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Abstract:  Taxonomy is generated to effectively organize and access data that is large in volume, as taxonomy is a way of 

representing concepts that exist in data. It needs to be evolved to reflect changes occur continuously in data. Existing automatic 

taxonomy generation techniques do not handle the evolution of data, therefore their generated taxonomies do not truly represent 

the data. The evolution of data can be handled either by regenerating taxonomy from scratch, or incrementally evolving 

taxonomy whenever changes occur in the data. The former approach is not economical subject to time and resources. Taxonomy 

incremental evolution (TIE) algorithm, proposed in this paper, is a novel attempt to handle an evolving data. It serves as a layer 

over an existing clustering-based taxonomy generation technique and incrementally evolves an existing taxonomy. The algorithm 

was evaluated on scholarly articles selected from computing domain. It was found that the algorithm evolves taxonomy in a 

considerably shorter period of time, having better quality per unit time as compared to the taxonomy regenerated from scratch. 
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1 Introduction 

Data is produced in a large volume on daily basis nowadays (Turner, 2014). According to Computer Science 

Corporation (Koff and Gustafson, 2012) report on data revolution, experts are expecting 4300% increase in 

annual data generation by the year 2020. A major chunk of this data is unstructured text data, like scholarly 

articles, technical reports, organizational policy documents, etc. (Blumberg and Atre, 2003), which dominates 

80% of the data industry these days (Koff and Gustafson, 2012). This exponential growth of data is so 

overwhelming that it can actually lead to the possibility of missing new directions and emerging ideas, rather 

than discovering novel insights from it. To utilize this data effectively, it should be processed and transformed 

into valuable information. The organization of this information in a structured form, like taxonomy, can be 

helpful in utilizing it timely, effectively and accurately. Taxonomy is a structured organization of hierarchical 

or parent-child relationships of concepts present in data (Paukkeri et al., 2012). Muller et al. (1999) define 

taxonomy as a thematic structure inherent in data. There are many applications of taxonomy. It is an effective 

mean of categorizing and organizing data (Sujatha and Krishna Rao, 2011). It provides standardization, so that 

less interoperability issues may arise (Engel et al., 2010). Furthermore, it serves as a foundation structure for 

content and knowledge management (Hedden, 2010), information search and navigation (Sanchez and 

Moreno, 2004), analytics and text mining (Li and Anand, 2009; Dawelbait et al., 2010; Weng and Liu, 2004; 

Spangler et al., 2006; Camina, 2010). 
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Currently, we find many automatic taxonomy generation techniques, which are producing taxonomy 

effectively for small to large data sets. However, the existing techniques ignore the fact that data is growing at 

an extremely rapid pace and changes occur in data should also be reflected on taxonomy. The taxonomy that 

does not consider changes occur in data, cannot truly represent the data. There can be two ways to handle 

changes occur in data. One way is to regenerate taxonomy from scratch, which is not economical subject to 

time and resources. Another way is to evolve taxonomy incrementally. Taxonomy incremental evolution (TIE) 

algorithm, proposed in this paper, is a novel attempt in this direction. The proposed algorithm serves as a layer 

over an existing clustering-based taxonomy generation technique and incrementally evolves an existing 

taxonomy. Clustering-based taxonomy generation techniques (Muller et al., 1999; Kashyap et al., 2005; Dietz 

et al., 2012) typically utilize hierarchical clustering and labeling techniques (Jain et al., 1999) to generate 

taxonomy. 

The TIE algorithm takes an existing taxonomy, the respective hierarchical structure (i.e., a hierarchical 

organization of clusters) and newly arrived documents as its input. It identifies the closest cluster for each of 

the newly arrived documents based on the similarity score. The range of the similarity score determines the 

level of impact a new document has on its closest cluster. Based on the level of impact, various reorganization 

operators are then applied to adjust the newly arrived document in the existing hierarchical structure. Finally, 

the existing taxonomy is evolved to represent the changes occurred in data. The algorithm was compared with 

taxonomy regeneration approach based on complexity analysis and empirical evaluation. A text data set of 

scholarly articles selected from computing domain was used for evaluation purpose. It was found that the 

incremental evolution is better than regeneration subject to time consumption. Moreover, it produces better 

quality taxonomy per unit time than that of regeneration of taxonomy from scratch. The main contributions of 

this work are summarized as follows: 

 The TIE algorithm evolves an existing taxonomy whenever changes occur in data to represent 

updated view of the data in a shorter period of time. 

 The TIE algorithm is independent of the clustering algorithm used for taxonomy generation, so 

existing clustering-based approaches to taxonomy generation can be effectively used with the TIE 

algorithm. 

 A new metric named quality-time ratio is proposed to measure the effectiveness of taxonomy 

evolution in comparison to regeneration. It determines the ratio of taxonomy quality improvement 

per unit time. 

 Sensitivity analysis of the TIE algorithm is done in order to determine the impact of varying 

different factors influencing the evolution of taxonomy. 

It is declared that this paper is an extension of our earlier work (Irfan and Khan, 2016). Here the 

proposed algorithm is described with supplementary details. Additional evaluations in terms of the quality-time 

ratio and sensitivity analysis are included. The proposed algorithm is validated as a layer over both 
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agglomerative and divisive approaches to hierarchical clustering. The remaining paper is organized as follows: 

Section 2 discusses the related work. Section 3 presents the background for developing a basic understanding 

of the automatic taxonomy generation process. Section 4 presents the details of the proposed algorithm. 

Section 5 deals with the testing and evaluation of the proposed algorithm. Section 6 concludes the paper and 

discusses the future work. 

 

2 Related Work 

Taxonomy can be generated through various approaches, such as clustering-based (Muller et al., 1999; 

Kashyap et al., 2005; Dietz et al., 2012; Neshati et al., 2007; Yang et al., 2015); rules and heuristics-based 

(Medelyan et al., 2013; Lefever, 2015; Meijer et al., 2014); and graph-based (Camina, 2010; Qi et al., 2010; 

Fountain and Lapata, 2012; Velardi et al., 2013) approaches. The proposed taxonomy incremental evolution 

(TIE) algorithm is a layer over an existing clustering-based taxonomy generation technique, so this review is 

limited to the clustering-based approaches. The clustering-based taxonomy generation techniques are reviewed 

here because of two main reasons: First of all, they contribute as a foundation in this research. Secondly, they 

are reviewed to identify their capabilities for handling an evolving data. In addition, other techniques that have 

addressed taxonomy evolution are also reviewed. 

Clustering-based taxonomy generation techniques typically utilize hierarchical clustering and labeling 

techniques (Jain et al., 1999) to generate taxonomy. The work (Muller et al., 1999) is one of the pioneer 

attempts that utilized clustering-based approach for taxonomy generation. Their technique produced effective 

taxonomy with more focus on scalability so that the generated taxonomy should be less affected by the 

increasing size of data. Kashyap et al. (2005) developed an experimental framework to analyze the impact of 

varying different methods and parameters in the generation process of taxonomy, like the use of natural 

language processing versus non-natural language processing; the use of different similarity or distance measure 

in the clustering process; document clustering versus term clustering. Dietz et al. (2012) focused on the 

generation of domain specific taxonomy and found that general terms were not enough to construct a domain 

specific taxonomy. They identified domain specific concepts that were present in data, by utilizing domain 

specific measures of domain pertinence and domain consensus (Velardi and Sclano, 2007). Furthermore, they 

compared different knowledge-rich methods (i.e., based on the involvement of external knowledge sources, 

like Wikipedia, WordNet) and knowledge-poor methods (i.e., based on statistical and lexical properties 

extracted from within the data) for the extraction of relevant concepts and hierarchical relationships to see their 

impact on the generated taxonomy. It was observed that the clustering-based techniques involving knowledge-

rich methods, to extract relevant concepts and hierarchical relationships, produced semantically better 

taxonomy than those techniques involving knowledge-poor methods (Neshati et al., 2007). Some of the recent 

techniques, such as (Paukkeri et al., 2012; Yang et al., 2015) utilized self-organizing maps for performing 

clustering-based taxonomy generation. The self-organizing map is a famous artificial neural network 

algorithm, which is effective in mapping a high dimensional input data to a low dimension map. Each node in 
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the map is called neuron and it facilitates clustering by grouping together similar data objects closer in the map 

or under a single neuron. In short, most of the existing automatic taxonomy generation techniques are 

producing taxonomy effectively for small to large data sets. However, they are not focusing on handling an 

evolving data in taxonomy generation. 

