , IdSN ) ? β
for a braid β ∈ BN .

In [7], it is recommended to use N ≥ 8 and q ≥ 32 for the public parameters.

3.3 Message Encoding

To sign a message m ∈ {0, 1}∗ using WalnutDSA, it must first be encoded as
a braid E(m) ∈ BN . WalnutDSA achieves this by encoding messages as pure
braids: given a message m, it is first hashed using a cryptographically secure
hash function H : {0, 1}∗ → {0, 1}4κ, where κ ≥ 1. The paper [7] does not
provide a formal definition of “cryptographically secure”, but we believe that
the intended meaning is that of a “random oracle” [41], and in this paper we
will treat the hash function as such. The bitstring H(m) is then encoded as a
pure braid by noting that the N − 1 braids

g(N−1),N = b2N−1,

g(N−2),N = bN−1 · b2N−2 · b−1N−1,
...

g1,N = bN−1bN−2 · · · b2 · b21b−12 b−13 · · · b
−1
N−1

are pure braids that freely generate a subgroup of BN [42]. Fix four of these
generators, say gk1,N , gk2,N , gk3,N , gk4,N for 1 ≤ ki ≤ N − 1, and define

C = 〈gk1,N , gk2,N , gk3,N , gk4,N 〉 ⊂ PBN .

Each 4-bit block of H(m) can then be mapped to a unique power of one of these
generators: the first two bits determine the generator gkµ,N to use, while the last
two bits determine the power 1 ≤ i ≤ 4 to raise the generator to. The encoded
message E(m) ∈ C is then defined to be the freely reduced product of the κ
powers of the gki,N obtained via the above process.
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3.4 Cloaking Elements

WalnutDSA defines and uses “cloaking elements” to avoid being reduced to
the conjugacy search problem, reducing instead to the cloaked conjugacy search
problem. A braid β ∈ BN is said to be a cloaking element of (M,σ) ∈ GLN (Fq)×
SN if (M,σ) ? β = (M,σ). The set of cloaking elements of (M,σ) is then the
stabilizer of (M,σ) under the E-Multiplication action, and so forms a subgroup
of BN .

Lemma 3. Any cloaking element is a pure braid.

Proof. Let β ∈ BN be a cloaking element of (M,σ) ∈ GLN (Fq)× SN . Then

(M,σ) = (M,σ) ? β =
(
M · σ

(
m(β)

)y
τ
, σ · p(β)

)
,

which implies that p(β) = IdSN . ut

The authors of WalnutDSA provide a method of generating cloaking elements
[7, Proposition 4.2], which we recap here for the reader’s convenience.

Proposition 2. Fix integers N ≥ 2 and 1 < a < b < N . Assume that τa =
τb = 1. Let M ∈ GLN (Fq) and σ ∈ SN . Then a cloaking element β of (M,σ) is
given by β = wb2iw

−1 where bi is any Artin generator and w ∈ Bn is any braid
such that the associated permutation p(w) satisfies

p(w)(i) = σ−1(a) , p(w)(i+ 1) = σ−1(b) .

Remark 1. A detailed algorithm for constructing cloaking elements is not pro-
vided. In particular, no algorithm to generate w is given. Hence, in our imple-
mentation, we generate it in the following way:

Algorithm 1 Generating w
repeat

Pick a random integer l such that 30 ≤ l ≤ 80.
Pick a random freely-reduced word w in the generators {b1, . . . , b7} of length l.

until p(w) satisfies the condition in Proposition 2.

We stress that our attack works independently of the way cloaking elements
β are generated.

3.5 Signing

Signing. To sign a message m, the signer does as follows:
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1. Compute E(m) as in Section 3.3;
2. Generate cloaking elements v for (IdN , IdSN ) and v1, v2 for (IdN , IdSN ) ? sk;
3. Compute s = R(v2 · sk−1 · v · E(m) · sk · v1);
4. Output (m, s), the final signature for the message.

The cloaking elements are necessary to preclude the possiblity of recovering for
sk by solving the CSP (any solution to the CSP is sufficient), since both s and
E(m) are publicly available (the latter after some computation).

Proposition 3. For any message m, its signature

s = R
(
v2 · sk−1 · v · E(m) · sk · v1

)
is a pure braid.

