

TIE algorithm: A layer over clustering-based
taxonomy generation for handling an evolving data
Irfan, Rabia; Khan, Sharifullah; Rajpoot, Kashif; Qamar, Ali Mustafa

DOI:
10.1631/FITEE.1700517

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Irfan, R, Khan, S, Rajpoot, K & Qamar, AM 2018, 'TIE algorithm: A layer over clustering-based taxonomy
generation for handling an evolving data' Frontiers of Information Technology and Electronic Engineering, vol.
19, no. 6, pp. 763–782. https://doi.org/10.1631/FITEE.1700517

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The
final authenticated version is available online at: http://dx.doi.org/10.1631/FITEE.1700517

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. Aug. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185504816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1631/FITEE.1700517
https://research.birmingham.ac.uk/portal/en/publications/tie-algorithm-a-layer-over-clusteringbased-taxonomy-generation-for-handling-an-evolving-data(5c44bc04-0a12-474f-987a-57710babb929).html

1

TIE algorithm: A layer over clustering-based taxonomy generation
for handling an evolving data

Rabia Irfan‡1, Sharifullah Khan1, Kashif Rajpoot1,2, Ali Mustafa Qamar3
(1School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan)

(2School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom)
(3Department of Computer Science, College of Computer, Qassim University, Al Malida, Buraydah Saudi Arabia)

‡E-mail: 12phdrirfan@seecs.edu.pk

Abstract: Taxonomy is generated to effectively organize and access data that is large in volume, as taxonomy is a way of

representing concepts that exist in data. It needs to be evolved to reflect changes occur continuously in data. Existing automatic

taxonomy generation techniques do not handle the evolution of data, therefore their generated taxonomies do not truly represent

the data. The evolution of data can be handled either by regenerating taxonomy from scratch, or incrementally evolving

taxonomy whenever changes occur in the data. The former approach is not economical subject to time and resources. Taxonomy

incremental evolution (TIE) algorithm, proposed in this paper, is a novel attempt to handle an evolving data. It serves as a layer

over an existing clustering-based taxonomy generation technique and incrementally evolves an existing taxonomy. The algorithm

was evaluated on scholarly articles selected from computing domain. It was found that the algorithm evolves taxonomy in a

considerably shorter period of time, having better quality per unit time as compared to the taxonomy regenerated from scratch.

Key words: Taxonomy; Clustering algorithms; Information science; Knowledge management; Machine learning

1 Introduction

Data is produced in a large volume on daily basis nowadays (Turner, 2014). According to Computer Science

Corporation (Koff and Gustafson, 2012) report on data revolution, experts are expecting 4300% increase in

annual data generation by the year 2020. A major chunk of this data is unstructured text data, like scholarly

articles, technical reports, organizational policy documents, etc. (Blumberg and Atre, 2003), which dominates

80% of the data industry these days (Koff and Gustafson, 2012). This exponential growth of data is so

overwhelming that it can actually lead to the possibility of missing new directions and emerging ideas, rather

than discovering novel insights from it. To utilize this data effectively, it should be processed and transformed

into valuable information. The organization of this information in a structured form, like taxonomy, can be

helpful in utilizing it timely, effectively and accurately. Taxonomy is a structured organization of hierarchical

or parent-child relationships of concepts present in data (Paukkeri et al., 2012). Muller et al. (1999) define

taxonomy as a thematic structure inherent in data. There are many applications of taxonomy. It is an effective

mean of categorizing and organizing data (Sujatha and Krishna Rao, 2011). It provides standardization, so that

less interoperability issues may arise (Engel et al., 2010). Furthermore, it serves as a foundation structure for

content and knowledge management (Hedden, 2010), information search and navigation (Sanchez and

Moreno, 2004), analytics and text mining (Li and Anand, 2009; Dawelbait et al., 2010; Weng and Liu, 2004;

Spangler et al., 2006; Camina, 2010).

2

Currently, we find many automatic taxonomy generation techniques, which are producing taxonomy

effectively for small to large data sets. However, the existing techniques ignore the fact that data is growing at

an extremely rapid pace and changes occur in data should also be reflected on taxonomy. The taxonomy that

does not consider changes occur in data, cannot truly represent the data. There can be two ways to handle

changes occur in data. One way is to regenerate taxonomy from scratch, which is not economical subject to

time and resources. Another way is to evolve taxonomy incrementally. Taxonomy incremental evolution (TIE)

algorithm, proposed in this paper, is a novel attempt in this direction. The proposed algorithm serves as a layer

over an existing clustering-based taxonomy generation technique and incrementally evolves an existing

taxonomy. Clustering-based taxonomy generation techniques (Muller et al., 1999; Kashyap et al., 2005; Dietz

et al., 2012) typically utilize hierarchical clustering and labeling techniques (Jain et al., 1999) to generate

taxonomy.

The TIE algorithm takes an existing taxonomy, the respective hierarchical structure (i.e., a hierarchical

organization of clusters) and newly arrived documents as its input. It identifies the closest cluster for each of

the newly arrived documents based on the similarity score. The range of the similarity score determines the

level of impact a new document has on its closest cluster. Based on the level of impact, various reorganization

operators are then applied to adjust the newly arrived document in the existing hierarchical structure. Finally,

the existing taxonomy is evolved to represent the changes occurred in data. The algorithm was compared with

taxonomy regeneration approach based on complexity analysis and empirical evaluation. A text data set of

scholarly articles selected from computing domain was used for evaluation purpose. It was found that the

incremental evolution is better than regeneration subject to time consumption. Moreover, it produces better

quality taxonomy per unit time than that of regeneration of taxonomy from scratch. The main contributions of

this work are summarized as follows:

 The TIE algorithm evolves an existing taxonomy whenever changes occur in data to represent

updated view of the data in a shorter period of time.

 The TIE algorithm is independent of the clustering algorithm used for taxonomy generation, so

existing clustering-based approaches to taxonomy generation can be effectively used with the TIE

algorithm.

 A new metric named quality-time ratio is proposed to measure the effectiveness of taxonomy

evolution in comparison to regeneration. It determines the ratio of taxonomy quality improvement

per unit time.

 Sensitivity analysis of the TIE algorithm is done in order to determine the impact of varying

different factors influencing the evolution of taxonomy.

It is declared that this paper is an extension of our earlier work (Irfan and Khan, 2016). Here the

proposed algorithm is described with supplementary details. Additional evaluations in terms of the quality-time

ratio and sensitivity analysis are included. The proposed algorithm is validated as a layer over both

3

agglomerative and divisive approaches to hierarchical clustering. The remaining paper is organized as follows:

Section 2 discusses the related work. Section 3 presents the background for developing a basic understanding

of the automatic taxonomy generation process. Section 4 presents the details of the proposed algorithm.

Section 5 deals with the testing and evaluation of the proposed algorithm. Section 6 concludes the paper and

discusses the future work.

2 Related Work

Taxonomy can be generated through various approaches, such as clustering-based (Muller et al., 1999;

Kashyap et al., 2005; Dietz et al., 2012; Neshati et al., 2007; Yang et al., 2015); rules and heuristics-based

(Medelyan et al., 2013; Lefever, 2015; Meijer et al., 2014); and graph-based (Camina, 2010; Qi et al., 2010;

Fountain and Lapata, 2012; Velardi et al., 2013) approaches. The proposed taxonomy incremental evolution

(TIE) algorithm is a layer over an existing clustering-based taxonomy generation technique, so this review is

limited to the clustering-based approaches. The clustering-based taxonomy generation techniques are reviewed

here because of two main reasons: First of all, they contribute as a foundation in this research. Secondly, they

are reviewed to identify their capabilities for handling an evolving data. In addition, other techniques that have

addressed taxonomy evolution are also reviewed.

Clustering-based taxonomy generation techniques typically utilize hierarchical clustering and labeling

techniques (Jain et al., 1999) to generate taxonomy. The work (Muller et al., 1999) is one of the pioneer

attempts that utilized clustering-based approach for taxonomy generation. Their technique produced effective

taxonomy with more focus on scalability so that the generated taxonomy should be less affected by the

increasing size of data. Kashyap et al. (2005) developed an experimental framework to analyze the impact of

varying different methods and parameters in the generation process of taxonomy, like the use of natural

language processing versus non-natural language processing; the use of different similarity or distance measure

in the clustering process; document clustering versus term clustering. Dietz et al. (2012) focused on the

generation of domain specific taxonomy and found that general terms were not enough to construct a domain

specific taxonomy. They identified domain specific concepts that were present in data, by utilizing domain

specific measures of domain pertinence and domain consensus (Velardi and Sclano, 2007). Furthermore, they

compared different knowledge-rich methods (i.e., based on the involvement of external knowledge sources,

like Wikipedia, WordNet) and knowledge-poor methods (i.e., based on statistical and lexical properties

extracted from within the data) for the extraction of relevant concepts and hierarchical relationships to see their

impact on the generated taxonomy. It was observed that the clustering-based techniques involving knowledge-

rich methods, to extract relevant concepts and hierarchical relationships, produced semantically better

taxonomy than those techniques involving knowledge-poor methods (Neshati et al., 2007). Some of the recent

techniques, such as (Paukkeri et al., 2012; Yang et al., 2015) utilized self-organizing maps for performing

clustering-based taxonomy generation. The self-organizing map is a famous artificial neural network

algorithm, which is effective in mapping a high dimensional input data to a low dimension map. Each node in

4

the map is called neuron and it facilitates clustering by grouping together similar data objects closer in the map

or under a single neuron. In short, most of the existing automatic taxonomy generation techniques are

producing taxonomy effectively for small to large data sets. However, they are not focusing on handling an

evolving data in taxonomy generation.