On the other hand, (Yao et al., 2012) and (Marcacini and Rezende, 2010) are some of the existing 

works that have explored taxonomy evolution along with its generation. Yao et al. (2012) generated and 

evolved taxonomy for tag space (i.e., semi-structured data) using association rule graph (Irfan and Khan, 

2016), whereas Marcacini and Rezende (2010) generated and evolved taxonomy for text data (i.e., 

unstructured data) using incremental hierarchical clustering-based approach (Irfan and Khan, 2016). The 

nature of tag data is different from unstructured text data and extracting hierarchical relationships from 

unstructured text data is more complex than tag data (Blumberg and Atre, 2003). This research work focuses 

on unstructured text data, therefore the work of Yao et al. (2012) was not explored further. It was observed that 

Marcacini and Rezende (2010) performed clustering of terms instead of document clustering. The use of term 

clustering for hierarchy formation is helpful because it eliminates the need to associate labels with clusters. 

However, document clustering is preferred because it produces more distinct clusters as compared to term 

clustering (Kashyap et al., 2005). This work attempts to identify a solution that can incrementally evolve an 

existing taxonomy independent of the clustering algorithm used in the generation of taxonomy and can serve 

as a layer over an existing clustering-based taxonomy generation technique. 

 

3 Background-Taxonomy Generation Process (TGP) 

Since the proposed solution to taxonomy evolution can serve as a layer over an existing clustering-based 

taxonomy generation technique, therefore we describe the fundamentals of clustering-based taxonomy 

generation process (TGP) in this section. The TGP typically comprises four steps: data pre-processing, data 

modeling, hierarchy formation and node labeling (Irfan and Khan, 2016). We briefly describe here, the 

commonly used methods in these four steps for clustering-based taxonomy generation. 

 

3.1 Data pre-processing 

Data pre-processing step cleans unnecessary details from data and refines the terms that exist in the data. These 

refined terms reflect properties or characteristics of the data and form vocabulary of the data (Kumar and 

Chandrasekhar, 2012). In TGP for text data, basic natural language processing techniques, such as 

tokenization, stemming, part of speech tagging and parsing (Nadkarni et al., 2011) have been applied to pre-

process data, as in (Paukkeri et al., 2012; Muller et al., 1999; Spangler et al., 2006; Kashyap et al., 2005; Dietz 

et al., 2012). The data, even after applying data pre-processing activities, is not in machine-readable format 

(i.e., a proper data model), so it is forwarded to the data modeling step for converting it into machine readable 

format. 
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3.2 Data modeling 

Data modeling step finds a suitable model that expresses data in a machine-readable format for computation. 

Vector space model (VSM) is one of the most widely used data modeling techniques for text data (Baeza-

Yates and Ribeiro-Neto, 2011) and is used in (Paukkeri et al., 2012; Muller et al., 1999; Spangler et al., 2006; 

Kashyap et al., 2005). For a collection of documents, VSM represents each document and its refined terms in 

the form of a vector that shows the occurrence of terms in the document. The occurrence of terms is 

represented with  (i.e., term frequency-inverse document frequency) score in VSM. , term frequency, 

is a number of times a particular term appears in a document; and , inverse document frequency, represents 

how often the term appears in the collection of documents. In addition, various methods are applied in data 

modeling step to determine the semantics of terms for their further refinement such as follows: involvement of 

external knowledge sources (Medelyan et al., 2013), such as WordNet, Wikipedia, Freebase, DBbase; use of 

advanced natural language processing techniques (Dietz et al., 2012), such as word sense disambiguation 

(WSD) (Nadkarni et al., 2011); and application of dimensionality reduction techniques (Kashyap et al., 2005), 

such as latent semantic indexing (Deerwester et al., 1990). After the modeling step, data is now ready in 

machine-readable format for extracting hierarchical structure that exists in the data, so it is passed to the 

hierarchy formation step. 

 

3.3 Hierarchy formation 

Hierarchy formation step identifies and constructs a hierarchical structure inherent in data. It comprises two 

sub-steps: (i) relationship identification; and (ii) hierarchy generation. The relationship identification 

determines the relationships that exist among different documents in data. For relationship identification, 

similarity or distance measure, such as Cosine similarity, Euclidean distance is employed (Cha, 2007; Thada 

and Jaglan, 2013). The hierarchy generation arranges these relationships in the form of a hierarchical structure. 

Hierarchical clustering algorithms are used for hierarchy generation in clustering-based taxonomy generation 

techniques. 

There are two types of hierarchical clustering algorithms: agglomerative (bottom up) and divisive (top 

down) (Jain et al., 1999). The agglomerative approach starts with every data object placed in a separate cluster 

and merges clusters at later stages. Hierarchical agglomerative clustering (HAC) is an example of 

agglomerative approach and was used in (Muller et al., 1999; Dietz et al., 2012). Based on different merging 

styles, different flavors of HAC exist. The common ones are single link, complete link, average link and 

centroid link (Manning et al., 2008). The divisive approach starts with all data objects in one cluster and 

divides them into more clusters at later stages. Bisect K-means clustering is an example of divisive approach 

and was used in (Kashyap et al., 2005). Agglomerative approaches have quadratic time complexity, whereas 

divisive approaches have linear time complexity, nevertheless, the clustering quality is better in the case of 

agglomerative approaches as compared to divisive approaches (Karypis et al., 2000). 
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Hierarchical structure, generated in this step, comprises a hierarchy of unlabeled clusters (i.e., nodes). 

The unlabeled hierarchical structure is forwarded to the nodes labeling step. 

 

3.4 Nodes labeling 

Nodes labeling step assigns labels to unlabeled nodes in a hierarchical structure. The assignment of meaningful 

and accurate labels to unlabeled nodes in a hierarchy is necessary to grasp a better understanding of generated 

taxonomy. In clustering-based approaches, usually centroid of a cluster (i.e., an average of all data objects in a 

cluster) is involved in finding labels for hierarchical nodes, as applied in (Dietz et al., 2012). The labeling 

techniques are mostly combined with rules and heuristics in order to find appropriate labels for taxonomy 

(Kashyap et al., 2005). External knowledge sources (Carmel et al., 2009), such as WordNet; feature selection 

techniques (Manning et al., 2008), such as mutual information, chi-square ; and frequently occurring top  

terms (Glover et al., 2002; Treeratpituk and Callan, 2006) have been used in literature to identify suitable 

labels. The output of this step is a taxonomy, where hierarchical clusters are labeled to represent a hierarchical 

organization of given data. 

 

4 Proposed Method-The TIE Algorithm 

In this paper, we present a detailed and an improved version of the taxonomy incremental evolution (TIE) 

algorithm given in (Irfan and Khan, 2016). The TIE algorithm aims at finding an incremental solution for 

evolving an existing taxonomy, whenever new documents are added to underlying data. The TIE algorithm is 

designed in a way that it serves as a layer over an existing clustering-based taxonomy generation technique. It 

comprises two steps: 

1. Identifying the closest cluster: This step determines the closest existing cluster for each of the 

newly arrived documents. 

2. Reorganizing the existing taxonomy: This step applies various reorganization operators to adjust a 

newly arrived document in the existing hierarchical structure and finally in the existing taxonomy 

to evolve it. 

Note that the first step of the TIE algorithm, i.e., identifying the closest cluster is fundamentally the 

same as given in our earlier work (Irfan and Khan, 2016), but it now defines the actions to be taken in case a 

newly arrived document has more than one closest cluster; or if it is not close to any of the existing clusters. 

The second step, i.e., reorganizing the existing taxonomy now defines a new reorganization operator of 

_  for adjusting those newly arrived documents, which appear to be a part of the existing cluster but 

affect its quality. Next, we present the detailed explanation of these two steps of the TIE algorithm. 

