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Abstract 

Unbiased genomic screening analyses have highlighted novel immunomodulatory properties 

of the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). However, clearer 

interpretation of the resulting gene expression data is limited by cell model specificity. The 

aim of the current study was to provide a broader perspective on common gene regulatory 

pathways associated with innate immune responses to 1,25(OH)2D, through systematic re-

interrogation of existing gene expression databases from multiple related monocyte models 

(the THP-1 monocytic cell line (THP-1), monocyte-derived dendritic cells (DCs), and 

monocytes). Vitamin D receptor (VDR) expression is common to multiple immune cell types, 

and thus pathway analysis of gene expression using data from multiple related models 

provides an inclusive perspective on the immunomodulatory impact of vitamin D. A 

bioinformatic workflow incorporating pathway analysis using PathVisio and WikiPathways 

was utilised to compare each set of gene expression data based on pathway level context. 

Using this strategy, pathways related to the TCA cycle, oxidative phosphorylation and ATP 

synthesis and metabolism were shown to significantly regulated by 1,25(OH)2D in each of 

the repository models (Z-scores 3.52 – 8.22). Common regulation by 1,25(OH)2D was also 

observed for pathways associated with apoptosis and the regulation of apoptosis (Z-scores 

2.49 – 3.81). In contrast to the primary culture DC and monocyte models, the THP-1 

myelomonocytic cell line showed strong regulation of pathways associated with cell 

proliferation and DNA replication (Z-scores 6.1 – 12.6). In short, data presented here support 

a fundamental role for active 1,25(OH)2D as a pivotal regulator of immunometabolism. 

247 Words 
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Introduction 

In recent years studies in vivo and in vitro have shown that vitamin D is able to influence 

biological responses that extend far beyond its classical effects on skeletal homeostasis. 

Prominent amongst these extra-skeletal effects is the interaction between vitamin D and the 

immune system, including regulation of both innate and adaptive immune responses (Adams 

and Hewison 2008; Hewison 2011; Wei and Christakos 2015). As a consequence of these 

observations, vitamin D-deficiency has been linked to increased risk of bacterial and viral 

infection (Lake and Adams 2011; Nnoaham and Clarke 2008), as well as inflammatory and 

autoimmune disease (Cantorna 2012; Jeffery, et al. 2016). The ability of supplementary or 

therapeutic vitamin D to prevent or improve these immune disorders is much less clear, and 

is the subject of randomized placebo control trials currently underway. Crucially, improved 

understanding of the mechanisms that underpin the immunomodulatory actions of vitamin D 

has greatly helped to improve the design and outcome of clinical trials. In particular, 

unbiased analysis of gene responses to vitamin D supplementation has uncovered 

previously unrecognised immune targets for vitamin D (Chun, et al. 2014; Liu, et al. 2006) 

that are now key markers of vitamin D function in supplementation trials. 

 

The initial observation linking vitamin D and immune function was detection of the nuclear 

vitamin D receptor (VDR) in lymphocytic and myeloid cells (Bhalla, et al. 1983; Mangelsdorf, 

et al. 1984), indicating that these cells are able to respond to the active form of vitamin D, 

1,25(OH)2D which binds with VDR. Further studies showed that cells from innate immune 

system such as monocytes/macrophages (Kreutz, et al. 1993) and dendritic cells (DC) 

(Hewison, et al. 2003) are also able to synthesise 1,25(OH)2D from the inactive precursor 

25-hydroxyvitamin D (25D), the main circulating form of vitamin D. As the principal effect of 

dietary vitamin D supplementation is to raise serum levels of 25D, the ability of monocytes 
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and DCs to convert 25D to 1,25(OH)2D provides a localised, autocrine, pathway by which 

enhanced 25D can influence both innate and adaptive immunity (Jeffery, et al. 2012; Liu et 

al. 2006). These observations placed monocytes and DCs at the centre of the 

immunomodulatory activity of vitamin D. Synthesis of 1,25(OH)2D by these cells has the 

potential to influence endogenous innate immune cell function in the form of enhanced 

antibacterial activity (Hewison 2011; Liu et al. 2006), and/or modulated antigen presentation 

(Hewison et al. 2003; Jeffery et al. 2012). Furthermore, 1,25(OH)2D generated by monocytes 

and/or DCs may also impact adaptive immune function by exert exogenous effects on T cells 

or B cells expressing VDR (Jeffery et al. 2012). Despite this, our understanding of the 

broader impact of vitamin D on cells from the innate immune system such as monocytes, 

macrophages and DCs remains far from clear.  

 

Recent genome-wide expression studies using a monocyte-derived DC model highlighted 

the potential role of pathways associated with glucose metabolism, the TCA cycle and 

oxidative phosphorylation in mediating the effects of 1,25(OH)2D in promoting a tolerogenic 

DC phenotype (Ferreira, et al. 2015). The aim of the current study was to provide a broader 

analysis of monocyte/DC responses to 1,25(OH)2D using existing gene expression 

repositories for multiple models of innate immune function. A meta-analysis of various 

datasets has been performed using an integrative workflow of open-source bioinformatics 

tools in order to give a biological context to the genes that are significantly modulated by 

1,25(OH)2D. Finally, a comparison between the immune cell types selected has been 

applied to highlight the common biological processes that are altered by vitamin D.  

 

Materials & Methods 

Workflow overview 
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A workflow was developed that utilises and integrates gene expression data from public 

repositories and places them in a biological context. Supplemental Figure 1 illustrates step 

by step the different tools and methods used in the analysis workflow. The first procedure 

consisted of open and free modules in ArrayAnalysis to i) perform a data quality check, ii) 

normalize the raw transcriptomic data and iii) perform a statistical analysis to obtain the 

parameters that show gene expression changes. The processed datasets were then applied 

to PathVisio v. 3.2.4 software (Kutmon, et al. 2015; van Iersel, et al. 2008) in order to 

perform statistical analyses that highlight the biological processes significantly altered as a 

consequence of gene expression changes and to visualize them in pathway diagrams from 

the WikiPathways pathway repository downloaded January 2017 (Kutmon, et al. 2016). 