On the other hand, (Yao et al., 2012) and (Marcacini and Rezende, 2010) are some of the existing

works that have explored taxonomy evolution along with its generation. Yao et al. (2012) generated and

evolved taxonomy for tag space (i.e., semi-structured data) using association rule graph (Irfan and Khan,

2016), whereas Marcacini and Rezende (2010) generated and evolved taxonomy for text data (i.e.,

unstructured data) using incremental hierarchical clustering-based approach (Irfan and Khan, 2016). The

nature of tag data is different from unstructured text data and extracting hierarchical relationships from

unstructured text data is more complex than tag data (Blumberg and Atre, 2003). This research work focuses

on unstructured text data, therefore the work of Yao et al. (2012) was not explored further. It was observed that

Marcacini and Rezende (2010) performed clustering of terms instead of document clustering. The use of term

clustering for hierarchy formation is helpful because it eliminates the need to associate labels with clusters.

However, document clustering is preferred because it produces more distinct clusters as compared to term

clustering (Kashyap et al., 2005). This work attempts to identify a solution that can incrementally evolve an

existing taxonomy independent of the clustering algorithm used in the generation of taxonomy and can serve

as a layer over an existing clustering-based taxonomy generation technique.

3 Background-Taxonomy Generation Process (TGP)

Since the proposed solution to taxonomy evolution can serve as a layer over an existing clustering-based

taxonomy generation technique, therefore we describe the fundamentals of clustering-based taxonomy

generation process (TGP) in this section. The TGP typically comprises four steps: data pre-processing, data

modeling, hierarchy formation and node labeling (Irfan and Khan, 2016). We briefly describe here, the

commonly used methods in these four steps for clustering-based taxonomy generation.

3.1 Data pre-processing

Data pre-processing step cleans unnecessary details from data and refines the terms that exist in the data. These

refined terms reflect properties or characteristics of the data and form vocabulary of the data (Kumar and

Chandrasekhar, 2012). In TGP for text data, basic natural language processing techniques, such as

tokenization, stemming, part of speech tagging and parsing (Nadkarni et al., 2011) have been applied to pre-

process data, as in (Paukkeri et al., 2012; Muller et al., 1999; Spangler et al., 2006; Kashyap et al., 2005; Dietz

et al., 2012). The data, even after applying data pre-processing activities, is not in machine-readable format

(i.e., a proper data model), so it is forwarded to the data modeling step for converting it into machine readable

format.

5

3.2 Data modeling

Data modeling step finds a suitable model that expresses data in a machine-readable format for computation.

Vector space model (VSM) is one of the most widely used data modeling techniques for text data (Baeza-

Yates and Ribeiro-Neto, 2011) and is used in (Paukkeri et al., 2012; Muller et al., 1999; Spangler et al., 2006;

Kashyap et al., 2005). For a collection of documents, VSM represents each document and its refined terms in

the form of a vector that shows the occurrence of terms in the document. The occurrence of terms is

represented with (i.e., term frequency-inverse document frequency) score in VSM. , term frequency,

is a number of times a particular term appears in a document; and , inverse document frequency, represents

how often the term appears in the collection of documents. In addition, various methods are applied in data

modeling step to determine the semantics of terms for their further refinement such as follows: involvement of

external knowledge sources (Medelyan et al., 2013), such as WordNet, Wikipedia, Freebase, DBbase; use of

advanced natural language processing techniques (Dietz et al., 2012), such as word sense disambiguation

(WSD) (Nadkarni et al., 2011); and application of dimensionality reduction techniques (Kashyap et al., 2005),

such as latent semantic indexing (Deerwester et al., 1990). After the modeling step, data is now ready in

machine-readable format for extracting hierarchical structure that exists in the data, so it is passed to the

hierarchy formation step.

3.3 Hierarchy formation

Hierarchy formation step identifies and constructs a hierarchical structure inherent in data. It comprises two

sub-steps: (i) relationship identification; and (ii) hierarchy generation. The relationship identification

determines the relationships that exist among different documents in data. For relationship identification,

similarity or distance measure, such as Cosine similarity, Euclidean distance is employed (Cha, 2007; Thada

and Jaglan, 2013). The hierarchy generation arranges these relationships in the form of a hierarchical structure.

Hierarchical clustering algorithms are used for hierarchy generation in clustering-based taxonomy generation

techniques.

There are two types of hierarchical clustering algorithms: agglomerative (bottom up) and divisive (top

down) (Jain et al., 1999). The agglomerative approach starts with every data object placed in a separate cluster

and merges clusters at later stages. Hierarchical agglomerative clustering (HAC) is an example of

agglomerative approach and was used in (Muller et al., 1999; Dietz et al., 2012). Based on different merging

styles, different flavors of HAC exist. The common ones are single link, complete link, average link and

centroid link (Manning et al., 2008). The divisive approach starts with all data objects in one cluster and

divides them into more clusters at later stages. Bisect K-means clustering is an example of divisive approach

and was used in (Kashyap et al., 2005). Agglomerative approaches have quadratic time complexity, whereas

divisive approaches have linear time complexity, nevertheless, the clustering quality is better in the case of

agglomerative approaches as compared to divisive approaches (Karypis et al., 2000).

6

Hierarchical structure, generated in this step, comprises a hierarchy of unlabeled clusters (i.e., nodes).

The unlabeled hierarchical structure is forwarded to the nodes labeling step.

3.4 Nodes labeling

Nodes labeling step assigns labels to unlabeled nodes in a hierarchical structure. The assignment of meaningful

and accurate labels to unlabeled nodes in a hierarchy is necessary to grasp a better understanding of generated

taxonomy. In clustering-based approaches, usually centroid of a cluster (i.e., an average of all data objects in a

cluster) is involved in finding labels for hierarchical nodes, as applied in (Dietz et al., 2012). The labeling

techniques are mostly combined with rules and heuristics in order to find appropriate labels for taxonomy

(Kashyap et al., 2005). External knowledge sources (Carmel et al., 2009), such as WordNet; feature selection

techniques (Manning et al., 2008), such as mutual information, chi-square ; and frequently occurring top

terms (Glover et al., 2002; Treeratpituk and Callan, 2006) have been used in literature to identify suitable

labels. The output of this step is a taxonomy, where hierarchical clusters are labeled to represent a hierarchical

organization of given data.

4 Proposed Method-The TIE Algorithm

In this paper, we present a detailed and an improved version of the taxonomy incremental evolution (TIE)

algorithm given in (Irfan and Khan, 2016). The TIE algorithm aims at finding an incremental solution for

evolving an existing taxonomy, whenever new documents are added to underlying data. The TIE algorithm is

designed in a way that it serves as a layer over an existing clustering-based taxonomy generation technique. It

comprises two steps:

1. Identifying the closest cluster: This step determines the closest existing cluster for each of the

newly arrived documents.

2. Reorganizing the existing taxonomy: This step applies various reorganization operators to adjust a

newly arrived document in the existing hierarchical structure and finally in the existing taxonomy

to evolve it.

Note that the first step of the TIE algorithm, i.e., identifying the closest cluster is fundamentally the

same as given in our earlier work (Irfan and Khan, 2016), but it now defines the actions to be taken in case a

newly arrived document has more than one closest cluster; or if it is not close to any of the existing clusters.

The second step, i.e., reorganizing the existing taxonomy now defines a new reorganization operator of

_ for adjusting those newly arrived documents, which appear to be a part of the existing cluster but

affect its quality. Next, we present the detailed explanation of these two steps of the TIE algorithm.

4.1 Identifying the closest cluster

When a new document arrives in an existing data, the TIE algorithm first identifies an appropriate cluster for

adjusting the new document. The algorithm takes an existing taxonomy (which is the taxonomy obtained as

7

a result of TGP), the respective hierarchical structure (which is the output of the hierarchy formation step of

TGP) and a set of newly arrived documents ′ as its input. The hierarchy maintains three types of

information for each cluster: cluster centroid, cluster cohesion and cluster deviation.

For a cluster ∈ , having document vectors: ; 1,2, … . , , mapped in dimensional term

space, cluster centroid is the center or middle point of the cluster and is the average representation of all

documents present in the cluster, given as (Irfan and Khan, 2016):

∑

(1)

Let , be the similarity between vectors of the document in cluster and its

centroid , then cluster cohesion is the average similarity of all documents present in the cluster with

the cluster centroid and is a measure of tightness of the cluster, given as (Irfan and Khan, 2016):

∑ ,

(2)

Cluster deviation denotes the deviation of a document from a cohesive cluster. It measures the

limit of closeness or farness of all documents present in the cluster from the cluster centroid, given as (Irfan

and Khan, 2016):

∑ ,
	

(3)

The main idea is to identify the closest cluster for a newly arrived document. Let , be the

similarity between a new document ′ ∈ ′ and centroid of the cluster . Let us consider that is

identified as the closest cluster for ′ because of maximum similarity, then the range of the similarity score

determines the level of impact a new document has on its closest cluster and is defined through the following

three conditions (Irfan and Khan, 2016):

1. Far from cluster centroid: If , , then ′ is far from . In this condition,

the new document ′ due to its farness from might affect the quality of the cluster , thus

restructuring of the cluster will be required.

