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Abstract 1 

Soot particles strongly absorb sunlight and hence act as a short-lived warming agent. 2 

Atmospheric aging of soot particles changes their morphology and mixing state and 3 

consequently alter their optical properties. Here we collected soot particles at tunnel, 4 

urban, mountaintop, and background sites in Northern China and analyzed their 5 

mixing structures and morphology using transmission electron microscopy. Soot 6 

particles were further classified into three types: bare-like, partly coated, and 7 

embedded. Bare-like soot particles were dominant at the tunnel site, while most soot 8 

particles were partly coated or embedded type at other sites. Fractal dimensions (Df) 9 

of different types of soot particles ranged from 1.80 to 2.16 and were ordered as: 10 

bare-like < partly coated < embedded. Moreover, their average Df changed from 1.8 11 

to 2.0 from the tunnel to the background site. We conclude that the Df can 12 

characterize the shape of soot aggregates reasonably well and its variation reflects 13 

soot aging processes. Compared with the reported Df of soot particles, we found that 14 

Df = 1.8 used in previous optical models primarily represents freshly emitted soot 15 

aggregates, rather than the ambient ones. 16 

  17 
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1 Introduction 18 

Soot particles, also known as black carbon (BC) or elemental carbon (EC), are 19 

fractal-like aggregates produced from the incomplete combustion of biomass and 20 

fossil fuels. Soot particles strongly absorb sunlight and heat the air, altering the 21 

radiative forcing of the atmosphere and affecting global and regional climate.1-4 22 

During transport and aging, fresh soot particles mix with organic and inorganic 23 

aerosols, changing their morphology and compactness, which leads to changes of 24 

their optical properties and radiative forcing.5, 6 Jacobson7 proposed that the sulfate 25 

coating on soot particles can enhance optical absorption by ~2 through treating the 26 

mixture of soot and sulfate as a core-shell model. However, Cappa et al.8 observed 27 

that the absorption enhancement of aged soot particles in Sacramento was 6% on 28 

average at 532 nm by in-situ measurements. Different conclusions about the optical 29 

absorption of soot particles should be attributed to their complicated shapes and 30 

various mixing states in the atmosphere.9, 10 Due to the lack of quantification on the 31 

variation of shapes and mixing structures of soot particles, the debate on optical 32 

properties of soot particles still continues. 33 

Some experimental methods such as combination of single-particle soot 34 

photometer (SP2), three-wavelength photoacoustic soot spectrometer (PASS-3), and 35 

Aerodyne soot particle-aerosol mass spectrometer (SP-AMS) were used to well 36 

characterize physicochemical properties of soot and measured their optical 37 

properties.11-14 However, these measurements could not provide accurate morphology 38 

of soot aggregates for the modeling study. Many numerical optical models such as the 39 

Rayleigh-Debye-Gans (RDG) approximation15, T-Matrix16, 17, and Discrete Dipole 40 

Approximation (DDA)18 can be used to calculate the optical properties of soot 41 

aggregates.10, 19-21 Except RDG, other numerical models require the morphology of 42 

soot aggregates, which can be generated numerically using fractal dimension (Df). 43 

Among the available algorithms to generate fractal aggregates, the tunable method22 is 44 

preferred due to its capability of generating aggregates of a prescribed Df, which is the 45 

most important morphological parameter of fractal aggregates. Adachi et al.23 used 46 
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electron tomography in transmission electron microscopy (TEM) to calculate the Df of 47 

individual soot particles. The method requires a sophisticated system of TEM coupled 48 

with tomography, which is not commonly available. Xiong and Friedlander24 49 

calculated the Df of individual soot particles by drawing circles around the primary 50 

particles and then determining the size and position of the primary particles in the 51 

TEM image using scaling laws.25, 26 The method is inefficient in obtaining the Df of 52 

hundreds of soot particles, because it requires 10-30 minutes for each soot aggregate. 53 