Comparison of the pathways shown to be significantly altered between the different cell 

types using PathVisio and WikiPathways was also represented by heat maps diagrams. In 

another approach, genes shown to be regulated by 1,25(OH)2D in all three cell models were 

used to identify enriched biological processes by Gene Ontology (GO) analysis and the 

results were visualized in biological networks using ClueGO v 2.3.3 (Bindea, et al. 2009), an 

app of Cytoscape 3.4.0 (Smoot, et al. 2011) (Supplemental Figure 1). This workflow is 

designed in a user friendly fashion that does not require programming skills. In order to 

reproduce this workflow, it is recommended to use the latest versions of designated 

software. Furthermore, it is also important that gene annotation database and pathways 

repositories used in the analysis are regularly updated. 

 

Transcriptomic datasets 

Publically available transcriptomic data sets for 1,25(OH)2D-treated monocytes and dendritic 

cells (DC) were selected from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/, 

(Kolesnikov, et al. 2015)) and Gene Expression Omnibus (GEO, http://ncbi.nlm.nih.gov/geo/, 
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(Barrett and Edgar 2006)). Selection criteria were based on gene expression studies 

performed in human cells including monocytic cell lines, monocytes and monocyte-derived 

DCs treated with 1,25(OH)2D: THP-1 cells (GSE52819 (Verway, et al. 2013)), dendritic cells 

(GSE13762 (Széles, et al. 2009)) and human monocytes (GSE56490 (Ferreira et al. 2015)). 

The selection of the three studies was based on experimental design and quality control 

analysis of the raw data. In all studies data were derived from human immune cells treated 

with 1,25(OH)2D, or from control (vehicle-treated) cells (Supplemental Table 1). In addition 

to the three cell models outlined above, preliminary analyses were also carried out using 

other 1,25(OH)2D-treated cell data repositories: THP-1 cells (GSE60102 (Nurminen, et al. 

2015)) and human monocytes (GSE46268 (Wheelwright, et al. 2014)). In addition the data 

for GSE13762 (Széles, et al. 2009) included both immature and mature DC, and both these 

models were include in the preliminary analysis.  Finally, as a negative control, the 

preliminary pathway analysis included a 1,25(OH)2D-treated B cell dataset (GSE22523 

(Lisse, et al. 2011). Because of missing raw data, incomplete gene annotation, 

incompatibility with ArrayAnalysis, and non-monocyte origin, some data from the preliminary 

analysis were not included in the main analysis of this study, but relevant findings related to 

the data were addressed in Results.  

  

Pre-processing raw data and statistical data analysis in ArrayAnalysis 

Unprocessed transcriptomics data were collected from the repositories and processed using 

the on-line workflow of ArrayAnalysis performed in January 2017 

(https://www.arrayanalysis.org (Eijssen, et al. 2013)) to obtain quality control reports, 

normalized data and perform statistical analysis. The workflow uses an R script as a core 

module with functions from several Bioconductor libraries. Quality control showed that there 

was no need to exclude any samples in the three selected transcriptomic datasets (data not 
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shown). Depending on the microarray technology used the normalization algorithm was 

selected. RMA method was used to normalize GSE52819 (Verway et al. 2013) and 

GSE56490 (Ferreira et al. 2015). GC-RMA method was applied to GSE13762 (Szeles et al. 

2009). Statistical analysis of the normalized data to determine genes that are significantly 

altered (up/down-regulated), was carried out with a second module from ArrayAnalysis 

including the moderated t-test from the R/Bioconductor package limma (Ritchie, et al. 2009). 

The output is a table with the expression parameters for each gene showing fold change 

(FC), in a log scale) after 1,25(OH)2D treatment and the significance of changes by the 

Benjamini-Hochberg adjusted p-value. Based on statistical gene expression parameters the 

significantly up/down-regulated genes were identified using the criteria: absolute log2FC => 

0.26 and adjusted p value < 0.05. The average expression (AE) was used to filter out lowly 

expressed genes and the cut-off was specific for each dataset based on the density plot of 

the intensities after normalization: THP-1 AE > 4.25; immature DC AE > 3.86; and 

monocytes AE > 9.5 (Table 1). 

 

Pathway statistics and analysis in PathVisio 

PathVisio v. 3.2.4 (Kutmon, et al. 2015; van Iersel, et al. 2008), an open-source pathway 

creation and analysis tool, was used to contextualize significantly altered genes, and altered 

biological processes were visualised using the biological pathway repository WikiPathways 

(Kutmon, et al. 2016). Utilizing the BridgeDb identifier mapping feature released on 18 

October 2016 (http://www.bridgedb.org/) (van Iersel, et al. 2010), PathVisio recognizes 

genes (probe) identifiers from the most used databases and microarray platforms such as 

NCBI and Affymetrix. This identifier mapping database (Homo sapiens Derby Ensembl 85 

gene database) enables linking of statistical values from analyzed data to the corresponding 

gene boxes in the pathway diagrams of WikiPathways. In the analysis, the curated human 
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pathways collection (released April 2017, http://data.wikipathways.org/20170410/gpml/) of 

WikiPathways was used. For pathway analysis, a criterion is chosen to select genes that are 

significantly altered within each dataset based on the expression difference parameter of fold 

change (on log2 scale) and the significance of that change represented as the adjusted p 

value (<0.05). PathVisio performs an overrepresentation analysis taking into account all 

genes measured (N), genes that satisfy the criterion (R), genes measured in the experiment 

that are present in the pathway (n) and genes in the pathway measured in the experiment 

that satisfy the criteria (r): 

Z	Score = (
 − � 
�)
��(
�)(1 − 
�)(1 − � − 1� − 1)

 

The Z-score is used to measure how significantly a subset of genes is altered in a certain 

pathway compared to the complete dataset. In our analysis, biological pathways that have a 

Z-score equal to or above 1.96 are considered significantly altered. The function heatmap.2 

from the R library gplots (v.3.0.1) was used to create a heatmap that compared and 

hierarchically clustered pathways for each of the datasets based on Z-scores. 

 

GO analysis with ClueGO in Cytoscape 

GO analysis of the in common significantly altered genes (absolute log2FC >= 0.26 and 

adjusted p value < 0.05) in the three types of immune cells was performed to identify and 

visualize which GO biological process terms were significantly overrepresented. Within the 

commonly used open-source network analysis tool Cytoscape v. 3.4 (Smoot et al. 2011), the 

ClueGO app v 2.3.3 performs GO analysis to group a set of genes in GO terms minimizing 

redundancy and display their relationship in a network. Connections between the GO nodes 
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containing a common sub-set of genes were calculated with kappa statistics based on the 

correlated genes that are grouped. 