Proof. Recall that E(m) is a product of pure braids and is, therefore, a pure
braid. Moreover, by Lemma 3, v, v1 and v2 are pure braids. Hence, the induced
permutation p(s) of s is:

p(s) = p
(
v2 · sk−1 · v · E(m) · sk · v1

)
= IdSN · p(sk−1) · IdSN · IdSN · p(sk) · IdSN
= IdSN .

ut

3.6 Verifying

Verifying. To verify a signature (m, s), the verifier does as follows:

1. Compute E(m);
2. Compute Pub

(
E(m)

)
= (IdN , IdSN ) ? E(m).

The signature is then valid if and only if the verification equation

m(pk ? s) = m
(

Pub
(
E(m)

))
·m(pk)

holds.

Lemma 4. A message-signature pair (m, s), generated as in Section 3.5 satisfies
the verification process.

Proof. We have that

pk ? s = (IdN , IdSN ) ? sk ? s

= (IdN , IdSN ) ? sk ?
(
v2 · sk−1 · v · E(m) · sk · v1

)
(1)
= (IdN , IdSN ) ? sk ?

(
sk−1 · v · E(m) · sk · v1

)
= (IdN , IdSN ) ?

(
v · E(m) · sk · v1

)
(2)
= (IdN , IdSN ) ?

(
E(m) · sk · v1

)
,

11



where

– (1) holds since v2 cloaks pk = (IdN , IdSN ) ? sk;

– (2) holds since v cloaks (IdN , IdSN ).

Looking at the matrix parts of the above equality, we see that

m(pk ? s) = m
(

(IdN , IdSN ) ?
(
E(m) · sk · v1

))
(3)
= m

(
(IdN , IdSN ) ? E(m)

)
·m
(
(IdN , IdSN ) ? (sk · v1)

)
(4)
= m

(
(IdN , IdSN ) ? E(m)

)
·m
(
(IdN , IdSN ) ? sk

)
= m

(
Pub

(
E(m)

))
·m(pk) ,

where

– (3) holds since E(m) is a pure braid

– (4) holds since v1 cloaks pk = (IdN , IdSN ) ? sk.

ut

4 Practical Cryptanalysis of WalnutDSA

In this section we present a universal forgery attack on WalnutDSA. The struc-
ture of the section is as follows: in Section 4.1, we show that an attacker can
produce a signature for a new message if they are able to solve a factorization
problem over GLN (Fq). In Section 4.2, we present an algorithm solving this
factorization problem by exploiting the subgroup structure of GLN (Fq), and in
Section 4.3, we describe a meet-in-the-middle approach which reduces the com-
plexity of this attack. In Section 4.4, we analyze the complexity of our attack
and provide some experimental results. Finally, we discuss further improvements
to our attack in Section 4.5.

4.1 Reduction to the Factorization Problem

Let I be a finite indexing set. For each i ∈ I, let mi be a message and si be
its signature generated as in Section 3.5. Define the set M = {(mi, si) : i ∈ I}.
Recall that for a braid β, we define

Pub(β) = (IdN , IdSN ) ? β ,

where IdN is the identity matrix and IdSN is the identity permutation.

12



Proposition 4. Let m be an arbitrary message. Let gi = m
(

Pub(E(mi))
)

for

each i ∈ I and let h = m
(

Pub(E(m))
)
. Suppose

h =

L∏
j=1

g
εij
ij

where ij ∈ I, εij ∈ {±1} and L ∈ N .

Then s =
∏L
j=1 s

εij
ij

, the concatenation of the corresponding braids s
εij
ij

, is a valid
signature for m.

Proof. Each pair in M satisfies the verification equation:

m(pk ? si) = m
(

Pub
(
E(mi)

))
·m(pk) .

Writing σ as p(pk) and M as m(pk), the above equation is equivalent to(σ
m(si)

)y
τ

= M−1 · gi ·M , (2)

where τ = (τ1, . . . , τN ) is the sequence of T-values. Also, by Proposition 3, each
sεii is a pure braid, and so Lemma 2 applies. Hence, by taking the inverse of (2),
we obtain (

σm(s−1i )
)y

τ
=
((σ

m(si)
)y

τ

)−1
= M−1 · g−1i ·M .

and so (σ
m(sεii )

)y
τ

= M−1 · gεii ·M (3)

By Lemma 1,

m(s) = m

( L∏
j=1

s
εij
ij

)
=

L∏
j=1

m(s
εij
ij

) ,

and hence,

(σ
m(s)

)y
τ

=

(
σ
( L∏
j=1

m(s
εij
ij

)
))y

τ
=
( L∏
j=1

σm
(
s
εij
ij

))y
τ

=

L∏
j=1

(σ
m(s

εij
ij

)
)y

τ
=

L∏
j=1

(
M−1 · g

εij
ij
·M
)

= M−1 ·
( L∏
j=1

g
εij
ij

)
·M = M−1 · h ·M .