2. Close to cluster centroid: If , , then ′ is close to . In this condition,

the new document ′ due to its closeness from might affect the labels of the cluster (which

are assumed to be dependent on the center of the cluster as in most cases for clustering-based

taxonomy generation techniques), thus relabeling of the cluster will be required.

3. Neither close to nor far from cluster centroid: If , , then ′ is

neither close to nor far from . In this condition, the new document ′ due to its presence

within the range of might belong to the cluster , thus it will be merged in the cluster.

8

This step begins by associating three types of list structures, corresponding to each of the

aforementioned conditions, for each cluster in . These list structures hold newly arrived documents based on

the range of the similarity score newly arrived documents possess with their closest cluster. The list structures

associated with each cluster are initialized to null. After initialization, the similarity between each of the new

documents in ′ and each of the existing clusters in is calculated using the respective cluster centroid. The

cluster having the maximum similarity (i.e., the closest cluster) is selected as a suitable candidate for a new

document to be adjusted in, as shown in Steps 2-10 of Algorithm 1. For the cluster ∈ , let be the list

structure associated with the condition “far from cluster centroid”; be the list structure associated with the

condition “close to cluster centroid”; and be the list structure associated with the condition “neither close to

nor far from cluster centroid”. For a new document ′ and its closest cluster having centroid , cohesion

 and deviation , the range of the similarity score of ′ from is then checked using the aforementioned

conditions and the following action is taken:

 If the condition “far from cluster centroid” is true, then add ′ in the list (see Steps 11 and 12 of

Algorithm 1);

 else if the condition “close to cluster centroid” is true, then add ′ in the list (see Steps 13 and

14 of Algorithm 1);

 else if the condition “neither close to nor far from cluster centroid” is true, then add ′ in the list

(see Steps 15 and 16 of Algorithm 1).

At the end of this step, the closest cluster is identified for each of the newly arrived documents. The

list structures associated with each cluster contain the newly arrived documents, based on the range of the

similarity new documents possess with their closest cluster. The list structures for each cluster are the output of

Algorithm 1.

In the process of determining the closest cluster for a new document, there can be two exceptions:

Firstly, there is a possibility that a new document possesses equal similarity with more than one existing

clusters. In that case, any of the existing clusters is randomly selected as a suitable candidate for its adjustment

and appropriate actions are taken based on the range of the similarity score of that document with the centroid

of the selected cluster. Another possibility is that a new document has zero 0 or no similarity with all of the

existing clusters. In that case, any of the children of the root node of is randomly selected and the new

document is dealt according to the condition “far from cluster centroid”.

4.2 Reorganizing the existing taxonomy

Taxonomy is a thematic representation of data. It is not necessary that the addition of a new document in the

data bring drastic changes in the taxonomy. Therefore in this step, before reflecting changes in the existing

taxonomy, the quality of each of the existing clusters in 	is checked by recalculating the cohesion score

(using existing and new documents). A higher value of cohesion represents a better cluster. Based on whether

9

or not a cluster quality is deteriorated and the presence of new documents in its respective list structures,

reorganization operators are applied to reorganize it. Consider the cluster ∈ , now comprising number of

existing and ′ number of new documents and let 	and denote its sibling, parent and child

clusters respectively, the operators applied for reorganizing the cluster are given in Table 1.

This step begins by recalculating cohesion of existing clusters in , using existing and new

documents. Thus, for the cluster ∈ , having number of existing and ′ number of new documents, let

the new cohesion score be , then there can be two possible scenarios: (i) deteriorated cluster quality; or (ii)

non-deteriorated cluster quality.

Algorithm 1 Identifying the closest cluster
Input: document vectors for newly arrived documents in ′, existing taxonomy and existing hierarchy with centroid,

cohesion and deviation values for each cluster in
Output: list structures for each cluster in
1. initialize list structures for each cluster in to
2. for each ∈ ′ do
3. initialize _ ← 0; _ ←
4. for each ∈ do
5. calculate ,
6. if , _ then
7. _ ← ,
8. _ ←
9. end if
10. end for
11. if _ for the _ then //Steps 11 and 12 in case ′ is far from
12. ←
13. else if _ for the _ then //Steps 13 and 14 in case is close to
14. ←
15. else if _ for the _ then //Steps 15 and 16 in case ′ is

neither close to nor far from
16. ←
17. end if
18. end for

Table 1 List of reorganization operators used by the TIE algorithm to reorganize the existing taxonomy
Input Operator Output Function Figure

cluster and list _ sibling cluster takes documents that are far from a cluster and
inserts them as its sibling cluster (Irfan and
Khan, 2016)

see Fig. 1a

cluster and list _ child cluster

takes documents that are neither close to nor far
from a cluster and inserts them as its child
cluster

see Fig. 1b

cluster _ set of labels

assigns a set of unique labels to a cluster (Irfan
and Khan, 2016)

see Fig. 1c

cluster and its set
of labels

_ set of new labels

takes a set of existing labels for a cluster and
assigns a set of new and unique labels to that
cluster, where the set of new and existing labels
may or may not be null (Irfan and Khan, 2016)

see Fig. 1d

cluster and list ,
which contains
number of newly
arrived documents
to be merged in
where, ′

_ updated cluster ′

merges documents, contained in a given list, in
a cluster (Irfan and Khan, 2016)

see Fig. 1e

10

updated cluster ′ _ new centroid

recalculates centroid for an updated cluster
(Irfan and Khan, 2016)

see Fig. 1f

Fig. 1 Reorganization operators: (a) ← _ , (b) ← _ , (c) ← _
(d) ′ ← _ , (e) ′ ← _ , (f) ← _ ′

4.2.1 Scenario 1 – deteriorated cluster quality

If , this shows that the cluster quality is deteriorated, then based on the presence of new documents in

, and lists of possible scenarios for its reorganization are defined through the following three cases:

Super-level restructuring: Super-level restructuring occurs when a cluster quality is deteriorated and

its list structure associated with “far from cluster centroid” condition is not empty. For the cluster if

, this indicates that documents in which are far from the cluster centroid have resulted into its quality

deterioration and should be inserted as a separate node. So _ operator is applied to create a

separate node, i.e., , which is then assigned labels by applying _ operator. This action leaves

labels of parent cluster of as inaccurate, so it should be assigned new labels. However, before doing that

the presence of documents in and 	lists for are also checked:

 If for , then check the presence of documents in its list:

o If , this indicates that both the lists and contain some documents. So in this

case, documents in 	and	γ first become part of by applying _ operator

resulting in an updated cluster ′. The documents in are those that are neither close to

nor far from the cluster centroid, so they can be simply merged in the cluster (assuming

to have minimal effect on its quality). However, the documents in are those that are

close to the cluster centroid. The centroid is no more an accurate representation of that

cluster and this requires recalculation of the cluster centroid and assignment of new

11

labels. So _ operator is applied to recalculate ′ centroid using existing

and new documents. Finally, new labels are assigned first to ′ and then to by

applying _ operator.

o If , this indicates that the list contains some documents, but the list is empty.

So in this case, only documents in first become part of by applying _

operator resulting in an updated cluster ′. The documents in are those that are close to

the cluster centroid. The centroid is no more an accurate representation of that cluster and

this requires recalculation of the cluster centroid and assignment of new labels. So

_ operator is applied to recalculate ′	centroid using existing and new

documents. Finally, new labels are assigned first to ′ and then to by applying

_ operator.

 If for , then check the presence of documents in its list:

o If , this indicates that though the list is empty, but the list contains some

documents. So in this case, only documents in first become part of by applying

_ operator resulting in an updated cluster ′. The documents in are those that

are neither close to nor far from the cluster centroid, so they can be simply merged in the

cluster (assuming to have minimal effect on its quality) and therefore no need to

recalculate centroid and assign new labels to the updated cluster. New labels are assigned

only to by applying _ operator.

o If , this indicates that both the lists and are empty and no new document is

there in these lists to add in cluster . So in this case, without taking any further actions

new labels are assigned to by applying _ operator.

The actions taken for the super-level restructuring are shown in Steps 4-26 of Algorithm 2.

Relabeling: Relabeling occurs when a cluster quality is deteriorated and its list structure associated

with “far from cluster centroid”	condition	is	empty, but the one associated with “close to cluster centroid”

condition contains some documents. For the cluster if and , this indicate that documents

in that are close to the cluster centroid have affected its centroid representation. So it should be recalculated,

followed by the assignment of new labels to the cluster. However, before doing that the presence of documents

in list for is also checked:

 If , this indicates that the list also contains some documents along with the list . This

case is similar to the super-level restructuring case when the and lists are not empty along

with the list, so the same set of reorganization operators are applied to perform the relabeling.