 

Results 

Differentially expressed genes in 1,25(OH)2D-treated THP1 cells, dendritic cells and 

monocytes 

A preliminary pathway analysis of multiple THP-1, monocyte and DC datasets revealed 

common regulation of several key cell pathways by 1,25(OH)2D in cells from the myeloid 

lineage: electron transport, oxidative phosphorylation, the TCA cycle, glycolysis and 

gluconeogenesis, and apoptosis. By contrast, the non-myeloid B cell gene expression 

dataset showed no similarity with the myeloid effects of 1,25(OH)2D, underlining the lineage-

specific effects of 1,25(OH)2D (Supplemental Figure 2). From this initial pathway analysis it 

was also interesting to note that 1,25(OH)2D regulation of pathways associated with the cell 

cycle and cell proliferation were only observed in the myeloid leukemic cell line THP-1, and 

not the other non-neoplastic primary cell models used in the study (Supplemental Figure 

2). Because of incomplete raw data or gene annotation, or incompatibility with ArrayAnalysis, 

further, more detailed, pathway analysis was restricted to raw datasets for GSE52819, 

GSE13762, GSE56490. 

 

Pathway analysis reveals altered biological processes based on molecular changes in 

1,25(OH)2D-treated immune cells 

Pathway overrepresentation analysis performed on immune cell datasets GSE52819, 

GSE13762, and GSE56490 generated a list of biological processes regulated by 

1,25(OH)2D in each of the three different innate immune cell models. For each cell type the 

significantly altered pathways were selected and their Z-scores plotted and clustered in a 
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heatmap (Figure 1) showing Z-score comparisons for major affected pathways between the 

three cell models. Data indicate that 1,25(OH)2D-regulated pathways were either cell-specific 

or common to all three models. Pathways related to DNA replication, the cell cycle, and 

cancer (retinoblastoma) showed high Z-scores, and were more strongly regulated by 

1,25(OH)2D in THP-1 cells, consistent with the proliferative leukemic nature of this cell line 

(25). By contrast, primary cells (DCs and monocytes) showed stronger 1,25(OH)2D-

regulation of pathways associated with glycolysis/gluconeogenesis and the apoptosis-related 

network due to altered Notch3 in ovarian cancer pathway relative to THP-1 cells, albeit at 

lower Z-scores than observed for THP-1-specific pathways. Pathways associated with 

apoptosis and apoptosis modulation and signalling also showed lower Z-scores, but were 

equally induced by 1,25(OH)2D in THP-1 cells, DCs and monocytes. The highest Z-score for 

1,25(OH)2D-regulated pathways common to all three cell models was for pathways related to 

the TCA cycle, oxidative phosphorylation and the electron transport chain.  

 

GO analysis shows metabolic, immunological and apoptotic processes altered by 

1,25D in THP-1 cells, dendritic cells and monocytes 

ArrayAnalysis processing of GSE52819, GSE13762, GSE56490 datasets was carried out to 

define the number of genes measured and number of genes significantly regulated by 

1,25(OH)2D in each of the three cell models (Table 1). Further analysis of these data 

showed that a total of 230 genes were significantly regulated by 1,25(OH)2D in all three cell 

models (Figure 2), and these genes were selected for subsequent GO analysis. 

 

GO analysis using the list of 230 commonly altered genes was carried out using ClueGO in 

Cytoscape to display networks of overrepresented biological processes associated with this 
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list. A total of 39 groups of GO terms resulted in the identification of three broad sub-

networks common to each of the cell models (Figure 3 and Supplemental Figure 3A-3B). 

 

The first of these networks was associated with bioenergetic GO-terms including the electron 

transport chain (GO:22904), oxidation-regulation process (GO:55114), oxidative 

phosphorylation (GO:6119), tricarboxylic acid cycle (GO:6099) and canonical glycolysis 

(GO:61621) (Figure 3). A second sub-network was based on immunological GO-terms such 

as responses to molecules of bacterial origin (GO:2237), cytokine production (GO:1816), 

inflammatory response (GO:6954) and myeloid cell differentiation (GO:30099) 

(Supplemental Figure 3A). The final network identified that groups of apoptotic processes 

such as intrinsic apoptotic signaling (GO:97193) and negative regulation of apoptotic 

signaling (GO:2001234) (Supplemental Figure 3B). 

 

Visualization of 1,25(OH)2D induced changes in gene expression in THP-1 cells, DCs 

and monocytes on altered metabolic pathways  

Pathways related to ATP metabolism showed high Z-scores (>1.96), indicating strong 

regulation by 1,25(OH)2D (Figure 2). To investigate the significant changes in gene 

expression in more depth the effect of 1,25(OH)2D on gene expression was visualized on the 

altered metabolic pathways discovered with pathway analysis, i.e., electron transport chain, 

oxidative phoshorylation and TCA cycle and glycolysis.  

 

1,25(OH)2D and the electron transport chain 

In the human electron transport chain pathway (Waagmeester et al 2017 

http://wikipathways.org/index.php/Pathway:WP111) significantly up-regulated or down-

regulated genes (adj. p-value < 0.05) in the three immune cells treated with 1,25(OH)2D 
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compared to untreated cells were collectively visualized. Overall, the electron transport chain 

was activated by 1,25(OH)2D in the three immune cells. Biological data in Figure 4 shows in 

all three cell types a significant increase in expression by 1,25(OH)2D of genes associated 

with electron transport chain complexes I (NDUFA2, NDUFA3, NDUFA8, NDUFB9, 

NDUFA10, NDUFB5, NDUFAB1, NDUFS3, NDUFV1, NDUFS1), complex II (SDHB), 

complex III (UQRC1-2), complex IV (COX4l1, COX5A) and complex V (ATP5A1, ATP5B, 

ATP5C1, ATP5G1, ATP5L). Interestingly, the gene expression of the uncoupling protein 2 

(UCP2) is significantly (adj. p-value < 0.05) down-regulated in THP-1 cells and monocytes 

by 1,25(OH)2D, but unchanged in dendritic cells. 