 

4.1 Identifying the closest cluster 

When a new document arrives in an existing data, the TIE algorithm first identifies an appropriate cluster for 

adjusting the new document. The algorithm takes an existing taxonomy   (which is the taxonomy obtained as 



7 

 

a result of TGP), the respective hierarchical structure  (which is the output of the hierarchy formation step of 

TGP) and a set of newly arrived documents ′ as its input. The hierarchy  maintains three types of 

information for each cluster: cluster centroid, cluster cohesion and cluster deviation. 

For a cluster ∈ , having  document vectors: ; 1,2, … . , , mapped in  dimensional term 

space, cluster centroid  is the center or middle point of the cluster and is the average representation of all 

documents present in the cluster, given as (Irfan and Khan, 2016): 

∑
 

 

(1) 

Let ,   be the similarity between vectors of the  document  in cluster  and its 

centroid ,  then cluster cohesion   is the average similarity of all documents present in the cluster with 

the cluster centroid and is a measure of tightness of the cluster, given as (Irfan and Khan, 2016): 

∑ ,
 

 

(2) 

Cluster deviation   denotes the deviation of a document from a cohesive cluster. It measures the 

limit of closeness or farness of all documents present in the cluster from the cluster centroid, given as (Irfan 

and Khan, 2016): 

∑ ,
	

 

(3) 

The main idea is to identify the closest cluster for a newly arrived document. Let ,  be the 

similarity between a new document ′ ∈ ′  and centroid  of the cluster . Let us consider that  is 

identified as the closest cluster for ′ because of maximum similarity, then the range of the similarity score 

determines the level of impact a new document has on its closest cluster and is defined through the following 

three conditions (Irfan and Khan, 2016): 

1. Far from cluster centroid: If , , then ′ is far from . In this condition, 

the new document ′ due to its farness from  might affect the quality of the cluster , thus 

restructuring of the cluster will be required. 

2. Close to cluster centroid: If , , then ′ is close to . In this condition, 

the new document ′ due to its closeness from  might affect the labels of the cluster  (which 

are assumed to be dependent on the center of the cluster as in most cases for clustering-based 

taxonomy generation techniques), thus relabeling of the cluster will be required. 

3. Neither close to nor far from cluster centroid: If , , then ′ is 

neither close to nor far from . In this condition, the new document ′ due to its presence 

within the range of  might belong to the cluster , thus it will be merged in the cluster. 
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This step begins by associating three types of list structures, corresponding to each of the 

aforementioned conditions,  for each cluster in . These list structures hold newly arrived documents based on 

the range of the similarity score newly arrived documents possess with their closest cluster. The list structures 

associated with each cluster are initialized to null. After initialization, the similarity between each of the new 

documents in ′ and each of the existing clusters in  is calculated using the respective cluster centroid. The 

cluster having the maximum similarity (i.e., the closest cluster) is selected as a suitable candidate for a new 

document to be adjusted in, as shown in Steps 2-10 of Algorithm 1. For the cluster ∈ , let  be the list 

structure associated with the condition “far from cluster centroid”;  be the list structure associated with the 

condition “close to cluster centroid”; and  be the list structure associated with the condition “neither close to 

nor far from cluster centroid”. For a new document ′ and its closest cluster  having centroid , cohesion 

 and deviation , the range of the similarity score of ′ from  is then checked using the aforementioned 

conditions and the following action is taken: 

 If the condition “far from cluster centroid” is true, then add ′ in the list  (see Steps 11 and 12 of 

Algorithm 1); 

 else if the condition “close to cluster centroid” is true, then add ′ in the list  (see Steps 13 and 

14 of Algorithm 1); 

 else if the condition “neither close to nor far from cluster centroid” is true, then add ′ in the list  

(see Steps 15 and 16 of Algorithm 1). 

At the end of this step, the closest cluster is identified for each of the newly arrived documents. The 

list structures associated with each cluster contain the newly arrived documents, based on the range of the 

similarity new documents possess with their closest cluster. The list structures for each cluster are the output of 

Algorithm 1. 

In the process of determining the closest cluster for a new document, there can be two exceptions: 

Firstly, there is a possibility that a new document possesses equal similarity with more than one existing 

clusters. In that case, any of the existing clusters is randomly selected as a suitable candidate for its adjustment 

and appropriate actions are taken based on the range of the similarity score of that document with the centroid 

of the selected cluster. Another possibility is that a new document has zero 0  or no similarity with all of the 

existing clusters. In that case, any of the children of the root node of  is randomly selected and the new 

document is dealt according to the condition “far from cluster centroid”. 

 

4.2 Reorganizing the existing taxonomy 

Taxonomy is a thematic representation of data. It is not necessary that the addition of a new document in the 

data bring drastic changes in the taxonomy. Therefore in this step, before reflecting changes in the existing 

taxonomy, the quality of each of the existing clusters in 	is checked by recalculating the cohesion score 

(using existing and new documents). A higher value of cohesion represents a better cluster. Based on whether 
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or not a cluster quality is deteriorated and the presence of new documents in its respective list structures, 

reorganization operators are applied to reorganize it. Consider the cluster ∈ , now comprising  number of 

existing and ′ number of new documents and let   	and  denote its sibling, parent and child 

clusters respectively, the operators applied for reorganizing the cluster are given in Table 1. 

This step begins by recalculating cohesion of existing clusters in , using existing and new 

documents. Thus, for the cluster ∈ , having  number of existing and ′ number of new documents, let 

the new cohesion score be , then there can be two possible scenarios: (i) deteriorated cluster quality; or (ii) 

non-deteriorated cluster quality. 

Algorithm 1 Identifying the closest cluster 
Input: document vectors for newly arrived documents in ′, existing taxonomy  and existing hierarchy  with centroid, 

cohesion and deviation values for each cluster in  
Output: list structures for each cluster in  
1. initialize list structures for each cluster in  to  
2.  for each ∈ ′ do 
3.     initialize _ ← 0; _ ←   
4.     for each ∈  do 
5.         calculate ,  
6.         if , _  then 
7.             _ ← ,  
8.             _ ←  
9.         end if 
10.     end for 
11.     if _  for the _  then //Steps 11 and 12 in case ′ is far from  
12.         ←  
13.     else if _  for the _  then //Steps 13 and 14 in case  is close to  
14.         ←  
15.     else if _  for the _  then //Steps 15 and 16 in case ′ is 

neither close to nor far from  
16.         ←  
17.     end if 
18. end for 
 

Table 1 List of reorganization operators used by the TIE algorithm to reorganize the existing taxonomy 
Input Operator Output Function Figure 

cluster  and list   _  sibling cluster  takes documents that are far from a cluster and 
inserts them as its sibling cluster (Irfan and 
Khan, 2016) 

see Fig. 1a 
 

cluster  and list  _  child cluster  
 

takes documents that are neither close to nor far 
from a cluster and inserts them as its child 
cluster 

see Fig. 1b 

cluster  _  set of labels   
 

assigns a set of unique labels to a cluster (Irfan 
and Khan, 2016) 

see Fig. 1c 

cluster  and its set 
of labels  

_  set of new labels 
  

 

takes a set of existing labels for a cluster and 
assigns a set of new and unique labels to that 
cluster, where the set of new and existing labels 
may or may not be null (Irfan and Khan, 2016) 

see Fig. 1d 

cluster  and list , 
which contains  
number of newly 
arrived documents 
to be merged in  
where, ′  

_  updated cluster ′  
 

merges documents, contained in a given list, in 
a cluster (Irfan and Khan, 2016) 

see Fig. 1e 
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updated cluster ′ _  new centroid   
 

recalculates centroid for an updated cluster 
(Irfan and Khan, 2016) 

see Fig. 1f 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Reorganization operators: (a) ← _ ,  (b) ← _ ,  (c)  ← _  
(d) ′ ← _ ,  (e) ′ ← _ ,  (f) ← _ ′  

 
4.2.1 Scenario 1 – deteriorated cluster quality 

If , this shows that the cluster quality is deteriorated, then based on the presence of new documents in 

,  and  lists of  possible scenarios for its reorganization are defined through the following three cases: 

Super-level restructuring: Super-level restructuring occurs when a cluster quality is deteriorated and 

its list structure associated with “far from cluster centroid” condition is not empty. For the cluster  if 

, this indicates that documents in  which are far from the cluster centroid have resulted into its quality 

deterioration and should be inserted as a separate node. So _  operator is applied to create a 

separate node, i.e., , which is then assigned labels by applying _  operator. This action leaves 

labels of parent cluster  of  as inaccurate, so it should be assigned new labels. However, before doing that 

the presence of documents in   and 	lists for  are also checked: 

 If  for , then check the presence of documents in its  list:  

o If , this indicates that both the lists  and  contain some documents. So in this 

case, documents in 	and	γ first become part of  by applying _  operator 

resulting in an updated cluster ′. The documents in  are those that are neither close to 

nor far from the cluster centroid, so they can be simply merged in the cluster (assuming 

to have minimal effect on its quality). However, the documents in  are those that are 

close to the cluster centroid. The centroid is no more an accurate representation of that 

cluster and this requires recalculation of the cluster centroid and assignment of new 

 



11 

 

labels. So _  operator is applied  to recalculate ′ centroid using existing 

and new documents. Finally, new labels are assigned first to ′ and then to  by 

applying _  operator. 

o If , this indicates that the list  contains some documents, but the list  is empty. 