First, the documents in both the lists and become part of by applying _ operator

resulting in an updated cluster ′. After that, _ operator is applied to recalculate ′

centroid using existing and new documents. New labels are then assigned to ′ by applying

12

_ operator. This action leaves labels of parent cluster of ′ as inaccurate, so new

labels are assigned to by applying _ operator.

 If , this indicates that the list is empty. This case is similar to the super-level

restructuring case when the list is not empty along with the list but the list is empty, so the

same set of reorganization operators are applied to perform the relabeling. First, the documents in

 list become part of by applying _ operator resulting in an updated cluster ′. After

that _ operator is applied to recalculate ′ centroid using existing and new

documents. New labels are then assigned to c′	by applying _ operator. This action

leaves labels of parent cluster of ′ as inaccurate, so new labels are assigned to by

applying _ operator.

The actions taken for the relabeling are shown in Steps 27-38 of Algorithm 2.

Sub-level restructuring: Sub-level restructuring occurs when a cluster quality is deteriorated and its

list structures associated with “far from cluster centroid” and “close to cluster centroid” conditions are empty,

but the one associated with “neither close to nor far from cluster centroid” condition contains some documents.

For the cluster if , and , this indicate that documents in that are neither close to

nor far from the cluster centroid can be simply merged in the cluster (assuming to have minimal effect on its

quality). But in this case, both and lists are empty and only the documents in are affecting cluster quality,

so instead of simply merging them in the cluster, we create a child node 	by applying _

operator and insert the documents in the list in it. The operator _ is then applied to assign labels

to . This action leaves labels of as inaccurate, so new labels are assigned to by applying _

operator.

The actions taken for the sub-level restructuring are shown in Steps 39-43 of Algorithm 2.

Example scenario 1 – deteriorated cluster quality: For a cluster ∈ , let's assume that , and

 be associated with the conditions “far from cluster centroid”, close to cluster centroid” and “neither close

to nor far from cluster centroid” respectively and contain document vectors for newly arrived documents

(, , and respectively. For the cluster , let’s further assume that its quality when calculated

with new and existing documents was found to be deteriorated, i.e., . As per the steps shown in

Algorithm 2, first list is checked for the presence of documents. As , so super-level

restructuring (i.e., Steps 4-26) is applied here. The documents 	and 	are inserted as a sibling cluster of

by applying _ operator and labels are assigned to the sibling cluster by applying _

operator. After that list	is checked for the presence of documents. Here , but before applying

reorganization operators for , list is also checked. As in this case , so _

operator is applied to merge documents present in both and lists. The documents and present in

 and respectively become part of . Since the cluster is updated, let's denote the updated cluster as

′. Note that we check list before applying operators associated with list due to the fact that if centroid

13

recalculation and relabeling would be done before merging all the possible documents, then they would not

accurately represent the cluster. As list is checked and appropriate actions are already taken, so for ′

centroid is recalculated using _ operator. Soon after altering the centroid, the updated cluster is

assigned new labels by applying _ operator. The addition of the sibling cluster and the updation of

 affect the label of their parent cluster, so _ operator is applied to assign new labels to the

parent cluster.

4.2.2 Scenario 2 – non-deteriorated cluster quality

If , then updates are applied to the cluster through the following simple case:

Simple merging: Simple merging occurs when a cluster quality is not deteriorated due to the addition

of new documents. For the cluster , this case simply merges documents in its , and lists in the cluster by

applying _ operator, resulting in an updated cluster ′, as shown in Steps 44-46 of Algorithm 2.

Example scenario 2 – non-deteriorated cluster quality: For a cluster ∈ , let's assume that ,

 and be associated with the conditions “far from cluster centroid”, close to cluster centroid” and

“neither close to nor far from cluster centroid” respectively and contain document vectors for newly arrived

documents (, ∅ and respectively. For the cluster , let’s further assume that its quality when

calculated with new and existing documents was found not to be deteriorated, i.e., . This is a simple

merging (i.e., Steps 44-46) case and all the newly arrived documents are simply merged in the cluster. This is

because the possible existence of newly arrived documents is not causing deterioration in the cluster quality. It

would be time and cost efficient to simply merge the new documents in the cluster without making any

adjustments, like centroid recalculation or relabeling the cluster. So as per the steps shown in Algorithm 2, the

newly arrived documents, i.e., 	and are simply merged in the cluster by applying _

operator.

The output of this step of the TIE algorithm is an evolved version of the existing taxonomy.

Algorithm 2 Reorganizing the existing taxonomy
Input: list structures and cohesion for each cluster in
Output: evolved taxonomy
1. for each ∈ do
2. calculate for using existing and ′ new documents
3. if then
4. if then //Steps 4-26: Super-level restructuring
5. apply ← _ ,
6. apply ← _
7. if then
8. if then
9. apply ′ ← _ ,
10. apply ← _ ′
11. apply ′ ← _ ′,
12. apply ′ ← _ , // : parent node
13. else
14. apply ′ ← _ ,
15. apply ← _ ′

14

16. apply ′ ← _ ′,
17. apply ′ ← _ ,

18. end if
19. else
20. if then
21. apply ′ ← _ ,
22. apply ′ ← _ ,

23. else
24. apply ′ ← _ ,

25. end if
26. end if
27. else if then //Steps:27-38: Relabeling
28. if then
29. apply ′ ← _ ,
30. apply ← _ ′
31. apply ′ ← _ ′,
32. apply ′ ← _ ,

33. else
34. apply ′ ← _ ,
35. apply ← _ ′
36. apply ′ ← _ ′,
37. apply ′ ← _ ,
38. end if
39. else if then //Steps 39-43: Sub-level restructuring
40. apply ← _ , // : child node
41. apply ← _
42. apply ′ ← _ ,
43. end if
44. else //Steps 44-46: Simple merging
45. apply ′ ← _ ,
46. end if
47. end for

4.3 Complexity analysis

This subsection presents complexity analysis to check the independency of the TIE algorithm on the clustering

algorithm used for the generation of taxonomy. Moreover, the time efficiency of taxonomy evolution in

comparison to taxonomy regeneration is also checked through the complexity analysis. Let denote a number

of documents in a data set. The time complexity of HAC algorithm (agglomerative approach) is given as a

function of distance/similarity matrix, i.e., (Karypis et al., 2000). The time complexity of bisect K-

means algorithm (divisive approach) is given as a function of partition parameter and a number of documents

to partition. Let the partition parameter be denoted as and a number of documents to partition be denoted as

, so we can say that the time complexity of bisect K-means is (Karypis et al., 2000). Let 	denote a

number of hierarchical clusters formed as a result of applying hierarchical clustering (HAC or bisect K-

means), where logically we assume that ≪ . Let ′ denote a number of newly arrived documents, where for

shorter time intervals we assume that ′ ≪ .

Time complexity of TGP: As hierarchy formation is a major step involved in the generation of

taxonomy, so we ignore the cost associated with other steps of taxonomy generation. Let the time complexity

15

of TGP in the case of HAC and bisect K-means be denoted as and 	respectively and they are

approximated as:

(4)

 (5)

Time complexity of TIE: For the TIE algorithm, we can say that for each newly arrived document,

comparisons are made to identify the closest cluster. If we consider ignoring the time taken in applying the

reorganization operators because of the linear trend, then let the time complexity of TIE in the case of HAC

and bisect K-means be denoted as and respectively and they are approximated as:

′ (6)

′ (7)

TIE is independent of the clustering algorithm used in TGP: From Equation (6) and Equation (7), we

can see that the time complexity of TIE algorithm in the case of both the clustering algorithms (i.e., HAC and

bisect K-means) is same. This shows that the TIE algorithm is independent of the clustering algorithm used for

the generation of taxonomy and serves as a layer over any of the existing clustering-based taxonomy

generation techniques.

Evolution versus Regeneration: We can approximate the time of regeneration by using Equation (4)

and Equation (5) in the case of HAC and bisect K-means respectively. Let the time complexity of regeneration

in the case of HAC and bisect K-means be denoted as and and they are given as:

 (8)

 (9)

On the other hand, we can approximate the time of evolution by combining Equation (4) and Equation

(6) in the case of HAC, and by combining Equation (5) and (7) in the case of bisect K-means. Let the time

complexity of evolution in the case of HAC and bisect K-means be denoted as and and they are

given as:

′
(10)

′ (11)

In the case of HAC using Equation (8) and Equation (10), we can observe that ′ ≪

(as , ′ ≪), so taxonomy evolution time is much less than that of taxonomy regeneration. In the case of

bisect K-means using Equations (9) and Equation (11), we can observe that ′ ≪ (as

, ′ ≪), so taxonomy evolution time is much less than that of taxonomy regeneration.

16

5 Evaluation

The taxonomy incremental evolution was evaluated in comparison to taxonomy regeneration from scratch on a

text data set of scholarly articles selected from computing domain. The details of the data set, evaluation

metrics, experiments and their results are given next.

5.1 Data set specification

For computing domain, four hundred (400) scholarly articles in pdf format were randomly downloaded from

ACM Digital Library (http://dl.acm.org/). These documents were then converted into text format using Apache

Tika (https://tika.apache.org/). ACM Computing Classification System (CCS)

(http://www.acm.org/about/class/2012), which is a standard topic hierarchy for computing domain, was

adopted as a reference taxonomy.