 

1,25(OH)2D and oxidative phosphorylation  

In the oxidative phosphorylation pathway (Dalquist et al 2016 

http://wikipathways.org/index.php/Pathway:WP623) all significantly changed genes were up-

regulated, demonstrating that this process is activated by 1,25(OH)2D in THP-1 cells, DCs 

and monocytes. Biological data in Figure 5 shows that specifically genes related to ATP 

synthase (ATPG3, ATP5G1, ATP5B, ATP5G1, ATP5A1, ATP5L) and nicotinamide 

nucleotide transhydrogenase (NDUFA3, NDUFS3, NDUFV1, NDUFA10, NDUFA8, NUDFB9 

NDUFS1, NDUFB5, NDUFAB1, NDUFA2) are significantly (adj. p-value < 0.05) up-regulated 

by 1,25(OH)2D in each of the cell models. 

 

1,25(OH)2D and the TCA cycle and glycolysis  

In the TCA cycle (Dalquist et al 2016 http://wikipathways.org/index.php/Pathway:WP78), the 

process that produces energy by oxidation of acetyl-CoA, 1,25(OH)2D up-regulates genes 

involved in the conversion of acetyl-CoA in carbohydrate and chemical energy. 1,25(OH)2D 

increased the expression of ACO2, IDH3, IDH4B, DLD, SUCLG1, SDHB and MDH2 and 
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only the expression of IDH2, which functions in the opposite direction of the cycle, was 

significantly (adj. p-value < 0.05) down-regulated (Figure 6). Glucose metabolism was also 

affected by 1,25(OH)2D, with enzymes such as HK2, PFKM and FBP1 being significantly 

(adj. p-value < 0.05) up-regulated after treatment (Supplemental Figure 4).  

 

1,25(OH)2D and cell proliferation 

Analysis of both THP-1 cell datasets (18, 19) revealed that 1,25(OH)2D had a significant 

effect on genes associated with the cell cycle (Conklin et al 2017 

https://www.wikipathways.org/instance/WP179_r93002)(Figure 7A). This included 

suppression of complexes involved in phase transitions and checkpoint signalling such as 

BUB1/BUB3, p34cdc2/cyclin B, Chk1/Chk2, and cell cyclin-dependent kinases (CDKs) such 

as CDK1, CDK2, and associated cyclins A1, A2, B1, B2 and E1, E2. THP-1 cells treated with 

1,25(OH)2D also showed decreased expression of genes associated with DNA replication 

(Koren et al 2017 https://www.wikipathways.org/instance/WP466_r94886)(Figure 7B). This 

included suppression of subunits of the maintenance protein complex (MCM), needed to 

initiate and elongate the replication fork in the DNA replication. 1,25(OH)2D also suppressed 

expression of genes that participate in progression of the cell cycle such as components of 

the assembly of the pre-replicative complex. This includes subunits of the component of the 

origin recognition complex (ORC): ORCL 1, 3 and 6. Genes that participate in the assembly 

of pre-replicative DNA complexes were also down-regulated by 1,25(OH)2D. These include: 

CDC6, and CDT1/GMNN complex. Finally, components of the DNA polymerase (POLa2, 

POLa, POLe2), primase (PRIM1, PRIM2) and subunits of the replication factor C (RFC1-5) 

were also down-regulated by 1,25(OH)2D in THP-1 cells (Supplemental Figure 5A-B). In 

contrast to effects in leukemic THP-1 cells, pathways associated with cell proliferation and 
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cell cycling were unaffected by 1,25(OH)2D in primary cultures of monocytes and dendritic 

cells (Supplemental Figure 2). 

 

 

1,25(OH)2D and apoptosis  

In the GO analysis, a network that relates apoptosis GO terms revealed three GO core 

groups: 1) negative regulation of apoptotic signaling; 2) intrinsic apoptotic signalling; 3) 

regulation of intrinsic apoptotic signaling pathway (Supplemental Figure 3B). These groups 

include genes that were up-regulated by 1,25(OH)2D in all three cells types such as: 

NDUFS3, TNFSF10, TRAP1, YBX3, NCK2, CEBPB, FXN, CYCS and NCK2. Conversely, 

CD74, DAPK1, ITGAV and FNIP2 were down-regulated by 1,25(OH)2D. Biological data in 

Supplemental Figures 6A and 6B show significant effects of 1,25(OH)2D on pathways 

associated with apoptosis. The receptor TNFTSF10D that participates negatively in 

apoptosis is up-regulated by 1,25(OH)2D in all three cell types, whilst the family of apoptotic 

caspases (2,3,4,6 and 7) and the apoptotic peptidase activating factor 1 (APAF1) are 

suppressed. Finally, it is interesting to note that JAK2 and MAP3K5 are down-regulated by 

1,25(OH)2D in THP-1 cells but up-regulated in DCs and monocytes.  

 

Discussion  

Bioinformatics, or applying informatics to study biology, seeks to provide an unbiased and 

statistically robust insight into the molecular mechanisms that impact human health and 

disease. Large-scale projects such as the Human Genome Project (Roberts, et al. 2001) and 

ENCODE (Consortium, et al. 2007) have provided access to expansive repositories of data 

that have greatly helped to shed light on genomic function. However, utilisation of these data 

repositories to answer specific biological questions remains limited. This is particularly true 

for studies of vitamin D, despite detailed genome-wide analysis of VDR-chromatin 
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interactions (Pike, et al. 2017). In most cases, analysis of the genomic responses to 

1,25(OH)2D-VDR complexes has been cell-specific, incorporating both classical calciotropic 

(Meyer, et al. 2014), and extra-skeletal (Neme, et al. 2016) effects of vitamin D. Recently, a 

more integrated approach to the bioinformatic interrogation of 1,25(OH)2D-VDR datasets has 

been described, utilising VDR chromatin immunoprecipitation-sequencing (ChIP-Seq) 

datasets with National Human Genome Research Institute (NHGRI) Genome-Wide 

Association Study (GWAS) Single Nucleotide Polymorphism (SNP) datasets (Singh 2017). 