Therefore s is a valid signature for m, as the above equation is equivalent to

m(pk ? s) = m
(

Pub
(
E(m)

))
·m(pk) ,

the verification equation for (m, s). ut
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4.2 Solution to the Factorization Problem

Let Γ = {gi | i ∈ I}. Following our discussion in Section 4.1, we want to express
h as a short word over Γ. We first define the following chain of subgroups:

Definition 2. For k ∈ {1, . . . , 2N − 2}, let

Gk =
{
M ∈ GLN (Fq)

∣∣MN,N = 1 and Mi,j = 0 for (i, j) ∈ Ak1 ∪Ak2
}
,

where

Ak1 =

{
(i, j) |

(
N −

⌈k
2

⌉)
≤ i ≤ N , i 6= j

}
,

Ak2 =

{
(i, j) |

(
N −

⌊k
2

⌋)
≤ j ≤ N , i 6= j

}
.

That is, for even k,

Gk =





A 0 · · · 0

0

...

0

λ k
2−1

0 · · · 0

0
. . .

...
... λ1 0
0 · · · 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣
A ∈ MatN− k2 ,N−

k
2
(Fq)


∩GLN (Fq) ,

and for odd k,

Gk =





A ∗ 0 · · · 0

0

...

0

λ k−1
2

0 · · · 0

0
. . .

...
... λ1 0
0 · · · 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣
A ∈ MatN− k+1

2 ,N− k+1
2

(Fq)


∩GLN (Fq) ,

where ∗ is a column of length N − k+1
2 and λi ∈ F×q for i ∈ {1, . . . , bk−12 c}.

Remark 2. Checking whether g ∈ GLN (Fq) is in Gk for any k is straightforward
given the characteristic shape of the matrices in each group.

Lemma 5. For any braid β ∈ BN , m
(

Pub(β)
)
∈ G1.

Proof. Let G′1 be the subgroup of GLN
(
Fq[t±11 , . . . , t±1N ]

)
consisting of matrices

with their last row all zeroes except for the last entry, which is equal to 1.
For each i ∈ {1, . . . , N − 1}, m(bi) ∈ G′1. Therefore, m(β) ∈ G′1 and hence,
m
(

Pub(β)
)

= m(β)
y
τ
∈ G1. ut
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We also make use of the following assumption:

Assumption 1. For any k, a small set of random elements of Gk generates Gk
with high probability.

This assumption is supported by [43] and our experiments.

Our algorithm aims to solve an instance of a factorization problem over G1.
This is done in 2N−2 stages. The first 2N−3 stages are inductive: in stage k, we
reduce the problem in Gk to an instance of the problem over the next subgroup
Gk+1. At the end of stage 2N − 3, we have reduced the original problem to
factorization problem over G2N−2, the diagonal subgroup. In the last stage of
the algorithm, we reduce the factorization problem in G2N−2 to an easy case of
the discrete logarithm problem over Fq and a system of linear equations.

Let γ1 := |M|, let Γ1 := Γ =
{
g
(1)
i : 1 ≤ i ≤ γ1

}
, and let h1 := h. Further,

for 2 ≤ k ≤ 2N − 2, let γk be a positive integer and Lk :=
⌈
logγk

γk+1|Gk|
|Gk+1|

⌉
.

We will aim to produce γk+1 elements of Gk+1 in stage k, and we hope that
these elements will generate Gk+1, which we will need to reduce the factorization
problem into the next subgroup. The integer Lk captures some information about
the number of elements we need to consider from Gk before we find γk+1 elements
of Gk+1: in our algorithm, the elements from Gk that we will consider will be
words of some fixed length Lk over some generating set of size γk; by considering
the relative sizes of Gk and Gk+1, it then follows that Lk should be Lk.