5.2 Metrics

The taxonomies obtained through evolution and regeneration approaches underwent three types of evaluation:

(i) time-based, (ii) quality-based, and (iii) quality and time-based. The first two of these evaluation methods are

the same as adopted in our earlier work (Irfan and Khan, 2016), but the last one is the newly proposed method.

5.2.1 Time-based evaluation

The time-based evaluation was done by observing the runtime of applications associated with both the

approaches (Irfan and Khan, 2016). Let it denote as .

5.2.2 Quality-based evaluation

The quality-based evaluation was based on taxonomy’s lexical and hierarchical quality. The lexical quality

assesses the quality of taxonomy labels, whereas the hierarchical quality assesses the quality of hierarchical

associations among the taxonomic nodes. For the lexical quality assessment, we adopted lexical precision

, lexical recall and lexical F-measure , which have been used in many existing taxonomy

generation techniques (Dietz et al., 2012; Cimiano et al., 2005). The lexical quality matches a label in both

computed and reference taxonomies. No matter what kind of relationship a label possesses with other labels in

both the taxonomies, it is considered as a match. We assessed the lexical quality of both the evolved and

regenerated taxonomies, in comparison to reference taxonomy, using these metrics. For the hierarchical quality

assessment, we adopted hierarchical precision , hierarchical and hierarchical F-measure

proposed in (Irfan and Khan, 2016). For a label that appears in both computed and reference taxonomies, the

hierarchical quality compares its parent’s and ancestors’ labels in both the taxonomies to identify a match. The

formulas and the definitions for the lexical and the hierarchical quality metrics are given in Tables 2 and 3

respectively.

17

5.2.3 Quality and time-based evaluation

In this work, we propose a new metric for assessing the efficiency of taxonomy evolution in comparison to

taxonomy regeneration. The quality-time ratio combines the quality-based and time-based metrics and is the

rate of improvement in taxonomy quality per unit time. Let the quality-time ratio be denoted as and is

defined as:

∑ 	 	

(12)

The value is calculated by summing up the values of both the lexical and the hierarchical quality

metrics to determine the overall improvement in taxonomy quality per unit time (i.e., the runtime), in the case

of evolution and regeneration. Although there is no limit on the range of values for this measure, however in

our case as the quality-based metrics values range between 0 and 1 and time (measured in minutes (denoted as

)) is greater than 1 in all the cases, so we are getting the values in the range of 0-1.

Table 2 Lexical quality metrics

Lexical quality metrics
Given that = a set of all labels in computed (regenerated/evolved) taxonomy; = a set of all labels in reference taxonomy

Measure Formula Description
Lexical precision

| ∩ |
| |

calculates the percentage of labels in computed (regenerated/evolved)
taxonomy that are also there in reference taxonomy (Irfan and Khan, 2016)

Lexical recall | ∩ |
| |

calculates the percentage of labels in reference taxonomy that are also there
in computed (regenerated/evolved) taxonomy (Irfan and Khan, 2016)

Lexical F-measure 2

the harmonic mean of lexical precision and recall (Irfan and Khan, 2016)

Table 3 Hierarchical quality metrics

Hierarchical quality metrics
Given that ∩ = a set of common labels in computed (regenerated/evolved) taxonomy and reference taxonomy; ′ =
a set of all parent associations and ′ = a set of all ancestor associations for an term in ′ (where, ′ can be
computed (regenerated/evolved) taxonomy, i.e., or reference taxonomy, i..e,) and note that ′ ⊆ ′

Measure Formula Description
Hierarchical precision

∑ ∩| ∩ |

∑| ∩ |
calculates the percentage of all parent associations in
computed (regenerated/evolved) taxonomy that also
appear in reference taxonomy as parent or ancestor
associations (Irfan and Khan, 2016)

Hierarchical recall ∑ ∩| ∩ |

∑| ∩ |
calculates the percentage of all parent associations in
reference taxonomy that also appear in computed
(regenerated/evolved) taxonomy as parent or
ancestor associations (Irfan and Khan, 2016)

Hierarchical F-measure 2

the harmonic mean of hierarchical precision and
recall (Irfan and Khan, 2016)

5.3 Experiments

The experiments performed were divided into three parts: Firstly, an initial taxonomy was generated using a

base data set to be adopted as a foundation for performing regeneration and evolution. Secondly, with the

addition of new documents taxonomy regeneration was performed for different size data sets to measure the

18

quality and the time metrics values. Finally, with the addition of new documents taxonomy evolution was

performed for different size data sets to measure the quality and the time metrics values. The details of the

experiments performed are given next.

5.3.1 Initial taxonomy generation

Since the main purpose was to check the improvement of evolution over regeneration rather than the

improvement in taxonomy generation process, therefore we adopted a simple approach towards the generation

of taxonomy. The type of the data set is textual, therefore we adopted methods suitable for taxonomy

generation process (TGP) of text data. Note that the TGP adopted is very much similar to the one adopted in

our earlier work (Irfan and Khan, 2016), with the exception of adopting two different types of hierarchical

clustering approaches, i.e., agglomerative and divisive, so that the independency of the TIE algorithm on the

clustering algorithm used in the taxonomy generation process can be checked empirically. TGP was applied on

a set of 200 randomly selected documents to generate an initial taxonomy. Following are the steps involved in

generating an initial taxonomy:

1. TGP performed natural language processing of tokenization, stemming, stop word removal and

parsing to extract nounphrases. These nounphrases formed the vocabulary of distinct terms for the

given data set.

2. Afterward, vector space modeling was applied to express the vocabulary and the data set in the

form of a vector model.

3. In order to evaluate independency of the TIE algorithm on the clustering algorithm used in TGP,

we performed experiments with two types of hierarchical clustering algorithms: HAC

(agglomerative approach) and bisect K-means (divisive approach). For HAC, we implemented

three different variants, i.e., single link, complete link and average link to select the best one. It

was found through various test runs that the average link produced the best results for generating

taxonomy as compared to other variants of HAC. The experimental results for different variants

of HAC presented in Table 4 show the average precision, recall and F-measure (lexical) values

along with the standard deviations for the generated taxonomy on the data set of 200

documents. After this step, we had two hierarchical structures (i.e., hierarchical organization of

unlabeled clusters) each obtained from HAC (average link) and bisect K-means and the evaluation

was performed for the taxonomies obtained from each of these hierarchical structures. Moreover,

for bisect K-means, we approximated the value of (as should be ≪ (Karypis et al.,

2000)) where is a number of documents to partition.

4. For labeling the hierarchical structures produced through both of the hierarchical clustering

algorithms, top 25 terms (based on score) of the cluster centroid were adopted as labels and

they were further pruned to keep general terms as labels for parent clusters and specific terms as

19

labels for child clusters. The reason for choosing 25 terms to label a cluster is that too few or too

many terms make the cluster (i.e., taxonomic node) hard to interpret. This step produced two

taxonomies, each corresponding to one of the two hierarchical structures.

Table 4 Comparison of different variants of HAC based on lexical quality metrics

For a data set of 200 documents
HAC variants average average

Average link HAC 0.580	 0.010 0.457	 0.044 0.511
Complete link HAC 0.437 0.019 0.347 0.072 0.387
Single link HAC 0.319 0.006 0.234	 0.010 0.270

5.3.2 Taxonomy regeneration

In order to evaluate the regeneration of taxonomy from scratch when new documents are added to data set, the

set of 200 randomly selected documents used to generate the initial taxonomy was adopted as a base data set.

Two sets of experiments were performed: one for evaluating the regeneration of taxonomy in the case of HAC,

and the other for evaluating the regeneration of taxonomy in the case of bisect K-means. For the case of HAC,

first 20 documents were added to the data set of 200 documents and the TGP using HAC was performed from

scratch for 220 documents. As a result of which the initial taxonomy of 200 documents was replaced with the

new taxonomy for 220 documents. After that, 30 more documents were added to the data set of 220

documents and the TGP using HAC was performed from scratch for 250 documents. As a result of which the

existing taxonomy of 220	documents was replaced with the new taxonomy for 250 documents. Experiments

like this were repeated by adding 40, 50 and 60 more documents in the data set of 250, 290 and

340	documents respectively. Each of the regenerated taxonomies was evaluated in comparison to ACM CSS to

get the results for the lexical and the hierarchical quality metrics, as well as the runtime. The same set of

experiments were repeated for evaluating the regeneration of taxonomy in the case of bisect K-means.

5.3.3 Taxonomy evolution

In order to evaluate the evolution of taxonomy, similar set of experiments were performed as in the case of

taxonomy regeneration (see Section 5.3.2). Starting off with the initial taxonomy of 200 documents obtained

using HAC, new documents (in the set of 20, 30, 40, 50 and 60) were added in the system and the TIE

algorithm was run for different size data sets. The lexical and the hierarchical quality metrics, as well as the

runtime of the taxonomy evolved as a result of each run of the TIE algorithm were noted. The same set of

experiments were repeated for evaluating the evolution of taxonomy in the case of bisect K-means.