This strategy of combining publicly available datasets presents a distinct set of challenges, 

notably in establishing statistical rigour and appropriate analytical workflows, but 

nevertheless provides a novel perspective on the role of vitamin D and the VDR in human 

health. Notably, integration of ChIP-seq-GWAS datasets emphasized an important role for 

VDR in regulating of target genes associated with immunomodulation (Singh 2017). The 

current study proposes an alternative bioinformatic approach to further interrogate the 

immunomodulatory function of 1,25(OH)2D-VDR. Utilising pathway analysis workflows to 

assess multiple RNA expression datasets for monocyte-derived cell models allowed to the 

identification of common cellular pathways that are regulated by 1,25(OH)2D, revealing an 

important new immunometabolic function for vitamin D. The analysis pipeline described here 

offers an alternative statistical approach to conventional software packages. The most 

notable advantage of the workflow presented here is that it is open source and user-friendly 

for the bioscience community, and enables reproducible and straightforward methodology 

that can process data from different gene expression analysis platforms. 

 

Transcriptomic analysis of gene-regulatory responses has played a pivotal role in defining 

the innate immune functions of vitamin D (Chun et al. 2014). Notable studies have utilized 

specific monocyte (Liu et al. 2006), and dendritic cell (Ferreira et al. 2015) models to identify 
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previously unrecognized molecular targets for active 1,25(OH)2D, which have, in turn, 

revealed antibacterial (Adams, et al. 2009; Bacchetta, et al. 2014; Chun, et al. 2015), and 

metabolic regulatory (Vanherwegen, et al. 2017) functions for vitamin D in these cells. 

Collation of data from these different studies provides an alternative strategy for analysis of 

the immunomodulatory function of vitamin D, by incorporating groups of regulated genes into 

cellular pathway analyses. Using this strategy it was possible to identify common cellular 

processes that are regulated by 1,25(OH)2D, as well as those that are more cell lineage-

specific. The major advantage of this workflow is that it contextualizes the experimental data 

at the biological process level using interactive pathways. Based on  criteria, the pathway 

statistics approach of PathVisio defines the genes that are significantly altered in the dataset 

and highlights the pathways of the WikiPathways repository that are altered after treatment 

with 1,25(OH)2D. In our pathway analysis we used the manually curated and up-to-date 

human pathway collection of WikiPathways containing a broad spectrum of biological 

processes, including well-described metabolic processes as well as signalling and gene 

regulatory processes. Pathway analysis not only highlights the altered biological processes 

based on changes in gene expression but it enables the investigation of the relationship 

between genes and different datasets in great detail. This makes pathway analysis a 

suitable approach for an integrative and in depth analysis of large-scale transcriptomic data.  

 

The most striking observation from the current analysis is that in all three cell models 

1,25(OH)2D is strongly associated with changes in cellular metabolism, oxidative 

phosphorylation and energy generation. Oxidative phosphorylation has been shown to play 

an important role in promoting a tolerogenic phenotype in immune cells (Michalek, et al. 

2011; Vats, et al. 2006). Previous studies have reported effects of 1,25(OH)2D on 

mitochondrial functionality and physiology, and pathways related to glucose metabolism in 
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monocyte-derived DCs (Ferreira et al. 2015). In a similar fashion, serum 25(OH)D status has 

been linked to markers of bioenergetic pathways in human peripheral blood mononuclear 

cells (Calton, et al. 2016), and active 1,25(OH)2D has been shown to increase production of 

ATP and ROS, as well as altering mitochondrial functionality and morphology by increasing 

its membrane potential and total mass of mitochondria in differentiating monocytes (Ferreira 

et al. 2015). It was therefore notable in the current study that the most significantly altered 

pathways common to all three innate immune cell types were those associated with 

mitochondrial function: TCA cycle, electron transport chain and oxidative phosphorylation. 

Collectively these observations underline an important role for 1,25(OH)2D as a positive 

regulator of mitochondrial metabolism and bioenergetic pathways in immune cells. 

Interestingly, this effect of 1,25(OH)2D appears to be consistent not only across the three 

myeloid cell models studied in detail in Figure 1, but is also observed within different DC 

sub-types. In the current study we chose an immature DC (iDC) model which focused purely 

on the effect of 1,25(OH)2D, although this was for a longer time period (5 days) than the 

other models. Nevertheless, further analysis showed that the pathway effects of 1,25(OH)2D 

on iDC over 5 days were similar to those observed in immune-activated mature DC (mDC) 

treated with 1,25(OH)2D for 12 hours (Supplemental Figure 2). 

 

Pathways associated with glycolysis and gluconeogenesis, such as the TCA cycle, were 

also significantly regulated by 1,25(OH)2D in all three cell types studied. Catabolism of 

glucose leads to the formation of pyruvate, a biomolecule that is then metabolized in the 

TCA cycle. At present, relatively little is known about the impact of vitamin D on the TCA 

cycle, other than clinical studies showing association between vitamin D deficiency and 

dysregulation of glucose metabolism like diabetes (Seida, et al. 2014). The present study 

demonstrates that several genes involved in the glucose metabolism are significantly 
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regulated by vitamin D (Supplemental Figure 4). Comparison of the THP-1, DC, and 

monocyte datasets showed that genes for enzymes such as hexokinase, 

phosphofructokinase and fructose-bisphosphatase are commonly up-regulated after 

1,25(OH)2D treatment. In contrast to oxidative phosphorylation and electron transport, the 

glycolysis/gluconeogenesis effects of 1,25(OH)2D were less consistent with some genes 

showing opposite patterns of regulation in different cell types. It is nevertheless clear that the 

regulation of glucose metabolism is a key facet of 1,25(OH)2D regulation of myeloid cells.  