So in this case, only documents in  first become part of  by applying _  

operator resulting in an updated cluster ′. The documents in  are those that are close to 

the cluster centroid. The centroid is no more an accurate representation of that cluster and 

this requires recalculation of the cluster centroid and assignment of new labels. So 

_  operator is applied to recalculate ′	centroid using existing and new 

documents. Finally, new labels are assigned first to ′ and then to  by applying 

_  operator. 

 If  for , then check the presence of documents in its  list: 

o If , this indicates that though the list  is empty, but the list  contains some 

documents. So in this case, only documents in  first become part of  by applying 

_  operator resulting in an updated cluster ′. The documents in  are those that 

are neither close to nor far from the cluster centroid, so they can be simply merged in the 

cluster (assuming to have minimal effect on its quality) and therefore no need to 

recalculate centroid and assign new labels to the updated cluster. New labels are assigned 

only to  by applying _  operator. 

o If , this indicates that both the lists  and  are empty and no new document is 

there in these lists to add in cluster . So in this case, without taking any further actions 

new labels are assigned to  by applying _  operator. 

The actions taken for the super-level restructuring are shown in Steps 4-26 of Algorithm 2. 

Relabeling: Relabeling occurs when a cluster quality is deteriorated and its list structure associated 

with “far from cluster centroid”	condition	is	empty, but the one associated with “close to cluster centroid” 

condition contains some documents. For the cluster  if  and , this indicate that documents 

in  that are close to the cluster centroid have affected its centroid representation. So it should be recalculated, 

followed by the assignment of new labels to the cluster. However, before doing that the presence of documents 

in  list for  is also checked: 

 If , this indicates that the list  also contains some documents along with the list . This 

case is similar to the super-level restructuring case when the  and  lists are not empty along 

with the  list, so the same set of reorganization operators are applied to perform the relabeling.  

First, the documents in both the lists  and  become part of  by applying _  operator 

resulting in an updated cluster ′. After that, _  operator is applied to recalculate ′ 

centroid using existing and new documents. New labels are then assigned to ′ by applying 
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_  operator. This action leaves labels of parent cluster  of ′ as inaccurate, so new 

labels are assigned to  by applying _  operator. 

 If , this indicates that the list  is empty. This case is similar to the super-level 

restructuring case when the  list is not empty along with the  list but the  list is empty, so the 

same set of reorganization operators are applied to perform the relabeling. First, the  documents in 

 list become part of  by applying _  operator resulting in an updated cluster ′. After 

that _   operator is applied to recalculate ′ centroid using existing and new 

documents. New labels are then assigned to c′	by applying _   operator. This action 

leaves labels of parent cluster  of ′ as inaccurate, so new labels are assigned to  by 

applying _  operator. 

The actions taken for the relabeling are shown in Steps 27-38 of Algorithm 2. 

Sub-level restructuring: Sub-level restructuring occurs when a cluster quality is deteriorated and its 

list structures associated with “far from cluster centroid” and “close to cluster centroid” conditions are empty, 

but the one associated with “neither close to nor far from cluster centroid” condition contains some documents. 

For the cluster  if ,  and , this indicate that documents in  that are neither close to 

nor far from the cluster centroid can be simply merged in the cluster (assuming to have minimal effect on its 

quality). But in this case, both  and  lists are empty and only the documents in  are affecting cluster quality, 

so instead of simply merging them in the cluster, we create a child node 	by applying _  

operator and insert the documents in the list  in it. The operator _  is then applied to assign labels 

to . This action leaves labels of  as inaccurate, so new labels are assigned to  by applying _  

operator. 

The actions taken for the sub-level restructuring are shown in Steps 39-43 of Algorithm 2. 

Example scenario 1 – deteriorated cluster quality: For a cluster ∈ , let's assume that ,  and 

 be associated with the conditions “far from cluster centroid”, close to cluster centroid” and “neither close 

to nor far from cluster centroid” respectively and contain document vectors for newly arrived documents 

( , ,  and  respectively. For the cluster , let’s further assume that its quality when calculated 

with new and existing documents was found to be deteriorated, i.e., . As per the steps shown in 

Algorithm 2, first  list is checked for the presence of documents. As , so super-level 

restructuring (i.e., Steps 4-26) is applied here. The documents 	and 	are inserted as a sibling cluster of  

by applying _  operator and labels are assigned to the sibling cluster by applying _  

operator. After that  list	is checked for the presence of documents. Here , but before applying 

reorganization operators for ,  list is also checked. As in this case , so _  

operator is applied to merge documents present in both  and  lists. The documents  and  present in 

 and  respectively become part of . Since the cluster  is updated, let's denote the updated cluster as 

′. Note that we check  list before applying operators associated with  list due to the fact that if centroid 
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recalculation and relabeling would be done before merging all the possible documents, then they would not 

accurately represent the cluster. As  list is checked and appropriate actions are already taken, so for ′ 

centroid is recalculated using _  operator. Soon after altering the centroid, the updated cluster is 

assigned new labels by applying _  operator. The addition of the sibling cluster and the updation of 

 affect the label of their parent cluster, so _  operator is applied to assign new labels to the 

parent cluster. 

 

4.2.2 Scenario 2 – non-deteriorated cluster quality 

If , then updates are applied to the cluster through the following simple case:  

Simple merging: Simple merging occurs when a cluster quality is not deteriorated due to the addition 

of new documents. For the cluster , this case simply merges documents in its ,  and  lists in the cluster by 

applying _  operator, resulting in an updated cluster ′, as shown in Steps 44-46 of Algorithm 2. 

Example scenario 2 – non-deteriorated cluster quality: For a cluster ∈ , let's assume that , 

 and  be associated with the conditions “far from cluster centroid”, close to cluster centroid” and 

“neither close to nor far from cluster centroid” respectively and contain document vectors for newly arrived 

documents ( , ∅  and  respectively. For the cluster , let’s further assume that its quality when 

calculated with new and existing documents was found not to be deteriorated, i.e., . This is a simple 

merging (i.e., Steps 44-46) case and all the newly arrived documents are simply merged in the cluster. This is 

because the possible existence of newly arrived documents is not causing deterioration in the cluster quality. It 

would be time and cost efficient to simply merge the new documents in the cluster without making any 

adjustments, like centroid recalculation or relabeling the cluster. So as per the steps shown in Algorithm 2, the 

newly arrived documents, i.e., 	and  are simply merged in the cluster  by applying _  

operator. 

The output of this step of the TIE algorithm is an evolved version of the existing taxonomy. 