Inductive Stages. In stage k
(
for k ∈ {1, . . . , 2N −3}

)
, we will find a set Γk+1 :={

g
(k+1)
i : 1 ≤ i ≤ γk+1

}
⊂ Gk+1 and an element hk+1 ∈ Gk+1, where g

(k+1)
i are

words over Γk and hk+1 is a product of hk with a word over Γk.

Algorithm 2 From Γk and hk, we find Γk+1 and hk+1

repeat
Generate products of the form:

p =

Lk∏
j=1

g
(k)
ij

where 1 ≤ ij ≤ γk

if p ∈ Gk+1 then
Add p to Γk+1

else if hk+1 has not yet been defined then
if p ∈ hkGk+1 then

Define hk+1 = p−1 · hk

end if
end if

until |Γk+1| = γk+1 and hk+1 is defined

15



Following Assumption 1, we expect that for large enough γk, Γk will be a
generating set for Gk. We therefore expect to be able to find γk+1 elements in
Gk+1 ⊂ Gk given enough iterations of the loop. Moreover, hkGk+1 ⊂ Gk, and
so we expect to be able to find hk+1 as well.

Remark 3. We see from the above algorithm that for all k ∈ {1, . . . , 2N −3}, we
can write hk+1 as

hk+1 =
∏
j

(
g
(k)
ij

)−1 · hk for 1 ≤ ij ≤ γk .

Moreover, we can write any element in Γk+1 as a product of elements in Γk.
Hence, we can recursively write hk+1 as a product of a word over Γ1 = Γ with
h1 = h, i.e. we can express hk+1 as

hk+1 =
(∏

j

g
εij
ij

)
· h for 1 ≤ ij ≤ γ1 . (4)

In particular, we can express each element g
(2N−2)
i ∈ Γ2N−2 as a word over Γ

g
(2N−2)
i =

(∏
j

g
εij
ij

)
for 1 ≤ ij ≤ γ1 . (5)

Final Stage. At the end of stage 2N − 3, we will have a set

Γ2N−2 =
{
g
(2N−2)
i : 1 ≤ i ≤ γ2N−2

}
⊂ G2N−2

and an element h2N−2 ∈ G2N−2. Note that G2N−2 is the subgroup of diagonal
matrices, and so all of the above elements are diagonal matrices as well.

We want to express h2N−2 as a word over Γ2N−2. Since G2N−2 is abelian,
this is equivalent to finding exponents v1, . . . , vγ2N−2

∈ Z such that

h2N−2 =

γ2N−2∏
i=1

(
g
(2N−2)
i

)vi
. (6)

Equally, (4) and (5) then allow us to rewrite the above equation as

h =
∏
j

g
εij
ij

,

an expression for h as a word over Γ, given that we can find the exponents vi.
We describe how to find these exponents next.

Note that all the matrices on both sides of (6) are diagonal matrices. For
each i ∈ {0, . . . , γ2N−2}, let ci = (λi1 , . . . , λiN−1

, 1) be the sequence of diagonal

entries in g
(2N−2)
i , and let c := (µ1, . . . , µN−1, 1) be the diagonal entries in h2N−2.
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Further, let δ be a generator of F×q . By solving the discrete logarithm problem
over F×q (which is straighforward for small q), for each i ∈ {1, . . . , γ2N−2}, and
each j ∈ {1, . . . , N − 1}, we can find eij and uj such that:

δeij = λij ,

δuj = µj ,

i.e., we are able to write all non-zero entries of the matrices in (6) as powers
of δ. Finding the exponents vi is then reduced to solving a system of linear
equations over Zq−1. More explicitly, for each i ∈ {1, . . . , γ2N−2}, define c′i =
(ei1 , . . . , eiN−1

, 1). Also, let c′ = (u1, . . . , uN−1, 1) and let D = (c′1, . . . , c
′
γ2N−2

),

i.e., the matrix with ith column equal to c′i. So (6) above is equivalent to the
system of linear equations

D · v = c′ (7)

which can be solved with standard linear algebra techniques.