5.4 Experimental results

The runtime (i.e.,), the lexical quality metrics (i.e., , and) and the hierarchical quality metrics

(i.e., , and) obtained as a result of taxonomy regeneration (see Section 5.3.2) and taxonomy

evolution (see Section 5.3.3) in the case of HAC are shown in Tables 5–7 respectively, whereas the runtime

20

(i.e.,), the lexical quality metrics (i.e., , and) and the hierarchical quality metrics (i.e., ,

and) obtained as a result of taxonomy regeneration (see Section 5.3.2) and taxonomy evolution (see

Section 5.3.3) in the case of bisect K-means are shown in Tables 8–10 respectively. We calculated the average

values for each measure by performing several runs of the experiments and randomly selecting the document

sets for each run. All results mentioned in Tables 5–10 are stating the average values along with the standard

deviations .

Table 5 Results of time-based evaluation (in the case of HAC)

With HAC 	 	

Data set

TGP

TIE
200 22.842	 0.308

200 20 220 24.725	 0.080 4.905	 0.232
220 30 250 28.030 0.170 7.182	 0.245
250 40 290 46.760	 0.009 	 9.810	 0.180
290 50 340 59.390	 0.140 15.601	 0.238
340 60 400 70.088	 0.437 20.675	 0.337

Table 6 Results of lexical quality-based evaluation (in the case of HAC)

With HAC 	 average 	 average

Data set

TGP

TIE

TGP

TIE

TGP

TIE
200 0.580	 0.010 0.457	 0.004 0.511

200 20 220 0.581	 0.020 0.522	 0.008 0.440	 0.001 0.425	 0.013 0.501 0.469
220 30 250 0.539	 0.017 0.516	 0.010 0.434	 0.004 0.415	 0.035 0.481 0.460
250 40 290 0.532	 0.009 0.501	 0.065 0.424	 0.002 0.402	 0.056 0.472 0.446
290 50 340 0.512	 0.042 0.499	 0.061 0.409	 0.002 0.392	 0.014 0.455 0.439
340 60 400 0.507	 0.004 0.490	 0.061 0.411	 0.003 0.401	 0.045 0.454 0.441

Table 7 Results of hierarchical quality-based evaluation (in the case of HAC)

With HAC 	 average 	 average

Data set

TGP

TIE

TGP

TIE

TGP

TIE
200 0.351	 0.099 0.330	 0.010 0.340

200 20 220 0.341	 0.007 0.338	 0.006 0.323	 0.010 0.283	 0.001 0.331 0.308
220 30 250 0.346	 0.068 0.307	 0.004 0.319	 0.002 0.275	 0.013 0.332 0.290
250 40 290 0.326	 0.004 0.304	 0.020 0.298	 0.033 0.277	 0.003 0.311 0.292
290 50 340 0.312	 0.003 0.295	 0.003 0.295	 0.003 0.276	 0.004 0.304 0.285
340 60 400 0.305	 0.009 0.291	 0.086 0.286	 0.006 0.264	 0.003 0.295 0.277

Table 8 Results of time-based evaluation (in the case of bisect K-means)

With bisect K-means 	 	

Data set

TGP

TIE
200 21.157	 0.012

200 20 220 22.569	 0.310 4.438	 0.010
220 30 250 23.981	 0.048 6.479	 0.011
250 40 290 30.642	 0.211 10.911	 0.020

21

290 50 340 45.093	 0.224 13.714	 0.014
340 60 400 57. 503	 0.126 19.704	 0.050

Table 9 Results of lexical quality-based evaluation (in the case of bisect K-means)

With bisect K-means 	 average 	 average

Data set

TGP

TIE

TGP

TIE

TGP

TIE
200 0.445	 0.007 0.323	 0.002 0.374

200 20 220 0.405	 0.009 0.380	 0.015 0.338	 0.086 0.327	 0.020 0.369 0.352
220 30 250 0.402	 0.010 0.354	 0.012 0.351	 0.005 0.323	 0.002 0.375 0.338
250 40 290 0.408	 0.011 0.358	 0.001 0.317 0.003 0.292	 0.016 0.356 0.322
290 50 340 0.395	 0.012 0.354	 0.012 0.311	 0.094 0.310	 0.002 0.347 0.331
340 60 400 0.390	 0.037 0.338	 0.004 0.304	 0.083 0.296 0.111 0.342 0.316

Table 10 Results of hierarchical quality-based evaluation (in the case of bisect K-means)

With bisect K-means 	 average 	 average

Data set

TGP

TIE

TGP

TIE

TGP

TIE
200 0.244	 0.089 0.217	 0.054 0.229

200 20 220 0.241	 0.011 0.217	 0.013 0.228	 0.032 0.198	 0.011 0.234 0.207
220 30 250 0.242	 0.008 0.202	 0.008 0.220	 0.051 0.177	 0.052 0.231 0.189
250 40 290 0.233	 0.002 0.197	 0.004 0.204	 0.076 0.203	 0.095 0.218 0.199
290 50 340 0.218	 0.031 0.196	 0.002 0.193	 0.007 0.185	 0.065 0.205 0.190
340 60 400 0.208	 0.053 0.179	 0.014 0.188	 0.006 0.162	 0.034 0.197 0.170

The time and the quality metrics values listed in Tables 5–10 were used to calculate the quality-time

ratio (i.e.,), whose graphs are shown in Figs. 2–4 in the case of HAC and in Figs. 5–7 in the case of bisect

K-means.

Moreover, it was observed that a number of documents used to form the existing taxonomy and a

number of newly added documents in the data set are the two factors that can mainly influence the evolution of

taxonomy, let them denote as 1 and 2 respectively. So we performed sensitivity analysis to check the impact

of varying these factors on the evolution of taxonomy. Two sets of additional experiments were performed for

this purpose: firstly, taxonomy evolution was performed for different size data sets by varying 1 and keeping

2 fixed; secondly, taxonomy evolution was performed for different size data sets by keeping 1 fixed and

varying 2. The runtime (i.e.,), the lexical quality metrics (i.e., , and) and the hierarchical

quality metrics (i.e., , and) values obtained as a result of these experiments are shown in Tables 11–

14. Like Tables 5–10, the values in Tables 11–14 are also based on several runs of the experiments and are

stating the average values along with the standard deviations .

22

Fig. 2 Graph for in the case of HAC Fig. 3 Graph for in the case of HAC

Fig. 4 Graph for in the case of HAC Fig. 5 Graph for in the case of bisect K-

means

0

0.05

0.1

0.15

0.2

200+20 220+30 250+40 290+50 340+60

r Q
T

Data set

rQT (LP+HP) in the case of HAC

TGP TIE

0

0.05

0.1

0.15

0.2

200+20 220+30 250+40 290+50 340+60

r Q
T

Data set

rQT (LR+HR) in the case of HAC

TGP TIE

0

0.05

0.1

0.15

0.2

200+20 220+30 250+40 290+50 340+60

r Q
T

Data set

rQT (LF+HF) in the case of HAC

TGP TIE

0

0.05

0.1

0.15

0.2

200+20 220+30 250+40 290+50 340+60

r Q
T

Data set

rQT (LP+HP) in the case of bisect K‐means

TGP TIE

0

0.05

0.1

0.15

0.2

200+20 220+30 250+40 290+50 340+60

r Q
T

Data set

rQT (LR+HR) in the case of bisect K‐means

TGP TIE

0

0.05

0.1

0.15

0.2

200+20 220+30 250+40 290+50 340+60

r Q
T

Data set

rQT (LF+HF) in the case of bisect K‐means

TGP TIE

23

Fig. 6 Graph for in the case of bisect K-means Fig. 7 Graph for in the case of bisect K-

means

Table 11 Sensitivity analysis of the TIE algorithm by varying and keeping fixed (in the case of HAC)

1 2 Data
set

	 	
	

	
average

average

average

average

200 30 230 5.024	 0.093 0.528	 0.017 0.438	 0.312 0.479 0.355	 0.101 0.326	 0.088 0.340
230 30 260 7.298	 0.028 0.526	 0.003 0.430	 0.077 0.473 0.348	 0.002 0.322	 0.011 0.334
260 30 290 10.016	 0.005 0.519	 0.015 0.424	 0.008 0.467 0.346	 0.014 0.319	 0.004 0.332
290 30 320 12.103	 0.016 0.514	 0.163 0.417	 0.009 0.460 0.333	 0.631 0.314	 0.014 0.323
320 30 350 14.876	 0.096 0.511	 0.520 0.409	 0.018 0.454 0.329	 1.430 0.305	 0.654 0.317
350 30 380 18.955	 0.154 0.502	 0.612 0.405	 0.122 0.448 0.321	 0.996 0.300	 0.216 0.310

Table 12 Sensitivity analysis of the TIE algorithm by keeping fixed and varying (in the case of HAC)