Later, an approach for image characterization of soot aggregates was proposed by 54 

Brasil et al.27 and Oh and Sorensen.28 The method can conveniently derive various 55 

parameters of individual soot particles in the scaling law and obtain a Df to represent 56 

their ensemble morphology. Recently, China et al.29 successfully used this method to 57 

calculate Df of soot particles freshly emitted by wildfire. However, there are only 58 

quite few available reports about the Df of ambient soot particles, whose Df values are 59 

very important to understand their optical properties in different environments. 60 

In this study, we report a detailed analysis of a large number of soot particles 61 

collected at tunnel, urban, mountaintop, and background sites in polluted air in the 62 

North China Plain (NCP). At each site, soot particles are classified into three types 63 

based on their mixing states and morphology and then their corresponding Df values 64 

are calculated and compared systematically for the first time. We use a method 65 

combining TEM analysis and numerical calculation to obtain a Df to represent the 66 

ensemble morphology of soot aggregates. At last, we discuss their morphological 67 

and mixing properties and the implication of these properties on aging. 68 

 69 

2 Materials and Methods 70 

2.1 Aerosol Sampling 71 

The NCP was covered by the regional haze layer during the sampling period, so 72 

we defined our samples from the continental polluted air. Aerosol samples were 73 

collected at four sampling sites in NCP: a tunnel site, an urban site, a mountaintop 74 

site, and a background site (Figure S1), where the relative humidities (RHs) were at 75 
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about 52%, 16%, 64%, and 56%, respectively. The RHs at the four sampling sites 76 

were lower than 65% during the sampling period, indicating that the hazes were 77 

mainly dry. The Kaiyuan tunnel site is a busy highway that enters Jinan City. The 78 

urban site in Jinan City is a typical downtown site with strong vehicle and residential 79 

emissions. The Mountain Tai (at 1534 m above sea level) is the highest mountain in 80 

NCP. The aerosol particles collected at the mountaintop site reflect regional transport 81 

of aerosol particles in NCP.30 The background Changdao Island in the Bohai Sea is a 82 

downwind site of Shandong province and the Jing-Jin-Ji area (i.e., Beijing, Tianjin, 83 

and Hebei province) during winter (Figure S1). Aerosol samples were 84 

simultaneously collected at the urban, mountaintop, and background sites during 85 

13-23 December 2014. At the tunnel site, aerosol samples were collected on 8 86 

November 2016. A total of 779 soot particles from 31 samples were analyzed to 87 

determine their size and elemental composition using TEM/EDS. We note that the 88 

distribution of aerosol particles on TEM grids was not uniform. Therefore, we chose 89 

three to four areas from the center and periphery of each grid to ensure that the 90 

analyzed particles were representative. Once the internally mixed soot particles are 91 

under the strong electron beam (Figure S2), they can easily damage the sulfates and 92 

nitrates but do not change morphology of soot aggregates. This microscopic analysis 93 

is explained in the Supporting Information. 94 

 95 

2.2 Morphology Analysis of Soot Particles 96 

    Fractal dimension of soot particles can be characterized using the scaling law25: 97 
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where N is the total number of monomers in each aggregate, Rg is the radius of 99 

gyration of the soot aggregate, dp is the monomer diameter, kg is the fractal prefactor, 100 

and Df is the mass fractal dimension. Note that the Df in this study is the mass fractal 101 

dimension of soot aggregates that excludes the coating. In this study, the Df and kg 102 

are estimated from a power law fit of a scatter plot of N vs the values of 2Rg/dp. 103 