Algorithm 2 Reorganizing the existing taxonomy 
Input: list structures and cohesion for each cluster in  
Output: evolved taxonomy  
1. for each ∈  do 
2.      calculate  for  using  existing and ′ new documents 
3.     if  then 
4.         if  then //Steps 4-26: Super-level restructuring 
5.             apply ← _ ,  
6.             apply ← _  
7.             if  then  
8.                 if  then 
9.                     apply ′ ← _ ,              
10.                     apply ← _ ′  
11.                     apply ′ ← _ ′,  
12.                     apply ′ ← _ ,  // : parent node 
13.                 else 
14.                     apply ′ ← _ ,                          
15.                     apply ← _ ′  
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16.                     apply ′ ← _ ′,              
17.                     apply ′ ← _ ,  

18.                 end if 
19.             else  
20.                 if  then 
21.                     apply ′ ← _ ,                                      
22.                     apply ′ ← _ ,  

23.                else 
24.                     apply ′ ← _ ,              

25.                 end if 
26.             end if  
27.         else if  then //Steps:27-38: Relabeling 
28.             if  then 
29.                 apply ′ ← _ ,              
30.                 apply ← _ ′  
31.                 apply ′ ← _ ′,              
32.                 apply ′ ← _ ,  

33.             else 
34.                 apply ′ ← _ ,     
35.                 apply ← _ ′  
36.                 apply ′ ← _ ′,                          
37.                 apply ′ ← _ ,  
38.             end if 
39.         else if  then //Steps 39-43: Sub-level restructuring 
40.             apply ← _ ,  // : child node            
41.             apply ← _  
42.             apply ′ ← _ ,                 
43.         end if 
44.     else //Steps 44-46: Simple merging 
45.         apply ′ ← _ ,                          
46.     end if 
47. end for 
 

4.3 Complexity analysis 

This subsection presents complexity analysis to check the independency of the TIE algorithm on the clustering 

algorithm used for the generation of taxonomy. Moreover, the time efficiency of taxonomy evolution in 

comparison to taxonomy regeneration is also checked through the complexity analysis. Let  denote a number 

of documents in a data set. The time complexity of HAC algorithm (agglomerative approach) is given as a 

function of  distance/similarity matrix, i.e.,  (Karypis et al., 2000). The time complexity of bisect K-

means algorithm (divisive approach) is given as a function of partition parameter and a number of documents 

to partition. Let the partition parameter be denoted as  and a number of documents to partition be denoted as 

, so we can say that the time complexity of bisect K-means is  (Karypis et al., 2000). Let 	denote a 

number of hierarchical clusters formed as a result of applying hierarchical clustering (HAC or bisect K-

means), where logically we assume that ≪ . Let ′ denote a number of newly arrived documents, where for 

shorter time intervals we assume that ′ ≪ . 

Time complexity of TGP: As hierarchy formation is a major step involved in the generation of 

taxonomy, so we ignore the cost associated with other steps of taxonomy generation. Let the time complexity 
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of TGP in the case of HAC and bisect K-means be denoted as  and 	respectively and they are 

approximated as: 

 
(4) 

  (5) 

 
Time complexity of TIE: For the TIE algorithm, we can say that for each newly arrived document,  

comparisons are made to identify the closest cluster. If we consider ignoring the time taken in applying the 

reorganization operators because of the linear trend, then let the time complexity of TIE in the case of HAC 

and bisect K-means be denoted as  and  respectively and they are approximated as: 

 

′  (6) 

′ (7) 

TIE is independent of the clustering algorithm used in TGP: From Equation (6) and Equation (7), we 

can see that the time complexity of TIE algorithm in the case of both the clustering algorithms (i.e., HAC and 

bisect K-means) is same. This shows that the TIE algorithm is independent of the clustering algorithm used for 

the generation of taxonomy and serves as a layer over any of the existing clustering-based taxonomy 

generation techniques. 

Evolution versus Regeneration: We can approximate the time of regeneration by using Equation (4) 

and Equation (5) in the case of HAC and bisect K-means respectively. Let the time complexity of regeneration 

in the case of HAC and bisect K-means be denoted as  and  and they are given as: 

  (8) 

  (9) 

On the other hand, we can approximate the time of evolution by combining Equation (4) and Equation 

(6) in the case of HAC, and by combining Equation (5) and (7) in the case of bisect K-means. Let the time 

complexity of evolution in the case of HAC and bisect K-means be denoted as  and  and they are 

given as: 

′ 
(10) 

′  (11) 

In the case of HAC using Equation (8) and Equation (10), we can observe that ′ ≪  

(as , ′ ≪ ), so taxonomy evolution time is much less than that of taxonomy regeneration. In the case of 

bisect K-means using Equations (9) and Equation (11), we can observe that ′ ≪  (as 

, ′ ≪ ), so taxonomy evolution time is much less than that of taxonomy regeneration. 
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5 Evaluation 

The taxonomy incremental evolution was evaluated in comparison to taxonomy regeneration from scratch on a 

text data set of scholarly articles selected from computing domain. The details of the data set, evaluation 

metrics, experiments and their results are given next. 

 

5.1 Data set specification 

For computing domain, four hundred (400) scholarly articles in pdf format were randomly downloaded from 

ACM Digital Library (http://dl.acm.org/). These documents were then converted into text format using Apache 

Tika (https://tika.apache.org/). ACM Computing Classification System (CCS) 

(http://www.acm.org/about/class/2012), which is a standard topic hierarchy for computing domain, was 

adopted as a reference taxonomy. 

 

5.2 Metrics 

The taxonomies obtained through evolution and regeneration approaches underwent three types of evaluation: 

(i) time-based, (ii) quality-based, and (iii) quality and time-based. The first two of these evaluation methods are 

the same as adopted in our earlier work (Irfan and Khan, 2016), but the last one is the newly proposed method. 

 

5.2.1 Time-based evaluation 

The time-based evaluation was done by observing the runtime of applications associated with both the 

approaches (Irfan and Khan, 2016). Let it denote as . 

 

5.2.2 Quality-based evaluation 

The quality-based evaluation was based on taxonomy’s lexical and hierarchical quality. The lexical quality 

assesses the quality of taxonomy labels, whereas the hierarchical quality assesses the quality of hierarchical 

associations among the taxonomic nodes. For the lexical quality assessment, we adopted lexical precision 

, lexical recall  and lexical F-measure , which have been used in many existing taxonomy 

generation techniques (Dietz et al., 2012; Cimiano et al., 2005). The lexical quality matches a label in both 

computed and reference taxonomies. No matter what kind of relationship a label possesses with other labels in 

both the taxonomies, it is considered as a match. We assessed the lexical quality of both the evolved and 

regenerated taxonomies, in comparison to reference taxonomy, using these metrics. For the hierarchical quality 

assessment, we adopted hierarchical precision , hierarchical  and hierarchical F-measure  

proposed in (Irfan and Khan, 2016). For a label that appears in both computed and reference taxonomies, the 

hierarchical quality compares its parent’s and ancestors’ labels in both the taxonomies to identify a match. The 

formulas and the definitions for the lexical and the hierarchical quality metrics are given in Tables 2 and 3 

respectively. 
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5.2.3 Quality and time-based evaluation 

In this work, we propose a new  metric for assessing the efficiency of taxonomy evolution in comparison to 

taxonomy regeneration. The quality-time ratio combines the quality-based and time-based metrics and is the 

rate of improvement in taxonomy quality per unit time. Let the quality-time ratio be denoted as  and is 

defined as: 

∑ 	 	
 

(12) 

The  value is calculated by summing up the values of both the lexical and the hierarchical quality 

metrics to determine the overall improvement in taxonomy quality per unit time (i.e., the runtime), in the case 

of evolution and regeneration. Although there is no limit on the range of values for this measure, however in 

our case as the quality-based metrics values range between 0 and 1 and time (measured in minutes (denoted as 

)) is greater than 1 in all the cases, so we are getting the values in the range of 0-1. 