 

Besides common targets for vitamin D in innate immune cells, analysis of multiple 

repositories also highlighted pathways that were cell model-specific. In THP-1 cells only, 

1,25(OH)2D potently regulated genes involved in progression of cell cycle and DNA 

replication, consistent with the neoplastic origin of these cells. The pathways with high Z-

score include Retinoblastoma in cancer, G1 to S cell cycle control, DNA replication and cell 

cycle, are similar to those reported previously for prostate cancer cells treated with 

1,25(OH)2D (Kutmon, et al. 2015a). This suggests that, in addition to its common metabolic 

innate immune targets, 1,25(OH)2D also has common antiproliferative targets in neoplastic 

cell types, including suppression of key proteins that participate in progression of the cell 

cycle and regulation of DNA replication (Kriebitzsch, et al. 2009). Interestingly, pathway 

analysis of 1,25(OH)2D in prostate cancer cells (Kutmon et al. 2015a) did not reveal any 

significant regulation of the metabolic pathways as identified for monocytes and DCs in the 

current study. Thus, in the same way that suppression of cell cycle/DNA replication genes 

appears to be a cancer cell-specific effect of 1,25(OH)2D, genes associated with oxidative 

phosphorylation and energy metabolism appear to be innate immune cell-specific. Previous 

studies using THP-1 cells have also included analysis of the temporal variations in response 

to treatment with 1,25(OH)2D (Seuter, et al. 2016). The datasets in this particular study did 
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not conform to requirements for the comparative pathway analysis used in our current study. 

However, we were able to carry out a preliminary pathway analysis of these data 

(Supplemental Figure 7). Here it was notable that metabolic and cell cycle effects of 

1,25(OH)2D were only observed after 24 hours of treatment, suggesting that pathway 

regulation by vitamin D is highly time-dependent. 

 

The third major group of pathways shown to be regulated by 1,25(OH)2D in THP-1, 

monocytes and DCs were those associated with programmed cell death (apoptosis). 

Previous studies have reported pro-apoptotic effects of 1,25(OH)2D in primary cultures of 

monocytes, with this effect being mediated via interference with CD40 responses (Almerighi, 

et al. 2009). Conversely, in the HL-60 leukemic cell line 1,25(OH)2D was reported to promote 

resistance to apoptosis (Mosieniak, et al. 2006). Furthermore, studies from our group have 

shown that antisense knockdown of VDR in another leukemic cell line, U937, promoted cell 

apoptosis (Hewison, et al. 1996). Data from the current study further support a role for 

1,25(OH)2D in regulating apoptosis of innate immune cells: common genes in the three 

datasets compared are commonly up-regulated (TNFTSF10D) and down-regulated 

(caspases family proteins and APAF1). 

 

Conclusions 

Understanding the entire set of results of high-throughput  gene expression studies has often 

been challenging, caused by the complicated process of data analysis, and the limited 

biological interpretation that could be extracted from the large datasets generated through 

bench experiments. As a consequence, genome-wide analyses have tended to focus on 

changes in expression for specific genes (Chun et al. 2014; Liu et al. 2006), or small groups 

of genes associated with a specific pathway (Ferreira et al. 2015). The aim of the current 
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study was to provide, for the first time, an unbiased analysis of the function of vitamin D in 

immune cells at a broader pathway level. Our resulting data demonstrate the added value of 

implementing a workflow with different bioinformatic tools that allows us to analyze gene 

expression data in a rapid, automated, and reproducible fashion, to highlight pathways that 

are significantly altered by 1,25(OH)2D. It is possible to visualize and further interrogate 

these biological diagrams to provide a detailed description of the molecular effects of 

1,25(OH)2D in different types of immune cells. Finally, comparison of different datasets has 

allowed us to identify pathways, notably those associated with cell metabolism, that are 

common to multiple different types of innate immune cells. This approach provides new 

insights into the immunomodulatory actions of vitamin D, but also has important implications 

for the many other physiological responses linked to vitamin D in recent studies. 
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Legends to figures and tables 
 
Figure 1. Common altered pathways in 1,25(OH)2D-treated THP-1, DCs and 
monocytes. Heat map representing Z-scores for pathways significantly altered by 
1,25(OH)2D after performing a pathway analysis on datasets for THP-1, DCs and monocytes 
treated with 1,25(OH)2D. Z-scores >1.96 indicate that more genes are significantly altered in 
this pathway compared to the complete dataset.  
 
Figure 2. 1,25(OH)2D-regulated genes in THP-1 cells, DCs and monocytes. Venn 
diagrams showing numbers of common and cell-specific genes regulated by 1,25(OH)2D in 
THP-1 cells, DCs and monocytes. Genes with an absolute log2 fold change > 0.26 and 
adjusted p-value < 0.05 were considered as regulated. 
 
Figure 3. ClueGO Gene ontology analysis of common 1,25(OH)2D-regulated 
bioenergetics genes in THP-1 cells, DCs and monocytes. Cytoscape analysis showing 
overrepresented bioenergetic pathways for 1,25(OH)2D-treated THP-1 cells, DCs and 
monocytes. Colours represent the GO group, each node is a GO biological process and the 
edges shows the connectivity between each node based on the connection of the genes that 
contain. The size of the nodes depends on the amount of genes that are grouped. Nodes 
with no connections are coloured in grey. 
 
Figure 4. Effect of 1,25(OH)2D on genes associated with the electron transport chain. 
Visualization of changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs 
and monocytes. Log2 fold changes are shown as a gradient from blue (downregulated) to 
red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are shown in green. 
 
Figure 5. Effect of 1,25(OH)2D on genes associated with oxidative phosphorylation. 
Visualization of changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs 
and monocytes. Log2 fold changes are shown as a gradient from blue (downregulated) to 
red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are shown in green. 
 
Figure 6. Effect of 1,25(OH)2D on genes associated with the TCA cycle. Visualization of 
changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. 
Log2 fold changes are shown as a gradient from blue (downregulated) to red (upregulated) 
over white (unchanged). Adjusted p-values < 0.05 are shown in green. 
 
Figure 7. Effect of 1,25(OH)2D on the expression of genes associated with cell 
proliferation in THP-1 cells. WikiPathways representation of A) cell cycle; B) DNA 
replication pathways. Visualization of changes in gene expression after 1,25(OH)2D 
treatment in THP-1 cells. Log2 fold changes are shown as a gradient from blue 
(downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are 
shown in green. 
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Supplemental Figure 1. Overview of the analytical tools included in the workflow. Raw 
data were normalised and statistically analysed using ArrayAnalysis. Pathway analysis of 
normalised data was then carried out using PathVisio and WikiPathways. Commonly altered 
genes in different cell models were also analysed by gene ontology using Cytoscape and 
ClueGO. 
 
Supplemental Figure 2. Common altered pathways in 1,25(OH)2D-treated THP-1, DCs, 
monocytes and B cells. Heat map representing Z-scores for pathways significantly altered 
by 1,25(OH)2D after performing a pathway analysis on datasets from immune cells treated 
with 1,25(OH)2D. Z-scores >1.96 indicate that more genes are significantly altered in this 
pathway compared to the complete dataset.  
 