N can also be scaled with the aggregate projected area in the following 104 
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power-law relationship: 105 
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where Aa is the projected area of the soot aggregate, Ap is the mean projected area of 108 

the monomer, ka is a constant, and α is an empirical projected area exponent. The 109 

exact values of ka and α depend on the overlap parameter (δ),28 which can be 110 

calculated using equation (3) with a being the monomer radius and l the lattice 111 

spacing in TEM images. The number of monomers N can then be calculated using 112 

equation (2).28 113 

The parameters dp and Rg are also required to determine Df. While dp can be 114 

obtained directly from analysis of TEM images, estimation of the actual radius of 115 

gyration (Rg) is complicated. Here we used the following simple correlation 116 

 05.050.1)2/(max ±=gRL  (4) 117 

to calculate Rg,27 where Lmax is the maximum length of the soot aggregate obtained 118 

from TEM images. 119 

 120 

3 Results and Discussion 121 

3.1 Morphology and Mixing State of Soot Particles 122 

Fresh soot particles are normally chain-like aggregates. Once soot particles mix 123 

with other aerosol components in the air, the aging process can rearrange the 124 

structure of the inner soot aggregates.31 Based on their morphology and the visual 125 

estimation of coating on soot particles in TEM images, we classified them into three 126 

types: bare-like, partly coated, and embedded. Bare-like soot particles in TEM 127 

images display clear monomers without any visible coating on their surface (Figure 128 

1a-1/1b-1/1c-1). Partly coated soot particles mean that individual soot particles are 129 

partly coated by other aerosol components (Figure 1a-2/1b-2/1c-2). Embedded soot 130 

particles refer to individual soot particles that are heavily coated or are entirely 131 
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embedded within other aerosol components (Figure 1a-3/1b-3/1c-3). Figure 1 shows 132 

the three types of soot particles collected at the urban, mountaintop, and background 133 

sampling sites. Bare-like soot particles are dominant in the tunnel samples, because 134 

vehicles emit large amounts of fresh soot particles (Figure S3). Similar results have 135 

been found near freeways.32 Based on their different mixing structures, embedded 136 

soot particles are normally considered as more aged than the partly coated soot 137 

particles.33 We also calculated the area ratios of coating/soot core for internally 138 

mixed soot particles. Figure S4 shows partly coated soot particles mostly have ratios 139 

smaller than one, indicating smaller coatings. In contrast, embedded soot particles 140 

have lager ratios, some of which are more than 20 times larger. These results are 141 

consistent with our classification. 142 

Figure 2 shows the fractions of three types of soot particles in different 143 

atmospheric environments. The result shows that the bare-like soot particles 144 

accounted for 64% of all particles in tunnel air but only 1~25% in urban polluted air 145 

(Figure 2). Wang et al.34 also found a fairly low fraction (31.2%) of externally mixed 146 

soot particles in urban Xi’an City of China through a single-particle soot photometer 147 

(SP2). As a result, the polluted air likely accelerated the transformation from 148 

bare-like into partly coated or embedded soot particles.33 It should be noted that 149 

bare-like soot particles accounted for 25% at the urban site and 21% at the 150 

background site, but embedded soot particles significantly increased from 12% to 39% 151 

(Figure 2). These results indicate that the polluted air masses from the Jing-Jin-Ji 152 

area and Shandong province (Figure S1) brought a large number of aged soot 153 

particles into the downwind background air. In addition, the fraction of embedded 154 

soot particles at the mountaintop site is largest at 55% and bare-like soot is lowest at 155 

1% among the three sampling sites. China et al.35 found that most soot particles from 156 

North America became internally mixed at the summit caldera of the Pico Volcano. 157 

Therefore, soot particles that are emitted mostly at ground level but transported into 158 

the upper atmospheric layers could undergo intense aging processes during their 159 

transports. The RH is a critical factor to enhance heterogeneous reactions of acidic 160 

gases on particle surface because secondary aerosols can deliquesce at about 60-80% 161 
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RH and form liquid phases.36 During the sampling period, there was higher RH 162 

around 64% in the upper air than the 16-55% on the ground. Indeed, many 163 

embedded soot particles on the mountaintop left a water rim around sulfate coating 164 

after drying on the substrate (Figure 1b-3), which indicates that secondary aerosol 165 