4.3 Meet-in-the-Middle Approach

We can improve the recursive step of our attack as follows: instead of computing
products of length Lk until we hit an element of Gk+1, we compute pairs of prod-
ucts each of length

⌊
Lk
2

⌋
and then check for pairs which lie in the same coset of

Gk+1. This meet-in-the-middle approach will lead to a square root improvement
on the complexity. In order to use this approach, we need an efficient method to
check whether two elements are in the same coset of Gk+1. The following lemma
provides such a method.

Lemma 6. Let Gk for k ∈ {1, . . . , 2N − 2} be the subgroups in Definition 2,
and let p, p′ ∈ Gk. Then

– For odd k, p′ ∈ pGk+1 if and only if the (N − k+1
2 + 1)th columns of p and

p′ are multiples of each other.
– For even k, p′ ∈ Gk+1p

′ if and only if the (N − k
2 )th rows of p and p′ are

multiples of each other.

Proof. Let k be odd, let h be any matrix in Gk+1, and let r = N − k+1
2 + 1.

Note that the rth column of h is zero except for the entry hr,r ∈ F×q . Finally, let
p, p′ ∈ Gk.

Assume that p′ ∈ pGk+1, and so there exists g ∈ Gk+1 for which p′ = pg.
Let pi,j be the (i, j)th entry of p and let λr := gr,r. Then the entries of the rth

column of p′ are:

p′i,r =

N∑
j=1

pi,jgj,r = pi,r · λr for 1 ≤ i ≤ N

17



and hence the rth columns of p and p′ are multiples of each other.

Conversely, let cr be the rth column of p and c′r be the rth column of p′, and
assume c′r = λ · cr for some λ ∈ F×q . Let π = p−1 · p′. Then the entries of the rth

column of π are

πi,r =

N∑
j=1

(p−1)i,j · p′j,r =

N∑
j=1

(p−1)i,j · λpj,r

= λ

N∑
j=1

(p−1)i,j · pj,r = λ · (IdN )i,r

= λ · δir

where δir is the Kronecker delta. This implies that the rth column of π is zero
everywhere except at the (r, r)th entry. Since π ∈ Gk, this implies π ∈ Gk+1 and
hence p′ ∈ pGk+1.

The case for even k is similar. ut

Using the above lemma, we are able to construct an improved version of
Algorithm 2:

Algorithm 3 From Γk and hk, we find Γk+1 and hk+1

Generate all products of the form:

p1 =

Lk/2∏
j=1

g
(k)
ij

where 1 ≤ ij ≤ γk

repeat
Pick a product p2 of the form above
Case 1 : k is odd
if for some p1, we have p2 ∈ p−1

1 Gk+1 then
Add p = p1p2 to Γk+1

else if hk+1 has not been defined yet then
if for some p1, we have p2 ∈ p−1

1 hkGk+1 then
Define hk+1 = p−1

2 p−1
1 · hk = p−1 · hk

end if
end if
Case 2 : k is even
if for some p1, we have p1 ∈ Gk+1p

−1
2 then

Add p = p1p2 to Γk+1

else if hk+1 has not been defined yet then
if for some p1, we have h−1

k p1 ∈ Gk+1p
−1
2 then

Define hk+1 = p−1
2 p−1

1 · hk = p−1 · hk

end if
end if

until |Γk+1| = γk+1 and hk+1 is defined
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4.4 Complexity Analysis and Experiments

Time Complexity. We observe that the complexity of the algorithm is dom-
inated by the complexity of finding each Γk+1: the last step involves solving a
discrete logarithm problem over a small field and a small linear system modulo
q − 1. Moreover, the cost of finding an element hk+1 is essentially the same as
the cost of finding one element of Γk+1.

Lemma 7. The size of Gk is as follows:

– For k even, |Gk| = (q − 1)(
k
2−1) · |GLN− k2

(Fq)| .
– For k odd, |Gk| = (q − 1)b

k
2 c · qN−b

k
2 c−1 · |GLN−b k2 c−1

(Fq)| .