 
Table 2 Lexical quality metrics 

Lexical quality metrics 
Given that = a set of all labels in computed (regenerated/evolved) taxonomy; = a set of all labels in reference taxonomy 

Measure Formula Description 
Lexical precision  
 

| ∩ |
| |

 
calculates the percentage of labels in computed (regenerated/evolved) 
taxonomy that are also there in reference taxonomy (Irfan and Khan, 2016) 

Lexical recall  | ∩ |
| |

 
calculates the percentage of labels in reference taxonomy that are also there 
in computed (regenerated/evolved) taxonomy (Irfan and Khan, 2016) 

Lexical F-measure  2
 

the harmonic mean of lexical precision and recall (Irfan and Khan, 2016) 

 

Table 3 Hierarchical quality metrics 

Hierarchical quality metrics 
Given that ∩  = a set of common labels in computed (regenerated/evolved) taxonomy and reference taxonomy; ′  = 
a set of all parent associations and ′ = a set of all ancestor associations for an  term  in ′ (where, ′ can be 
computed (regenerated/evolved) taxonomy, i.e.,  or reference taxonomy, i..e, ) and note that ′ ⊆ ′   

Measure Formula Description 
Hierarchical precision  
 

∑ ∩| ∩ |

∑| ∩ |  
calculates the percentage of all parent associations in 
computed (regenerated/evolved) taxonomy that also 
appear in reference taxonomy as parent or ancestor 
associations (Irfan and Khan, 2016) 

Hierarchical recall  ∑ ∩| ∩ |

∑| ∩ |  
calculates the percentage of all parent associations in 
reference taxonomy that also appear in computed 
(regenerated/evolved) taxonomy as parent or 
ancestor associations (Irfan and Khan, 2016) 

Hierarchical F-measure  2
 

the harmonic mean of hierarchical precision and 
recall (Irfan and Khan, 2016) 

 

5.3 Experiments 

The experiments performed were divided into three parts: Firstly, an initial taxonomy was generated using a 

base data set to be adopted as a foundation for performing regeneration and evolution. Secondly, with the 

addition of new documents taxonomy regeneration was performed for different size data sets to measure the 
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quality and the time metrics values. Finally, with the addition of new documents taxonomy evolution was 

performed for different size data sets to measure the quality and the time metrics values. The details of the 

experiments performed are given next. 

 

5.3.1 Initial taxonomy generation  

Since the main purpose was to check the improvement of evolution over regeneration rather than the 

improvement in taxonomy generation process, therefore we adopted a simple approach towards the generation 

of taxonomy. The type of the data set is textual, therefore we adopted methods suitable for taxonomy 

generation process (TGP) of text data. Note that the TGP adopted is very much similar to the one adopted in 

our earlier work (Irfan and Khan, 2016), with the exception of adopting two different types of hierarchical 

clustering approaches, i.e., agglomerative and divisive, so that the independency of the TIE algorithm on the 

clustering algorithm used in the taxonomy generation process can be checked empirically. TGP was applied on 

a set of 200 randomly selected documents to generate an initial taxonomy. Following are the steps involved in 

generating an initial taxonomy: 

1. TGP performed natural language processing of tokenization, stemming, stop word removal and 

parsing to extract nounphrases. These nounphrases formed the vocabulary of distinct terms for the 

given data set. 

2. Afterward, vector space modeling was applied to express the vocabulary and the data set in the 

form of a vector model. 

3. In order to evaluate independency of the TIE algorithm on the clustering algorithm used in TGP, 

we performed experiments with two types of hierarchical clustering algorithms: HAC 

(agglomerative approach) and bisect K-means (divisive approach). For HAC, we implemented 

three different variants, i.e., single link, complete link and average link to select the best one. It 

was found through various test runs that the average link produced the best results for generating 

taxonomy as compared to other variants of HAC. The experimental results for different variants 

of HAC presented in Table 4 show the average precision, recall and F-measure (lexical) values 

along with the standard deviations  for the generated taxonomy on the data set of 200 

documents. After this step, we had two hierarchical structures (i.e., hierarchical organization of 

unlabeled clusters) each obtained from HAC (average link) and bisect K-means and the evaluation 

was performed for the taxonomies obtained from each of these hierarchical structures. Moreover, 

for bisect K-means, we approximated the value of  (as  should be ≪  (Karypis et al., 

2000)) where  is a number of documents to partition. 

4. For labeling the hierarchical structures produced through both of the hierarchical clustering 

algorithms, top 25 terms (based on  score) of the cluster centroid were adopted as labels and 

they were further pruned to keep general terms as labels for parent clusters and specific terms as 
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labels for child clusters. The reason for choosing 25 terms to label a cluster is that too few or too 

many terms make the cluster (i.e., taxonomic node) hard to interpret. This step produced two 

taxonomies, each corresponding to one of the two hierarchical structures. 

Table 4 Comparison of different variants of HAC based on lexical quality metrics 

For a data set of 200 documents 
HAC variants  average   average   

Average link HAC 0.580	 0.010  0.457	 0.044  0.511 
Complete link HAC 0.437 0.019  0.347 0.072  0.387 
Single link HAC 0.319 0.006  0.234	 0.010  0.270 

 

5.3.2 Taxonomy regeneration 

In order to evaluate the regeneration of taxonomy from scratch when new documents are added to data set, the 

set of 200 randomly selected documents used to generate the initial taxonomy was adopted as a base data set. 

Two sets of experiments were performed: one for evaluating the regeneration of taxonomy in the case of HAC, 

and the other for evaluating the regeneration of taxonomy in the case of bisect K-means. For the case of HAC, 

first 20 documents were added to the data set of 200 documents and the TGP using HAC was performed from 

scratch for 220 documents. As a result of which the initial taxonomy of 200 documents was replaced with the 

new taxonomy for 220 documents. After that, 30 more documents were added to the data set of 220 

documents and the TGP using HAC was performed from scratch for 250 documents. As a result of which the 

existing taxonomy of 220	documents was replaced with the new taxonomy for 250 documents. Experiments 

like this were repeated by adding 40, 50 and 60 more documents in the data set of 250, 290 and 

340	documents respectively. Each of the regenerated taxonomies was evaluated in comparison to ACM CSS to 

get the results for the lexical and the hierarchical quality metrics, as well as the runtime. The same set of 

experiments were repeated for evaluating the regeneration of taxonomy in the case of bisect K-means. 

 

5.3.3 Taxonomy evolution 

In order to evaluate the evolution of taxonomy, similar set of experiments were performed as in the case of 

taxonomy regeneration (see Section 5.3.2).  Starting off with the initial taxonomy of 200 documents obtained 

using HAC, new documents (in the set of 20, 30, 40, 50 and 60) were added in the system and the TIE 

algorithm was run for different size data sets. The lexical and the hierarchical quality metrics, as well as the 

runtime of the taxonomy evolved as a result of each run of the TIE algorithm were noted. The same set of 

experiments were repeated for evaluating the evolution of taxonomy in the case of bisect K-means. 

 

5.4 Experimental results  

The runtime (i.e., ), the lexical quality metrics (i.e., ,  and ) and the hierarchical quality metrics 

(i.e., ,  and ) obtained as a result of taxonomy regeneration (see Section 5.3.2) and taxonomy 

evolution (see Section 5.3.3) in the case of HAC are shown in Tables 5–7 respectively, whereas the runtime 
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(i.e., ), the lexical quality metrics (i.e., ,  and ) and the hierarchical quality metrics (i.e., ,  

and ) obtained as a result of taxonomy regeneration (see Section 5.3.2) and taxonomy evolution (see 

Section 5.3.3) in the case of bisect K-means are shown in Tables 8–10 respectively. We calculated the average 

values for each measure by performing several runs of the experiments and randomly selecting the document 

sets for each run. All results mentioned in Tables 5–10 are stating the average values along with the standard 

deviations .  