components existed as the liquid phase in the air.33 We conclude that soot particles 166 

likely underwent more complicated ageing processes due to the higher RH of the 167 

upper layers than at the polluted ground sites. 168 

 169 

3.2 Quantifying the Shapes of Soot Particles 170 

It is widely acknowledged that Df of soot particles reflects their combustion 171 

conditions and aging processes.23 Compact soot particles often have larger Df than 172 

lacy aggregates.37 Here we calculated the Df of soot particles collected at the four 173 

sampling sites (Figure 3). Df of bare-like soot particles at different sampling sites was 174 

very close, at ~1.82 (Figure 3a, 3b, 3d). Bare-like soot particles have the lowest Df 175 

followed by partly coated and embedded soot particles (Figure 3), suggesting that 176 

bare-like soot particles were more lacy compared to the partly coated and embedded 177 

types. Df of partly coated soot particles tends to be ~1.87, smaller than the 1.90~2.16 178 

of embedded soot particles (Figure 3). Similarly, China et al.29 found the same 179 

properties (i.e., bare-like < partly coated < embedded) of Df of the three types of soot 180 

particles emitted by wildfires. Peng et al.38 also found that the morphology of soot 181 

particles was modified heavily during aging processes. For the background soot 182 

particles, Df ranges between 1.83 and 2.16, with a medium of 2.00 (Figure 3d). In 183 

contrast, Df of the urban soot particles has lower values, between 1.83 and 1.90. We 184 

multiplied the number fraction of each type of soot by their corresponding Df to 185 

calculate the statistical weighting of Df. The statistical weighting of Df values of the 186 

urban, mountaintop, and background site are 1.87, 1.90, and 1.97, respectively, which 187 

have an average value of 1.91. 188 

The convexity (CV), roundness (RN), and Df of the three types of soot particles 189 

at the four sampling sites are listed in Table S1. The CV and RN distributions of the 190 

three types of soot particle at the same sampling site (Figure S5) clearly prove their 191 
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Df changes (Figure 3). The CV and RN of bare-like soot particles are smallest 192 

followed by those of partly coated and embedded soot particles at the four sampling 193 

sites. We therefore conclude that larger CV and larger RN represent more 194 

compactness for aged soot particles, consistent with the study of China et al.29 195 

We found that Df of fresh soot particles retained a consistent value (~1.82) at 196 

different sampling sites in the polluted air (Figure 3), although fresh soot particles 197 

display slightly different Df due to their different sources and combustion 198 

conditions.39 Many researchers obtained Df of soot particles of the primary sources, 199 

such as Df from biomass burning at 1.67-1.8340, Df from vehicle emissions 200 

1.52-1.9432, and Df from diesel at 1.6-1.941. Df of soot particles becomes larger when 201 

soot aggregates are coated by other components during atmospheric processes.42 202 

This indicates that soot particles likely collapse during the coating processes. In 203 

addition, the wide range of Df of soot particles in the background air is somewhat 204 

expected because they originate from multiple sources, such as industries, residential 205 

heating, and transportation,30 and have undergone different atmospheric aging 206 

durations and processes.23 In addition, the Df of embedded soot particles at 207 

1.90~2.16 in this study are much lower than 2.3~2.6 reported by some previous 208 

studies.21, 23, 43 Adachi et al.21, 23 used cube-counting method to calculate Df of soot 209 

particles. In most cases the images of fractal aggregates cannot be decomposed at all 210 

scales into an integer number of square boxes using this method,44 which may lead 211 

to a larger Df. In the study by Bambha at al.,43 the smaller monomer diameter may 212 

cause lesser structural compaction.45 Besides, the coating material condensed at a 213 

low humidity often causes no restructuring, whereas the coating liquefies at a higher 214 

humidity and restructuring occurs promptly.46 In a word, these differences could be 215 

attributed to data processing methods, aging environments, and soot aggregate 216 

properties. 217 

Using the scaling law method, the previous studies reported Df at 1.52~1.94 for 218 

soot particles at road side32 and Df > 2 for soot particles at a remote marine 219 

troposphere site.35 Here we systematically studied Df of ambient soot particles 220 

collected at three representative polluted sites. These data are crucial to assess the 221 
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accurate shape of soot particles in the dry continental air. 222 