Proof. For k even, the block diagonal structure of Gk consists of an invertible
matrix of size N − k

2 and k
2 entries on the diagonal. The bottommost such entry

is 1, and the other diagonal entries can be any of the nonzero elements in Fq, and
so we obtain the formula above. For k odd, the block diagonal structure of Gk
consists of an invertible matrix of size N −

⌊
k
2

⌋
with a zero bottom row except

for the last entry, and
⌊
k
2

⌋
other entries on the diagonal. Note that

⌊
k
2

⌋
− 1 of

the diagonal entries can be any nonzero element in Fq while the bottommost
entry is 1. The invertible matrix of size N −

⌊
k
2

⌋
consists of any element in

GLN−b k2 c−1
(Fq) on the upper diagonal, any nonzero entry from Fq for the bottom

right entry, and a value in Fq for the rest of the entries in the last column. From
this we obtain the formula above. ut

Lemma 8. |Gk|
|Gk+1| ≈ q

N−1−b k2 c

Proof. This follows immediately from the previous lemma. ut

If we pick a random element of Gk, the probability that it will also be in

Gk+1 is therefore approximately 1/qN−1−b
k
2 c. In our algorithm, we make the

assumption that random products of elements in Γk produces random elements
in Gk+1, and so we expect that we will be able to obtain one element of Γk+1

after considering qN−1−b
k
2 c random products. By using the meet-in-the-middle

approach described earlier, we reduce the expected number of products we need

to consider by q(N−1−b
k
2 c)/2. Since we need to generate |Γk+1 ∪ {hk+1}| = γk+1

new elements, the expected number of products we need to consider is bounded

by γk+1 · q(N−1−b
k
2 c)/2. The total number of products our algorithm needs to

consider is therefore
2N−3∑
k=1

γk+1 · q(N−1−b
k
2 c)/2 .

If we further assume that γk = γ is constant, the above simplifies to

γ ·
2N−3∑
k=1

q(N−1−b
k
2 c)/2 = 2 · γ ·

N−2∑
l=0

q
N−1−l

2 ≈ 2 · γ · q
N−1

2 .
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Thus, the complexity of the attack is exponential in N and log q.

Memory Complexity. The final stage of the algorithm requires a negligible
amount of memory. For the inductive stages, in stage k of the algorithm, we need

to store up to q
1
2 (N−1−b k2 c) square matrices of size N×N , each entry being in Fq,

so we will need log2(q) ·N2q
1
2 (N−1−b k2 c) bits of memory for each stage. However,

we do not need to keep the matrices from stage k when proceeding to stage k+1
(except to store the relatively small number of matrices of Γk+1 and hk+1), and
so the total amount of memory required for the entire algorithm is the maximum

amount of memory required by each stage, which is log2(q) ·N2q
N−1

2 . Memory
costs can be removed entirely using standard cycle-finding and distinguished
point techniques [44,45].

Length Complexity. We now analyze the length of the forged signature that
we obtain.

Note that the length of any element in Γk+1, as a word over elements of Γk,
is given by Lk. Also, our algorithm expresses hk+1 as the product of hk with LK
elements of Γk. Unfolding this recurrence, we see that h2N−2 is the product of
h with α elements of Γ, where

α =

2N−3∑
k=1

k∏
j=1

Lj =

2N−3∑
k=1

k∏
j=1

logγj

(
|Gj |
|Gj+1|

γj+1

)

=

2N−3∑
k=1

k∏
j=1

logγj

(
qN−1−b

j
2c · γj+1

)

≈
2N−3∏
j=1

logγj

(
qN−1−b

j
2c · γj+1

)
,

since the last summand dominates the sum. Similarly, we see that each g
(2N−2)
i

is a product of ≈ α elements of Γ.

If we further assume that γk = γ is constant, the above formula simplifies to

α ≈
2N−3∏
j=1

(
1 +

(
N − 1−

⌊ j
2

⌋)
logγ q

)

≈
(
logγ q

)2N−3(
(N − 1)!

)(
(N − 2)!

)
.

In the final step of the algorithm, we find a relation (6)

h2N−2 =

γ2N−2∏
i=1

(
g
(2N−2)
i

)vi
.

20



Since the vi come from the solution to a system of linear equations over Zq−1,
we know that vi < q−1. Also, since the space we are working over in our system
of linear equations (7) has dimension N − 1, it follows that we need at most
N − 1 terms in the product above. Putting this all together, we see that h is
then the product of

(
1 + (N − 1)(q − 1)

)
α ≈ Nqα elements of Γ, and so our

forged signature is of length ≈ lNqα, where l is the length of the WalnutDSA
signatures in M.