1 2 Data
set

	 	
	

	
average

average

average

average

200 30 230 5.024	 0.093 0.528	 0.017 0.438	 0.312 0.479 0.355	 0.101 0.326	 0.088 0.340
200 60 260 9.986	 0.021 0.503	 0.188 0.410	 0.512 0.452 0.349	 0.220 0.317	 0.096 0.332
200 90 290 12.645	 0.003 0.499	 1.019 0.400	 0.013 0.444 0.328	 0.060 0.314	 0.054 0.321
200 120 320 19.832	 0.005 0.435	 0.016 0.375	 0.305 0.403 0.294	 0.089 0.285	 1.001 0.289
200 150 350 22.608	 0.014 0.421	 0.550 0.331	 0.007 0.371 0.254	 0.005 0.263	 0.043 0.258
200 180 380 28.111	 0.119 0.408	 0.715 0.311	 0.013 0.353 0.248	 0.021 0.247	 0.167 0.247

Table 13 Sensitivity analysis of the TIE algorithm by varying and keeping fixed (in the case of bisect K-means)

1 2 Data
set

	 	
	

	
average

average

average

average

200 30 230 4.501	 0.185 0.377	 0.003 0.330		 0.057 0.352 0. 257	 0.002 0. 219	 0.076 0.236
230 30 260 7.001	 0.009 0. 365	 0.018 0.325		 0.041 0.344 0. 250	 0.013 0. 213	 0.041 0.230
260 30 290 10.965	 0.014 0. 360	 0.154 0. 311	 0.190 0.334 0.236		 0.009 0. 202	 0.199 0.218
290 30 320 11.909	 0.006 0. 359	 0.201 0. 304	 0.301 0.329 0. 232	 0.198 0.200		 0.031 0.215
320 30 350 14.132	 0.014 0.347		 0.109 0. 301	 0.188 0.322 0. 219	 0.005 0. 194	 0.005 0.206
350 30 380 16.502	 0.176 0. 342	 0.005 0.299		 0.004 0.319 0. 206	 0.203 0.191		 0.042 0.198

Table 14 Sensitivity analysis of the TIE algorithm by keeping fixed and varying (in the case of bisect K-means)

1 2 Data
set

	 	
	

	
average

average

average

average

200 30 230 4.501	 0.185 0.377	 0.003 0.330	 0.057 0.352 0.257	 0.002 0. 219	 0.076 0.236
200 60 260 8.614	 0.064 0.362		 0.011 0. 316	 0.054 0.337	 0. 234	 0.109 0. 214	 0.003 0.224
200 90 290 13.113	 0.050 0. 359	 0.009 0. 301	 0.087 0.327 0. 200	 0.122 0. 185	 0.001 0.192
200 120 320 17.340	 0.088 0. 328	 0.055 0. 276	 0.121 0.300 0. 174	 0.034 0.166		 0.021 0.170
200 150 350 21.877	 0.176 0. 315	 0.062 0. 263	 0.139 0.287 0. 155	 0.142 0. 154	 0.046 0.154
200 180 380 27.190		 0.316 0. 303	 0.006 0.244	 0.046 0.270 0.121	 0.078 0.138		 0.008 0.129

24

5.5 Discussion

The observations related to the comparison of taxonomy evolution with taxonomy regeneration presented in

Section 5.4 are given below:

 We can see that the time-based evaluation, given in Table 5 in the case of HAC and Table 8 in the

case of bisect K-means, clearly reflects the essence of the incremental evolution of taxonomy in

comparison to regeneration. Note that as expected, the amount of time it takes to evolve is less

than that of regeneration, which is also demonstrated through complexity analysis presented in

Section 4.3. This difference in time is more pronounced particularly with the increase in data set

size.

 In the case of quality-based evaluation, precision, recall and F-measure values (both lexical, i.e.,

, and and hierarchical, i.e., , and) for regeneration are slightly better than

those obtained as a result of evolution, as shown in Tables 6 and 7 in the case of HAC and Tables

9 and 10 in the case of bisect K-means. Moreover, from the graphs shown in Figs. 8 and 9 in the

case of HAC and in Figs. 10 and 11 in the case of bisect K-means, we can observe that the lexical

measures are giving better results as compared to the hierarchical measures in all the cases for

both regeneration and evolution.

 In the case of quality and time-based evaluation, we can see from all the graphs shown in Figs. 2–

7 that the quality-time ratio (i.e.,) value is higher in the case of evolution for different size

data sets. However, the ratio shows a steady behavior for regeneration which seems not affected

much by the increase in the data set size. For evolution case, the is particularly higher when

the data set is small and a number of newly added documents is less. As more documents are

added to the system, the for evolution shows a decline yet keeping an edge over regeneration.

 Additionally, we can observe that the values for the quality measures in the case of HAC, shown

in Tables 6 and 7, appear to be better as compared to that of bisect K-means, shown in Tables 9

and 10 in all the cases for both regeneration and evolution. However, bisect K-means is giving a

slight edge over the runtime as compared to that of HAC in all the cases for both regeneration and

evolution, as can be seen from Tables 5 and 8.

The observations related to the sensitivity analysis of taxonomy evolution presented in Section 5.4 are

given below:

 It can be observed through the results presented in Table 11 in the case of HAC and Table 13 in

the case of bisect K-means that when the factor 1, i.e., a number of documents used to form the

existing taxonomy is varied and the factor 2, i.e., a number of newly added documents in the

data set is kept fixed, then the increase in time and decrease in taxonomy quality both lexical and

hierarchical are showing steady deteriorating behavior with the increasing values of 1.

25

 On the other hand, it can be observed through the results presented in Table 12 in the case of

HAC and Table 14 in the case of bisect K-means that when the factor 1, i.e., a number of

documents used to form the existing taxonomy is kept fixed and the factor 2, i.e., a number of

newly added documents in the data set is varied, then the increase in time and decrease in

taxonomy quality both lexical and hierarchical are showing sharp deteriorating behavior with the

increasing value of 2.

 Based on this analysis, we can say that a number of newly added documents in the data set (i.e.,

2) is the factor that has influenced the time and quality metrics values of the TIE algorithm more

as compared to a number of documents used to form the existing taxonomy (i.e., 1). It seems

that the evolution is advantageous when new documents arrive in small chunk. If data arrival is in

large chunk, then there might arise a time when evolution performance drop to a level where it

can lose its advantage over taxonomy regeneration.

Fig. 8 Graph for Lexical vs. Hierarchical F-measure (TGP) in

the case of HAC

Fig. 9 Graph for Lexical vs. Hierarchical F-measure (TIE)

in the case of HAC

Fig. 10 Graph for Lexical vs. Hierarchical F-measure (TGP)

in the case of bisect K-means

Fig. 11 Graph for Lexical vs. Hierarchical F-measure (TIE)

in the case of bisect K-means

The general observations related to the experimental results presented in Section 5.4 are given below:

 The application of the TIE algorithm on existing taxonomies generated through agglomerative

and divisive approaches to hierarchical clustering without making any adjustments shows that the

0

0.1

0.2

0.3

0.4

0.5

0.6

200+20 220+30 250+40 290+50 340+60

F‐
m
e
as
u
re

Data set

Lexical vs. Hierarchical F‐measure
(TGP) in the case of HAC

LF HF

0

0.1

0.2

0.3

0.4

0.5

200+20 220+30 250+40 290+50 340+60

F‐
m
e
as
u
re

Data set

Lexical vs. Hierarchical F‐measure
(TIE) in the case of HAC

LF HF

0

0.1

0.2

0.3

0.4

0.5

200+20 220+30 250+40 290+50 340+60

F‐
m
ea
su
re

Data set

Lexical vs. Hierarchical F‐measure
(TGP) in the case of bisect K‐means

LF HF

0

0.1

0.2

0.3

0.4

0.5

200+20 220+30 250+40 290+50 340+60

F‐
m
ea
su
re

Data set

Lexical vs. Hierarchical F‐measure
(TIE) in the case of bisect K‐means

LF HF

26

proposed algorithm easily serves as a layer over any of the existing clustering-based taxonomy

generation techniques, which is also demonstrated through complexity analysis presented in

Section 4.3.

 As far as the scalability of the TIE algorithm is concerned, overall, we can see deteriorating trend

in time and quality metrics values with the increasing size of the data set which is used to form

taxonomy in all the tests performed, i.e., the test results showing the comparison of taxonomy

evolution with regeneration (Tables 5–10) and the test results showing sensitivity analysis of

taxonomy evolution (Tables 11–14). This is even the case for taxonomy regeneration from scratch

in all the test results shown in Tables 5–10.

6 Conclusion and Future Work

In this paper, taxonomy incremental evolution (TIE) algorithm is designed to incrementally evolve an existing

taxonomy to adjust changes that occur in underlying data. The algorithm takes an existing taxonomy, the

respective hierarchical structure and newly arrived documents as its input. It identifies the closest cluster in the

hierarchy for each of the newly arrived documents based on similarity among them. It then applies various

reorganization operators to adjust the newly arrived documents in the hierarchy and finally in the existing

taxonomy to evolve it. The algorithm is compared with taxonomy regeneration approach based on complexity

analysis and empirical evaluation. The complexity analysis of the algorithm demonstrates that it is better than

regeneration in terms of time, and it is independent of underlying clustering approach used for taxonomy

generation. On the other hand, the empirical evaluation is performed using a data set of scholarly articles

selected from computing domain, based on three parameters. The time-based evaluation clearly shows that the

TIE algorithm takes comparatively less time to adjust new documents in an existing taxonomy. Although,

taxonomy regeneration is showing better results quality-wise, but the quality-time ratio of the TIE algorithm

indicates that the rate of improvement in taxonomy quality per unit time is better than that of regeneration.