Supplemental Figure 3. ClueGO analysis represented as networks in Cytoscape. 

Nodes representing GO biological processes are displayed in three differentiated networks 

named as the biological processes that are overrepresented: bioenergetic (showed in figure 

3) immune processes (A) and apoptosis (B). The colours represent the GO group, each 

node is a biologic process and the edges shows the connectivity between each node based 

on the connection of the genes that contain. Nodes with no connections are coloured in grey. 

 

Supplemental Figure 4. Effect of 1,25(OH)2D on genes associated with glycolysis and 

gluconeogenesis. Visualization of changes in gene expression after 1,25(OH)2D treatment 

in THP-1 cells, DCs and monocytes. Log2 fold changes are shown as a gradient from blue 

(downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are 

shown in green. 

 

Supplemental Figure 5. Effect of 1,25(OH)2D on genes associated with G1 to S cell 

cycle control (A) and Retinoblastoma in Cancer (B). WikiPathways representation of A) 

G1 to S cell cycle control; B) Retinoblastoma in Cancer pathways identified by Pathvisio 

using gene expression data from THP-1 cells treated with 1,25(OH)2D. Log2 fold changes 

are shown as a gradient from blue (downregulated) to red (upregulated) over white 

(unchanged). Adjusted p-values < 0.05 are shown in green. 

 

Supplemental Figure 6. Effect of 1,25(OH)2D on genes associated with apoptosis (A) 

and apoptosis modulation by HSP70 (B). WikiPathways representation of A) apoptosis; B) 

apoptosis modulation by HSP70. Visualization of changes in gene expression after 

1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. Log2 fold changes are shown as 

a gradient from blue (downregulated) to red (upregulated) over white (unchanged). Adjusted 

p-values < 0.05 are shown in green. 

 

Supplemental Figure 7.  Temporal effect of 1,25(OH)2D treatment in THP-1 cells.  To 

evaluate temporal effects of 1,25(OH)2D comparison of pathway analysis was carried out for  

THP-1 cell array analyses at 24 hours (Nurminem et al (GSE60102)), and 4 hours 

(Heikkinen et al (GSE27270)) and an RNA-seq study where THP-1 cells were treated with 

1,25(OH)2D for 2.5, 4 and 24 hours (Seuter et al. (GSE36323)).  Electron transport chain, 

oxidative phosphorylation and TCA cycle are only significantly altered (Z>1.96) in THP-1 
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cells treated with 1,25(OH)2D  for 24 hours. Furthermore, cell cycle pathways related are 

only significantly altered (Z>1.96) in THP-1 cells of 1,25(OH)2D 24 hours treatment cells from 

Nurminem and Vermay datasets. 
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Legends to figures and tables 
 
Figure 1. Common altered pathways in 1,25(OH)2D-treated THP-1, DCs and 
monocytes. Heat map representing Z-scores for pathways significantly altered by 
1,25(OH)2D after performing a pathway analysis on datasets for THP-1, DCs and monocytes 
treated with 1,25(OH)2D. Z-scores >1.96 indicate that more genes are significantly altered in 
this pathway compared to the complete dataset.  
 
Figure 2. 1,25(OH)2D-regulated genes in THP-1 cells, DCs and monocytes. Venn 
diagrams showing numbers of common and cell-specific genes regulated by 1,25(OH)2D in 
THP-1 cells, DCs and monocytes. Genes with an absolute log2 fold change > 0.26 and 
adjusted p-value < 0.05 were considered as regulated. 
 
Figure 3. ClueGO Gene ontology analysis of common 1,25(OH)2D-regulated 
bioenergetics genes in THP-1 cells, DCs and monocytes. Cytoscape analysis showing 
overrepresented bioenergetic pathways for 1,25(OH)2D-treated THP-1 cells, DCs and 
monocytes. Colours represent the GO group, each node is a GO biological process and the 
edges shows the connectivity between each node based on the connection of the genes that 
contain. The size of the nodes depends on the amount of genes that are grouped. Nodes 
with no connections are coloured in grey. 
 
Figure 4. Effect of 1,25(OH)2D on genes associated with the electron transport chain. 
Visualization of changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs 
and monocytes. Log2 fold changes are shown as a gradient from blue (downregulated) to 
red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are shown in green. 
 
Figure 5. Effect of 1,25(OH)2D on genes associated with oxidative phosphorylation. 
Visualization of changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs 
and monocytes. Log2 fold changes are shown as a gradient from blue (downregulated) to 
red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are shown in green. 
 
Figure 6. Effect of 1,25(OH)2D on genes associated with the TCA cycle. Visualization of 
changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. 
Log2 fold changes are shown as a gradient from blue (downregulated) to red (upregulated) 
over white (unchanged). Adjusted p-values < 0.05 are shown in green. 
 
Figure 7. Effect of 1,25(OH)2D on the expression of genes associated with cell 
proliferation in THP-1 cells. WikiPathways representation of A) cell cycle; B) DNA 
replication pathways. Visualization of changes in gene expression after 1,25(OH)2D 
treatment in THP-1 cells. Log2 fold changes are shown as a gradient from blue 
(downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are 
shown in green. 
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Supplemental Figure 1. Overview of the analytical tools included in the workflow. Raw 
data were normalised and statistically analysed using ArrayAnalysis. Pathway analysis of 
normalised data was then carried out using PathVisio and WikiPathways. Commonly altered 
genes in different cell models were also analysed by gene ontology using Cytoscape and 
ClueGO. 
 
Supplemental Figure 2. Common altered pathways in 1,25(OH)2D-treated THP-1, DCs, 
monocytes and B cells. Heat map representing Z-scores for pathways significantly altered 
by 1,25(OH)2D after performing a pathway analysis on datasets from immune cells treated 
with 1,25(OH)2D. Z-scores >1.96 indicate that more genes are significantly altered in this 
pathway compared to the complete dataset.  
 
Supplemental Figure 3. ClueGO analysis represented as networks in Cytoscape. 