Experimental Results We have implemented our factorization algorithm in
Magma [46] and tested it experimentally (the code is available from Christophe
Petit’s webpage). The only parameters of our algorithm are the values of Lk,
which we can control via γk. Note that increasing γk decreases the length of
our forged signature but increases the running time of our algorithm. In our
experiments, we first assumed that we are able to obtain ten legitimate message-
signature pairs. We then chose γk such that Lk is large enough for us to find
the relations for all hk. This allowed us to obtain a signature of length 235 times
the length of a legitimate signature in approximately two minutes. To reduce
the length of the forged signature, we increased γk such that γk ≈ 200000 for
k > 3. This allowed us to obtain signatures of length 225 times the length of a
legitimate signature in five minutes.

4.5 Practical Improvements

In this section we present two improvements on our attack.

Shorter Subgroup Chain. The subgroup chain we used above was chosen to
have small subgroup indices [Gk : Gk+1] in order to minimize computation time
at each step. However, the first few stages of the algorithm contribute to the
majority of the running time, whereas all stages contribute significantly to the
total length of the signatures we produce.

To reduce signature lengths without affecting the computation time signifi-
cantly, one can replace the above subgroup chain by another chain. An example
of such a chain could have the same first five subgroups (at a cost of roughly q3.5,
q3, q3, q2.5 and q2.5 respectively), but then instead of considering a subgroup
where the lower diagonal entries in the last four rows are zeroes (at a cost q2),
consider a subgroup where the lower diagonal entries in the last five rows are
zeroes (at a cost of q3.5), then a subgroup where the upper diagonal entries in
the last five rows are also zeroes (at a cost of q3.5), and finally considering the
diagonal subgroup (at a cost of q3). In that case, the factorization length can be
approximated by

Nq
∏
k

ck logγk q

21



where (c1, c2, . . . , c8) = (7, 6, 6, 5, 5, 7, 7, 6), which for γk = 256 gives a signature
size approximately 211 times that of a normal signature size, while retaining the
time complexity of roughly q3.5.

Dealing with Non-Generating Sets. We have not been able to prove that
the elements we construct in our recursive step are indeed generators for the next
subgroup. We expect that this is the case with a high probability on the initial
matrix choices when choosing product lengths as above, and this was verified for
all recursive steps in our experimental tests.

The diagonal matrices generated for the last stage, however, may not generate
the whole diagonal group when the number of generators constructed at each
step is very small. We observed this experimentally when using γk = 2 in all
but the last inductive stage, and can explain it intuitively as follows. Let Γk :=
{A(k), B(k)}. At each stage, the diagonal entries in the diagonal part (in block
diagonal form) of A(k) and B(k) can be approximated as random elements in F×q .

Consider any pair of indices
(
(i1, i1), (i2, i2)

)
in the diagonal part of the matrix,

and consider the 2-dimensional vectors
(
A

(k)
i1,i1

, A
(k)
i2,i2

)
and

(
B

(k)
i1,i1

, B
(k)
i2,i2

)
. It is

a necessary condition for these two matrices to generate the whole subgroup,
that there is no linear dependence between the two vectors obtained by taking
entrywise logarithms of the above vectors. For a fixed pair of indices (i1, i1)
and (i2, i2), this happens with probability q−2

q−1 . In the later inductive stages, the
diagonal part of the matrices are larger, and hence the probability that all pairs
of the logarithm vectors are linearly independent decreases. Moreover, any linear
dependence occurring in one stage will be preserved in subsequent stages. It is
therefore intuitively plausible that Γ2N−2 may not generate G2N−2 when γk is
very small. We leave a more complete analysis of this to further work.

In our experiments, it was easy to choose γk large enough such that all stages
would produce a sufficient number of generators for the following subgroup,
including that of diagonal subgroup G2N−2. We note also that in the event that
Γ2N−2 does not generate G2N−2, one can simply set h1 = Idn and relaunch the
whole factorization algorithm: this will produce a new set of diagonal matrices
Γ′2N−2 that, together with Γ2N−2, is likely to generate the G2N−2. This therefore
allows our attack to succeed with high probability even when we only have access
to two WalnutDSA message-signature pairs.

5 Discussion and Further Work

Due to its algebraic structure, WalnutDSA is inherently vulnerable to malleabil-
ity attacks. The use of a cryptographic hash function in the message encoding
process is intended to remove this inherent malleability, in the same way as
Full Domain Hash removes the inherent malleability in the RSA signature algo-
rithm. Our attack, however, goes around this protection mechanism by reducing
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the cryptanalysis of WalnutDSA to an instance of a factorization problem in the
group GLN (Fq).