Moreover, it is identified through the results of the sensitivity analysis of the TIE algorithm that it performs

better when the arrival of new data is in small chunk.

The proposed TIE algorithm produces an evolved taxonomy in a shorter period of time to represent

changes occur in underlying data for effective utilization of taxonomy. The quality of the evolved taxonomy

can be further enhanced by incorporating semantics in identifying the closest cluster for newly arrived

documents. Furthermore, the proposed algorithm also requires the setting of time interval value between two

consecutive runs of the evolution process. Currently, for the test data set, the running of the TIE algorithm is

self-controlled based on the addition of new documents, but for a real data set it should be set depending upon

the update characteristics (i.e., a number of newly arrived documents per unit time) of the data set. In general,

for the data set for which new documents are frequently arriving the time interval for the evolution should be

set lesser than the time interval for the data set for which the arrival of new documents is not very frequent.

Moreover, the deteriorating trend in time and quality metrics values with the increasing size of the data set

27

which is used to form taxonomy shows that the scalability aspect of the proposed solution should also be

improved further. In future, the proposed algorithm can be applied to discover emerging trends and patterns in

social media where data is evolving rapidly.

References
Baeza-Yates, R., Ribeiro-Neto, B., 2011. Modern Information Retrieval-the Concepts and Technology behind Search (Second

ed.). Pearson Education Limited.
Blumberg, R., Atre, S., 2003. The problem with unstructured data. DM REVIEW, 13, 42-49.
Camina, S. L., 2010. A comparison of taxonomy generation techniques using bibliometric methods: applied to research strategy

formulation. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.
Massachusetts Institute of Technology.

Carmel, D., Roitman, H., Zwerdling, N., 2009. Enhancing cluster labeling using wikipedia. Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in Information Retrieval, (pp. 139-146). Boston,
MA, USA.

Cha, S.-H., 2007. Comprehensive survey on distance/similarity measures between probability density functions. International
Journal of Mathematical Models and Methods in Applied Sciences, 1(4), 300-307.

Cimiano, P., Hotho, A., Staab, S., 2005. Learning concept hierarchies from text corpora using formal concept analysis. Journal of
Artificial Intelligence Research, 24(1), 305-339.

Dawelbait, G., Mezher, T., Woon, W. L., et al., 2010. Taxonomy based trend discovery of renewable energy technologies in
desalination and power generation. Proceedings of the 2010 Technology Management for Global Economic Growth
(PICMET), (pp. 1-8). Phuket, Thailand.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., et al., 1990. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6), 391-407.

Dietz, E.-A., Vandic, D., Frasincar, F., 2012. TaxoLearn: A semantic approach to domain taxonomy learning. Proceedings of the
2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT), 1,
pp. 58-65. Macau, China.

Engel, W., Pryde, C., Sappington, P., 2010. Method and system for enhanced taxonomy generation. USA Patent No. US
2010/0274733 A1.

Fountain, T., Lapata, M., 2012. Taxonomy induction using hierarchical random graphs. Proceedings of the 2012 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL HLT '12), (pp. 466-476). Stroudsburg, PA, USA.

Glover, E., Pennock, D. M., Lawrence, S., et al. 2002. Inferring hierarchical descriptions. Proceedings of the 11th International
Conference on Information and Knowledge Management (CKIM), (pp. 507-514). McLean, VA, USA.

Hedden, H., 2010. The Accidental Taxonomist. Information Today Inc.
Irfan, R., Khan, S., 2016. TIE: An algorithm for incrementally evolving taxonomy for text data. Proceedings of the 15th IEEE

International Conference on Machine Learning and Applications (ICMLA), (pp. 687-692). Anaheim, California, USA.
Jain, A. K., Murty, M. N., Flynn, P. J., 1999. Data clustering: A review. ACM Computing Surveys, 31(3), 264-323.
Karypis, M. S., Kumar, V., Steinbach, M., 2000. A comparison of document clustering techniques. TextMining Workshop at 6th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2000). Boston, MA, USA.
Kashyap, V., Ramakrishnan, C., Thomas, C., 2005. TaxaMiner: An experimentation framework for automated taxonomy

bootstrapping. International Journal of Web and Grid Services, 1(2), 240-266.
Koff, W., Gustafson, P., 2012. Data Revolution. Tech. rep., Computer Sciences Corporation.
Kumar, A. A., Chandrasekhar, S., 2012. Text data pre-processing and dimensionality reduction techniques for document

clustering. International Journal of Engineering Research and Technology, 1, pp. 1-6.
Lefever, E., 2015. LT3: A multi-modular approach to automatic taxonomy construction. Proceedings of the 9th International

Workshop on Semantic Evaluation (SemEval 2015), (pp. 944-948). Denver, Colorado, USA.
Li, T., Anand, S. S., 2009. Exploiting domain knowledge by automated taxonomy generation in recommender systems. In E-

Commerce and Web Technologies (Vol. 5692, pp. 120-131). Springer Berlin Heidelberg.
Manning, C. D., Raghavan, P., Schutze, H., 2008. Introduction to Information Retrieval. New York, NY, USA: Cambridge

University Press.
Marcacini, R. M., Rezende, S. O., 2010. Incremental construction of topic hierarchies using hierarchical term clustering.

Proceedings of the 22nd International Conference on Software Engineering and Knowledge Engineering (SEKE).
Redwood City, San Francisco Bay, CA, USA.

Medelyan, O., Manion, S., Broekstra, J., et al., 2013. Constructing a focused taxonomy from a document collection. In The
Semantic Web: Semantics and Big Data (Vol. 7882, pp. 367-381). Springer Berlin Heidelberg.

Meijer, K., Frasincar, F., Hogenboom, F., 2014. A semantic approach for extracting domain taxonomies from text. Decision
Support Systems, 62, 78-93.

28

Muller, A., Dorre, J., Gerstl, P., et al., 1999. The TaxGen framework: Automating the generation of a taxonomy for a large
document collection. Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences (HICSS),
Track2, pp. 9--pp.

Nadkarni, P. M., Ohno-Machado, L., Chapman, W. W., 2011. Natural language processing: An introduction. Journal of the
American Medical Informatics Association, 18(5), 544-551.

Neshati, M., Alijamaat, A., Abolhassani, H., et al., 2007. Taxonomy learning using compound similarity measure. Proceedings of
the IEEE/WIC/ACM International Conference on Web Intelligence (WI '07), (pp. 487-490). Silicon Valley, USA.

Paukkeri, M.-S., Garcia-Plaza, A. P., Fresno, V., et al., 2012. Learning a taxonomy from a set of text documents. Applied Soft
Computing , 12(3), 1138-1148.

Qi, X., Yin, D., Xue, Z., Davison, B. D., 2010. Choosing your own adventure: Automatic taxonomy generation to permit many
paths. Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM),
(pp. 1853-1856). Toronto, ON, Canada.

Sanchez, D., Moreno, A., 2004. Automatic generation of taxonomies from the WWW. In Practical Aspects of Knowledge
Management (Vol. 3336, pp. 208-219). Springer Berlin Heidelberg.

Spangler, W. S., Kreulen, J. T., Newswanger, J. F., 2006. Machines in the conversation: Detecting themes and trends in informal
communication streams. IBM Systems Journal, 45(4), 785-799.

Sujatha, R., Krishna Rao, B. R. 2011. Taxonomy construction techniques--Issues and challenges. Indian Journal of Computer
Science and Engineering, 2(5), 661-671.

Thada, V., Jaglan, D. V., 2013. Comparison of jaccard, dice, cosine similarity coefficient to find best fitness value for Web
retrieved documents using genetic algorithm. International Journal of Innovations in Engineering and Technology,
2(4), 202-205.

Treeratpituk, P., Callan, J. 2006. Automatically labeling hierarchical clusters. Proceedings of the 2006 International Conference
on Digital Government Research, (pp. 167-176). San Diego, California, USA.

Turner, V., 2014. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things. Tech.
rep., EMC Digital Universe with Research and Analysis by International Data Corporation (IDC).

Velardi, P., Sclano, F., 2007. Termextractor: a web application to learn the common terminology of interest groups and research
communities. Proceedings of the 3rd International Conference on Interoperability for Enterprise Software and
Applications (I-ESA), (pp. 85-94). Funchal, Portugal.

Velardi, P., Faralli, S., Navigli, R., 2013. OntoLearn reloaded: A graph-based algorithm for taxonomy induction. Computational
Linguistics, 39(3), 665-707.

Weng, S.-S., Liu, C.-K., 2004. Using text classification and multiple concepts to answer e-mails. Expert Systems with
Applications, 26(4), 529-543.

Yang, H.-C., Lee, C.-H., Hsiao, H.-W., 2015. Incorporating self-organizing map with text mining techniques for text hierarchy
generation. Applied Soft Computing, 34, 251-259.

Yao, J., Cui, B., Cong, G., et al., 2012. Evolutionary taxonomy construction from dynamic tag space. World Wide Web, 15(5-6),
581-602.