 

Table 5 Results of time-based evaluation (in the case of HAC) 

With HAC 	 	   
 

Data set 
 

TGP 
 

TIE 
200 22.842	 0.308   

200 20 220 24.725	 0.080  4.905	 0.232  
220 30 250 28.030 0.170  7.182	 0.245  
250 40 290 46.760	 0.009 	 9.810	 0.180  
290 50 340 59.390	 0.140  15.601	 0.238  
340 60 400 70.088	 0.437  20.675	 0.337  

 

Table 6 Results of lexical quality-based evaluation (in the case of HAC) 

With HAC  	 average  	 average   
 

Data set 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
200 0.580	 0.010   0.457	 0.004   0.511  

200 20 220 0.581	 0.020  0.522	 0.008  0.440	 0.001  0.425	 0.013  0.501 0.469 
220 30 250 0.539	 0.017  0.516	 0.010  0.434	 0.004  0.415	 0.035  0.481 0.460 
250 40 290 0.532	 0.009  0.501	 0.065  0.424	 0.002  0.402	 0.056  0.472 0.446 
290 50 340 0.512	 0.042  0.499	 0.061  0.409	 0.002  0.392	 0.014  0.455 0.439 
340 60 400 0.507	 0.004  0.490	 0.061  0.411	 0.003  0.401	 0.045  0.454 0.441 

 

Table 7 Results of hierarchical quality-based evaluation (in the case of HAC) 

With HAC  	 average  	 average   
 

Data set 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
200 0.351	 0.099   0.330	 0.010   0.340  

200 20 220 0.341	 0.007  0.338	 0.006  0.323	 0.010  0.283	 0.001  0.331 0.308 
220 30 250 0.346	 0.068  0.307	 0.004  0.319	 0.002  0.275	 0.013  0.332 0.290 
250 40 290 0.326	 0.004  0.304	 0.020  0.298	 0.033  0.277	 0.003  0.311 0.292 
290 50 340 0.312	 0.003  0.295	 0.003  0.295	 0.003  0.276	 0.004  0.304 0.285 
340 60 400 0.305	 0.009  0.291	 0.086  0.286	 0.006  0.264	 0.003  0.295 0.277 

 

Table 8 Results of time-based evaluation (in the case of bisect K-means) 

With bisect K-means 	 	   
 

Data set 
 

TGP 
 

TIE 
200 21.157	 0.012   

200 20 220 22.569	 0.310  4.438	 0.010  
220 30 250 23.981	 0.048  6.479	 0.011  
250 40 290 30.642	 0.211  10.911	 0.020  
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290 50 340 45.093	 0.224  13.714	 0.014  
340 60 400 57. 503	 0.126  19.704	 0.050  

 
 
 
 
 

Table 9 Results of lexical quality-based evaluation (in the case of bisect K-means) 

With bisect K-means  	 average  	 average   
 

Data set 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
200 0.445	 0.007   0.323	 0.002   0.374  

200 20 220 0.405	 0.009  0.380	 0.015  0.338	 0.086  0.327	 0.020  0.369 0.352 
220 30 250 0.402	 0.010  0.354	 0.012  0.351	 0.005  0.323	 0.002  0.375 0.338 
250 40 290 0.408	 0.011  0.358	 0.001  0.317 0.003  0.292	 0.016  0.356 0.322 
290 50 340 0.395	 0.012  0.354	 0.012  0.311	 0.094  0.310	 0.002  0.347 0.331 
340 60 400 0.390	 0.037  0.338	 0.004  0.304	 0.083  0.296 0.111  0.342 0.316 

 

Table 10 Results of hierarchical quality-based evaluation (in the case of bisect K-means) 

With bisect K-means  	 average  	 average   
 

Data set 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
 

TGP 
 

TIE 
200 0.244	 0.089   0.217	 0.054   0.229  

200 20 220 0.241	 0.011  0.217	 0.013  0.228	 0.032  0.198	 0.011  0.234 0.207 
220 30 250 0.242	 0.008  0.202	 0.008  0.220	 0.051  0.177	 0.052  0.231 0.189 
250 40 290 0.233	 0.002  0.197	 0.004  0.204	 0.076  0.203	 0.095  0.218 0.199 
290 50 340 0.218	 0.031  0.196	 0.002  0.193	 0.007  0.185	 0.065  0.205 0.190 
340 60 400 0.208	 0.053  0.179	 0.014  0.188	 0.006  0.162	 0.034  0.197 0.170 

 

The time and the quality metrics values listed in Tables 5–10 were used to calculate the quality-time 

ratio (i.e., ), whose graphs are shown in Figs. 2–4 in the case of HAC and in Figs. 5–7 in the case of bisect 

K-means. 

Moreover, it was observed that a number of documents used to form the existing taxonomy and a 

number of newly added documents in the data set are the two factors that can mainly influence the evolution of 

taxonomy, let them denote as 1 and 2 respectively. So we performed sensitivity analysis to check the impact 

of varying these factors on the evolution of taxonomy. Two sets of additional experiments were performed for 

this purpose: firstly, taxonomy evolution was performed for different size data sets by varying 1 and keeping 

2 fixed; secondly, taxonomy evolution was performed for different size data sets by keeping 1 fixed and 

varying 2. The runtime (i.e., ), the lexical quality metrics (i.e., ,  and ) and the hierarchical 

quality metrics (i.e., ,  and ) values obtained as a result of these experiments are shown in Tables 11–

14. Like Tables 5–10, the values in Tables 11–14 are also based on several runs of the experiments and are 

stating the average values along with the standard deviations . 
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Fig. 2 Graph for  in the case of HAC  Fig. 3 Graph for   in the case of HAC 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Graph for  in the case of HAC  Fig. 5 Graph for  in the case of bisect K-

means 
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Fig. 6 Graph for  in the case of bisect K-means  Fig. 7 Graph for  in the case of bisect K-

means 

 

 

 

 

 

Table 11 Sensitivity analysis of the TIE algorithm by varying  and keeping  fixed (in the case of HAC) 

1 2 Data 
set 

	 	 
	 

	 
average  

 
average  

  
average  

 
average  

 

200 30 230 5.024	 0.093  0.528	 0.017  0.438	 0.312  0.479 0.355	 0.101  0.326	 0.088  0.340 
230 30 260 7.298	 0.028  0.526	 0.003  0.430	 0.077  0.473 0.348	 0.002  0.322	 0.011  0.334 
260 30 290 10.016	 0.005  0.519	 0.015  0.424	 0.008  0.467 0.346	 0.014  0.319	 0.004  0.332 
290 30 320 12.103	 0.016  0.514	 0.163  0.417	 0.009  0.460 0.333	 0.631  0.314	 0.014  0.323 
320 30 350 14.876	 0.096  0.511	 0.520  0.409	 0.018  0.454 0.329	 1.430  0.305	 0.654  0.317 
350 30 380 18.955	 0.154  0.502	 0.612  0.405	 0.122  0.448 0.321	 0.996  0.300	 0.216  0.310 

 
Table 12 Sensitivity analysis of the TIE algorithm by keeping  fixed and varying  (in the case of HAC) 

1 2 Data 
set 

	 	 
	 

	 
average  

 
average  

  
average  

 
average  

 

200 30 230 5.024	 0.093  0.528	 0.017  0.438	 0.312  0.479 0.355	 0.101  0.326	 0.088  0.340 
200 60 260 9.986	 0.021  0.503	 0.188  0.410	 0.512  0.452 0.349	 0.220  0.317	 0.096  0.332 
200 90 290 12.645	 0.003  0.499	 1.019  0.400	 0.013  0.444 0.328	 0.060  0.314	 0.054  0.321 
200 120 320 19.832	 0.005  0.435	 0.016  0.375	 0.305  0.403 0.294	 0.089  0.285	 1.001  0.289 
200 150 350 22.608	 0.014  0.421	 0.550  0.331	 0.007  0.371 0.254	 0.005  0.263	 0.043  0.258 
200 180 380 28.111	 0.119  0.408	 0.715  0.311	 0.013  0.353 0.248	 0.021  0.247	 0.167  0.247 

 

Table 13 Sensitivity analysis of the TIE algorithm by varying  and keeping  fixed (in the case of bisect K-means) 

1 2 Data 
set 

	 	 
	 

	 
average  

 
average  

  
average  

 
average  

 

200 30 230 4.501	 0.185  0.377	 0.003  0.330		 0.057  0.352 0. 257	 0.002  0. 219	 0.076  0.236 
230 30 260 7.001	 0.009  0. 365	 0.018  0.325		 0.041  0.344 0. 250	 0.013  0. 213	 0.041  0.230 
260 30 290 10.965	 0.014  0. 360	 0.154  0. 311	 0.190  0.334 0.236		 0.009  0. 202	 0.199  0.218 
290 30 320 11.909	 0.006  0. 359	 0.201  0. 304	 0.301  0.329 0. 232	 0.198  0.200		 0.031  0.215 
320 30 350 14.132	 0.014  0.347		 0.109  0. 301	 0.188  0.322 0. 219	 0.005  0. 194	 0.005  0.206 
350 30 380 16.502	 0.176  0. 342	 0.005  0.299		 0.004  0.319 0. 206	 0.203  0.191		 0.042  0.198 