Nodes representing GO biological processes are displayed in three differentiated networks 

named as the biological processes that are overrepresented: bioenergetic (showed in figure 

3) immune processes (A) and apoptosis (B). The colours represent the GO group, each 

node is a biologic process and the edges shows the connectivity between each node based 

on the connection of the genes that contain. Nodes with no connections are coloured in grey. 

 

Supplemental Figure 4. Effect of 1,25(OH)2D on genes associated with glycolysis and 

gluconeogenesis. Visualization of changes in gene expression after 1,25(OH)2D treatment 

in THP-1 cells, DCs and monocytes. Log2 fold changes are shown as a gradient from blue 

(downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are 

shown in green. 

 

Supplemental Figure 5. Effect of 1,25(OH)2D on genes associated with G1 to S cell 

cycle control (A) and Retinoblastoma in Cancer (B). WikiPathways representation of A) 

G1 to S cell cycle control; B) Retinoblastoma in Cancer pathways identified by Pathvisio 

using gene expression data from THP-1 cells treated with 1,25(OH)2D. Log2 fold changes 

are shown as a gradient from blue (downregulated) to red (upregulated) over white 

(unchanged). Adjusted p-values < 0.05 are shown in green. 

 

Supplemental Figure 6. Effect of 1,25(OH)2D on genes associated with apoptosis (A) 

and apoptosis modulation by HSP70 (B). WikiPathways representation of A) apoptosis; B) 

apoptosis modulation by HSP70. Visualization of changes in gene expression after 

1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. Log2 fold changes are shown as 

a gradient from blue (downregulated) to red (upregulated) over white (unchanged). Adjusted 

p-values < 0.05 are shown in green. 

 

Supplemental Figure 7.  Temporal effect of 1,25(OH)2D treatment in THP-1 cells.  To 

evaluate temporal effects of 1,25(OH)2D comparison of pathway analysis was carried out for  

THP-1 cell array analyses at 24 hours (Nurminem et al (GSE60102)), and 4 hours 

(Heikkinen et al (GSE27270)) and an RNA-seq study where THP-1 cells were treated with 

1,25(OH)2D for 2.5, 4 and 24 hours (Seuter et al. (GSE36323)).  Electron transport chain, 

oxidative phosphorylation and TCA cycle are only significantly altered (Z>1.96) in THP-1 
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cells treated with 1,25(OH)2D  for 24 hours. Furthermore, cell cycle pathways related are 

only significantly altered (Z>1.96) in THP-1 cells of 1,25(OH)2D 24 hours treatment cells from 

Nurminem and Vermay datasets. 
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Figure 1. Common altered pathways in 1,25(OH)2D-treated THP-1, DCs and monocytes. Heat map 
representing Z-scores for pathways significantly altered by 1,25(OH)2D after performing a pathway analysis 
on datasets for THP-1, DCs and monocytes treated with 1,25(OH)2D. Z-scores >1.96 indicate that more 

genes are significantly altered in this pathway compared to the complete dataset.  
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Figure 2. 1,25(OH)2D-regulated genes in THP-1 cells, DCs and monocytes. Venn diagrams showing numbers 
of common and cell-specific genes regulated by 1,25(OH)2D in THP-1 cells, DCs and monocytes. Genes with 

an absolute log2 fold change > 0.26 and adjusted p-value < 0.05 were considered as regulated.  
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Figure 3. ClueGO Gene ontology analysis of common 1,25(OH)2D-regulated bioenergetics genes in THP-1 
cells, DCs and monocytes. Cytoscape analysis showing overrepresented bioenergetic pathways for 

1,25(OH)2D-treated THP-1 cells, DCs and monocytes. Colours represent the GO group, each node is a GO 

biological process and the edges shows the connectivity between each node based on the connection of the 
genes that contain. The size of the nodes depends on the amount of genes that are grouped. Nodes with no 

connections are coloured in grey.  
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Figure 4. Effect of 1,25(OH)2D on genes associated with the electron transport chain. Visualization of 
changes in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. Log2 fold 

changes are shown as a gradient from blue (downregulated) to red (upregulated) over white (unchanged). 

Adjusted p-values < 0.05 are shown in green.  
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Figure 5. Effect of 1,25(OH)2D on genes associated with oxidative phosphorylation. Visualization of changes 
in gene expression after 1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. Log2 fold changes are 
shown as a gradient from blue (downregulated) to red (upregulated) over white (unchanged). Adjusted p-

values < 0.05 are shown in green.  
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Figure 6. Effect of 1,25(OH)2D on genes associated with the TCA cycle. Visualization of changes in gene 
expression after 1,25(OH)2D treatment in THP-1 cells, DCs and monocytes. Log2 fold changes are shown as 
a gradient from blue (downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 

0.05 are shown in green.  
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Figure 7. Effect of 1,25(OH)2D on the expression of genes associated with cell proliferation in THP-1 cells. 
WikiPathways representation of A) cell cycle; B) DNA replication pathways. Visualization of changes in gene 
expression after 1,25(OH)2D treatment in THP-1 cells. Log2 fold changes are shown as a gradient from blue 

(downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are shown in 
green.  
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Figure 7. Effect of 1,25(OH)2D on the expression of genes associated with cell proliferation in THP-1 cells. 
WikiPathways representation of A) cell cycle; B) DNA replication pathways. Visualization of changes in gene 
expression after 1,25(OH)2D treatment in THP-1 cells. Log2 fold changes are shown as a gradient from blue 

(downregulated) to red (upregulated) over white (unchanged). Adjusted p-values < 0.05 are shown in 
green.  
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Table 1. Regulation of gene expression by 1,25(OH)2D in THP-1, dendritic cells and 
monocyte models. Total number of genes measured for each gene expression repository 
and the number of genes with significantly altered expression. Genes with an absolute log 
fold change > 0.26 and adjusted p-value < 0.05 were considered as regulated. Based on the 
expression parameter log fold change genes are classified by up-regulated (log fold-change 
> 0.26) and down-regulated (log fold-change <-0.26).  

 

 

Dataset Type of cell Genes measured Genes significantly 

altered 

Genes up-regulated Genes down-regulated 

Verway M et al. (2013) THP-1 21,664 2,652 1,194 1,458 

Széles L et al. (2009) Immature DC 20,111 2,093 1,130 963 

Ferreira G et al (2014) Monocytes 21,664 1,248 525 723 
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