 223 

4 Atmospheric Implications 224 

Previous studies reported that the fractal dimensions (Df) of fresh soot particles 225 

from vehicles, biomass, diesel, and wildfire emissions are around 1.7332, 1.7540, 226 

1.7541, and 1.8929, respectively, which are close to 1.80~1.83 (Df) of the bare-like 227 

soot particles obtained in this study (Figure 3). The reason is that fresh soot particles 228 

are generally formed via a cluster-dilute aggregation mechanism in a small-scale 229 

burning regime.39, 47 These fresh soot particles are hydrophobic before being affected 230 

by secondary aerosols and condensable vapors in the atmosphere.48 Therefore, fresh 231 

soot particles can hardly collapse and their structures remain largely unchanged. In 232 

contrast, once soot particles interact with secondary organic and inorganic aerosols 233 

and water vapor during long-range transport, they became more compact as 234 

evidenced by the larger Df in mountaintop and background air (Figure 3). TEM 235 

images further show that the morphology of soot particles not only became more 236 

compact from vehicular emission to background air (Figure 1), but also possibly 237 

underwent reconstruction under the influence of water vapor.5, 49 Therefore, these 238 

hygroscopic secondary aerosols heavily caused morphological changes of soot 239 

particles in the atmosphere. 240 

In this study, the Df of soot particles were found to vary from 1.80 to 2.16 241 

(Figure 3d) for different mixing structures, which indicate that the mixing structure 242 

of soot particles can represent their aging degree.31, 33 At present, many studies set Df 243 

as ~1.8 to simulate the complex structure of soot particles and to further calculate 244 

their optical properties.10, 50-52 However, some studies have suggested that the highly 245 

compact soot particles have substantially different optical properties from the lacy 246 

ones.20, 53, 54 In particular, the mass-specific scattering cross sections (MSC) of soot 247 

particles follow the order: Df = 2.1 > Df = 1.78 > Df = 1.4.20 Therefore, it is essential 248 

to select suitable Df values to construct accurate optical models of soot particles. Our 249 

results show that the statistical weighting of Df of soot samples collected at the urban, 250 
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mountaintop, and background site has an average value at 1.91, suggesting that Df = 251 

1.91 could be more representative for ambient soot particles in continental polluted 252 

air. In particular, Df = 1.91 can well represent soot particles in dry (RH<65%), winter 253 

polluted air in North China. Further studies are required to quantify the Df of soot 254 

particles in different atmospheric environments, such as in humid，troposphere, and 255 

strongly photochemical air, because they all can accelerate soot aging in the 256 

atmosphere.5, 34 257 
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Figure Captions 431 

 432 
Figure 1. TEM images of individual soot particles collected at the urban site (a-1/2/3), the 433 

mountaintop site (b-1/2/3), and the background site (c-1/2/3). Soot particles are classified into 434 

three types: bare-like (a/b/c-1), partly coated (a/b/c-2), and embedded (a/b/c-3). 435 

 436 

 437 
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Figure 2. The percentages of bare-like, partly coated, and embedded soot particles collected at 438 

four sampling sites. 147, 216, 295, and 121 soot particles were analyzed in the samples collected 439 

at the tunnel, urban, mountaintop, and background sites, respectively. 440 

 441 

 442 

Figure 3. The fractal dimensions of different types of soot collected at the tunnel (a), urban (b), 443 

mountaintop (c), and background (b) site. For each site, the lines and circles represent bare-like 444 

(black), partly coated (blue), and embedded (red) soot particles. 445 

  446 
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