We briefly discuss two countermeasures against this attack, namely increasing
the parameter sizes and checking the signature lengths.

5.1 Increasing the Parameters

In order to defeat our attack, one can choose to increase the parameters of
WalnutDSA such that the complexity of our attack is increased to ∼ 2100. As

shown in Section 4.4, the complexity of our attack can be estimated by γ · qN−1
2 .

One can therefore choose to increase the value of q and N such that q
N−1

2 ≈ 2100,
by choosing q = 216 and N = 14 for example.

5.2 Checking Signature Length

Recall that our forged signature s is obtained from concatenating existing sig-
natures. The length of s depends primarily on the length of the products Lk
considered in algorithm 3. As discussed in Sections 4.4 and 4.5, larger values for
γk = |Γk| and a different choice of subgroup chain can achieve shorter forged
signature lengths at the cost of higher time and memory complexity. Our best at-
tempt produced a forged signature 225 times larger than the original WalnutDSA
signatures.

Observe that the length of a legitimate signature (one produced according
to WalnutDSA) depends on the length of sk, E(m), and the cloaking elements.
Even though these lengths are not fixed, we expect them to be within certain
bounds, which will depend on the implementation of the protocol. However, in
principle, the length of s should greatly exceed these bounds. Therefore, we
suggest that the length of both cloaking elements and private keys be bounded
above, so that the length of a WalnutDSA signature is always less than some
constant L. Any signature of length greater than L should then be rejected.

5.3 Limitations of the Countermeasures

We do not know, however, whether s could be shortened to fit the new imposed
bounds. Methods such as Dehornoy’s handle reduction [14] could potentially
reduce the length of our forged signatures sufficiently in a non-negligible fraction
of instances.

We stress that more efficient algorithms for solving the factorization prob-
lem in GLN (Fq) may also exist. One may expect factorizations as small as

log|M | |GLN (Fq)| = log|M | q
N2−N−1 to exist, where M is the set of WalnutDSA

message-signature pairs one has access to. If an efficient algorithm to compute
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short factorizations exists, the increase in parameters q and N needed to achieve
a sufficient level of security would then make WalnutDSA unsuitable for embed-
ded devices. Moreover, with |M| large enough, the forged signatures will only be
a small constant factor larger than legitimate signatures, and hence determining
a suitable bound L to apply our second countermeasure may be challenging.

Finally, we observe that our work has not considered the hard problems
underlying the WalnutDSA protocol, that of reversing E-Multiplication and the
cloaked conjugacy search problem. The study of these problems, along with the
effectiveness of the above countermeasures, will be of interest for further work.

6 Conclusion

In this paper we provided a practical cryptanalysis of WalnutDSA. Given a
couple of random valid message-signature pairs, our attack is able to produce
new signatures on arbitrary messages in approximately two minutes. We also
discuss countermeasures to our attack, including a simple modification of the
verification algorithm.
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A The Garside Normal Form

We follow the presentation in [5]. Define a positive braid, which is an element
of BN that can be written as a product of positive powers of the generators.
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Let B+
N denote the set of positive braids. One example of a positive braid is the

fundamental braid ∆N ∈ BN :

∆N = (b1 · · · bN−1)(b1 · · · bN−2) · · · (b1b2)(b1) .

Geometrically, ∆N is the braid in which any two strands cross positively exactly
once.

We now define a partial order on BN : for A,B ∈ BN , write A � B if there
exists C ∈ B+

N such that B = AC. With this definition, we say that P ∈ BN is
a permutation braid if ε � P � ∆N , where ε is the empty braid. Geometrically,
a permutation braid is a braid in which any two strands cross positively at most
once.

Let P be a permutation braid. Then the starting set of P is

S(P ) = {i | P = biP
′ for some P ′ ∈ B+

N}

and the finishing set of P is

F (P ) = {j | P = P ′bj for some P ′ ∈ B+
N} .

Furthermore, if A is any positive braid, its left-weighted decomposition into per-
mutation braids is

A = P1 · · ·Pm
where S(Pi+1) ⊂ F (Pi) for any i.
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