 

Table 14 Sensitivity analysis of the TIE algorithm by keeping  fixed and varying  (in the case of bisect K-means) 

1 2 Data 
set 

	 	 
	 

	 
average  

 
average  

  
average  

 
average  

 

200 30 230 4.501	 0.185  0.377	 0.003  0.330	 0.057  0.352 0.257	 0.002  0. 219	 0.076  0.236 
200 60 260 8.614	 0.064  0.362		 0.011  0. 316	 0.054  0.337	 0. 234	 0.109  0. 214	 0.003  0.224 
200 90 290 13.113	 0.050  0. 359	 0.009  0. 301	 0.087  0.327 0. 200	 0.122  0. 185	 0.001  0.192 
200 120 320 17.340	 0.088  0. 328	 0.055  0. 276	 0.121  0.300 0. 174	 0.034  0.166		 0.021  0.170 
200 150 350 21.877	 0.176  0. 315	 0.062  0. 263	 0.139  0.287 0. 155	 0.142  0. 154	 0.046  0.154 
200 180 380 27.190		 0.316 0. 303	 0.006  0.244	 0.046  0.270 0.121	 0.078  0.138		 0.008  0.129 
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5.5 Discussion 

The observations related to the comparison of taxonomy evolution with taxonomy regeneration presented in 

Section 5.4 are given below: 

 We can see that the time-based evaluation, given in Table 5 in the case of HAC and Table 8 in the 

case of bisect K-means, clearly reflects the essence of the incremental evolution of taxonomy in 

comparison to regeneration. Note that as expected, the amount of time it takes to evolve is less 

than that of regeneration, which is also demonstrated through complexity analysis presented in 

Section 4.3. This difference in time is more pronounced particularly with the increase in data set 

size. 

 In the case of quality-based evaluation, precision, recall and F-measure values (both lexical, i.e., 

,  and  and hierarchical, i.e., ,  and ) for regeneration are slightly better than 

those obtained as a result of evolution, as shown in Tables 6 and 7 in the case of HAC and Tables 

9 and 10 in the case of bisect K-means. Moreover, from the graphs shown in Figs. 8 and 9 in the 

case of HAC and in Figs. 10 and 11 in the case of bisect K-means, we can observe that the lexical 

measures are giving better results as compared to the hierarchical measures in all the cases for 

both regeneration and evolution. 

 In the case of quality and time-based evaluation, we can see from all the graphs shown in Figs. 2–

7 that the quality-time ratio (i.e., ) value is higher in the case of evolution for different size 

data sets. However, the ratio shows a steady behavior for regeneration which seems not affected 

much by the increase in the data set size. For evolution case, the  is particularly higher when 

the data set is small and a number of newly added documents is less. As more documents are 

added to the system, the  for evolution shows a decline yet keeping an edge over regeneration.  

 Additionally, we can observe that the values for the quality measures in the case of HAC, shown 

in Tables 6 and 7, appear to be better as compared to that of bisect K-means, shown in Tables 9 

and 10 in all the cases for both regeneration and evolution. However, bisect K-means is giving a 

slight edge over the runtime as compared to that of HAC in all the cases for both regeneration and 

evolution, as can be seen from Tables 5 and 8. 

The observations related to the sensitivity analysis of taxonomy evolution presented in Section 5.4 are 

given below: 

 It can be observed through the results presented in Table 11 in the case of HAC and Table 13 in 

the case of bisect K-means that when the factor 1, i.e., a number of documents used to form the 

existing taxonomy is varied and the factor 2, i.e., a number of newly added documents in the 

data set is kept fixed, then the increase in time and decrease in taxonomy quality both lexical and 

hierarchical are showing steady deteriorating behavior with the increasing values of 1. 
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 On the other hand, it can be observed through the results presented in Table 12 in the case of 

HAC and Table 14 in the case of bisect K-means that when the factor 1, i.e., a number of 

documents used to form the existing taxonomy is kept fixed and the factor 2, i.e., a number of 

newly added documents in the data set is varied, then the increase in time and decrease in 

taxonomy quality both lexical and hierarchical are showing sharp deteriorating behavior with the 

increasing value of 2. 

 Based on this analysis, we can say that a number of newly added documents in the data set (i.e., 

2) is the factor that has influenced the time and quality metrics values of the TIE algorithm more 

as compared to a number of documents used to form the existing taxonomy (i.e., 1). It seems 

that the evolution is advantageous when new documents arrive in small chunk. If data arrival is in 

large chunk, then there might arise a time when evolution performance drop to a level where it 

can lose its advantage over taxonomy regeneration. 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Graph for Lexical vs. Hierarchical F-measure (TGP) in 

the case of HAC 

Fig. 9 Graph for Lexical vs. Hierarchical F-measure (TIE) 

in the case of HAC 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Graph for Lexical vs. Hierarchical F-measure (TGP) 

in the case of bisect K-means 

Fig. 11 Graph for Lexical vs. Hierarchical F-measure (TIE) 

in the case of bisect K-means 

The general observations related to the experimental results presented in Section 5.4 are given below: 

 The application of the TIE algorithm on existing taxonomies generated through agglomerative 

and divisive approaches to hierarchical clustering without making any adjustments shows that the 
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proposed algorithm easily serves as a layer over any of the existing clustering-based taxonomy 

generation techniques, which is also demonstrated through complexity analysis presented in 

Section 4.3. 

 As far as the scalability of the TIE algorithm is concerned, overall, we can see deteriorating trend 

in time and quality metrics values with the increasing size of the data set which is used to form 

taxonomy in all the tests performed, i.e., the test results showing the comparison of taxonomy 

evolution with regeneration (Tables 5–10) and the test results showing sensitivity analysis of 

taxonomy evolution (Tables 11–14). This is even the case for taxonomy regeneration from scratch 

in all the test results shown in Tables 5–10. 

 

6 Conclusion and Future Work 

In this paper, taxonomy incremental evolution (TIE) algorithm is designed to incrementally evolve an existing 

taxonomy to adjust changes that occur in underlying data. The algorithm takes an existing taxonomy, the 

respective hierarchical structure and newly arrived documents as its input. It identifies the closest cluster in the 

hierarchy for each of the newly arrived documents based on similarity among them. It then applies various 

reorganization operators to adjust the newly arrived documents in the hierarchy and finally in the existing 

taxonomy to evolve it. The algorithm is compared with taxonomy regeneration approach based on complexity 

analysis and empirical evaluation. The complexity analysis of the algorithm demonstrates that it is better than 

regeneration in terms of time, and it is independent of underlying clustering approach used for taxonomy 

generation. On the other hand, the empirical evaluation is performed using a data set of scholarly articles 

selected from computing domain, based on three parameters. The time-based evaluation clearly shows that the 

TIE algorithm takes comparatively less time to adjust new documents in an existing taxonomy. Although,  

taxonomy regeneration is showing better results quality-wise, but the quality-time ratio of the TIE algorithm 

indicates that the rate of improvement in taxonomy quality per unit time is better than that of regeneration. 

Moreover, it is identified through the results of the sensitivity analysis of the TIE algorithm that it performs 

better when the arrival of new data is in small chunk.  

The proposed TIE algorithm produces an evolved taxonomy in a shorter period of time to represent 

changes occur in underlying data for effective utilization of taxonomy. The quality of the evolved taxonomy 

can be further enhanced by incorporating semantics in identifying the closest cluster for newly arrived 

documents. Furthermore, the proposed algorithm also requires the setting of time interval value between two 

consecutive runs of the evolution process. Currently, for the test data set, the running of the TIE algorithm is 

self-controlled based on the addition of new documents, but for a real data set it should be set depending upon 

the update characteristics (i.e., a number of newly arrived documents per unit time) of the data set. In general, 

for the data set for which new documents are frequently arriving the time interval for the evolution should be 

set lesser than the time interval for the data set for which the arrival of new documents is not very frequent. 

Moreover, the deteriorating trend in time and quality metrics values with the increasing size of the data set 
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which is used to form taxonomy shows that the scalability aspect of the proposed solution should also be 

improved further. In future, the proposed algorithm can be applied to discover emerging trends and patterns in 

social media where data is evolving rapidly.  
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