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Abstract

This paper addresses the problems of both general and also fine-grained human action recognition in video

sequences. Compared with general human actions, fine-grained action information is more difficult to detect

and occupies relatively small-scale image regions. Our work seeks to improve fine-grained action discrimi-

nation, while also retaining the ability to perform general action recognition. Our method first estimates

human pose and human parts positions in video sequences by extending our recent work on human pose

tracking, and crops different scaled patches to obtain richer action information in a variety of different scales

of appearance and motion cues. We then utilize a Convolutional Neural Network (CNN) to process each such

image patch. Instead of using the output one dimension feature from the full-connection layer, we utilize

the outputs of the pooling layer of CNN structure, which contains more spatial information. Then the high

dimension of the pooling features is reduced by encoding, to generate the final human action descriptors

for classification. Our method reduces feature dimension while also effectively combining appearance and

motion information in a unified framework. We have carried out empirical experiments using two publicly

available human action datasets, comparing the human action recognition result of our algorithm against six

recent state-of-the-art methods from the literature. The results suggest comparatively strong performance

of our method.

Keywords: human pose, action recognition, video understanding

1. Introduction1

Video sequences provide much richer information about actions, compared to an individual still image.2

Consider a single still image showing a man holding a knife in a kitchen scene. We cannot tell what he is3

doing with the knife. Does he want to cut something? Or is he cleaning the knife? In contrast, such action4

understanding is often much more easily obtainable from a video sequence. Still images provide spatial5

cues [1] and provide information to answer “what is that?”; while video provides both spatial and temporal6

cues [2], and can answer “what is going on?”.7

Preprint submitted to Pattern Recognition November 20, 2017
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Recognition of human-induced actions in videos has gained significant amount of interest in the fields of8

computer vision and pattern recognition. This is due to its increasingly large number of applications in the9

areas of human-machine interaction [3], intelligent space[4], virtual reality, elderly care [5], robotics [6] etc.10

It also plays a vital role in many computer vision tasks such as video annotation, video retrieval etc. Human11

action recognition, which is a task of assigning videos to a set of action classes, is a challenging problem due12

to: large variety of activities [7], complex human actions and background movements [8], various observation13

views [2] and limited observation capacities [9], as well as ambiguous movements of different actions [10]. It14

has been intensively studied in the literature for more than two decades, where the corresponding methods15

varies from template matching [11], hand-crafted points of interest features [8], to deep learning methods [12].16

While a variety of methods have been proposed in the recent years to recognize actions, most of them17

focus on videos with coarse actions [13, 14], such as lifting: where upper body moves upward; diving: where18

entire body drops; kicking: where one leg moves while the other remains static; etc. However, these are not19

typical in general scenes of life. In many applications, fine-grained actions [7] need to be recognized, e.g.20

washing hands versus falling water from tap. In this paper, we primarily focus on this problem of recognising21

fine-grained actions in the videos. It is highlighted that, for fine-grained action recognition, spatial regions22

that contain contextual cues have most distinguished information and should receive greater attention. Some23

related works in the literature [15, 16] use thousands of region proposals to extract action information, and24

then choose the most distinguished region features for action recognition. However, these methods can suffer25

in cluttered scenes, e.g. an image of a person squeezing an orange in the kitchen, with a stirrer nearby, might26

be erroneously recognised as stirring rather than squeezing. We estimate coarse pose along videos, and then27

extract the human body region and operation region in each frame, in order to enhance the effective pixels28

for human action. Then the enhanced patches are processed with CNNs.29

CNN structure contains convolutional layers, pooling layers, and fully connected layers. In convolutional30

and corresponding pooling layers, the kernel traverse all over the image with specified size and stride, which31

makes the output data maintain some spatial information. However, fully connected layer transforms previ-32

ous multi-dimension data into one dimension vector, which would change and loose the spatial information33

mentioned in previous layers. That is to say, the last pooling layer data of CNN structure contains more34

spatial information than generally used full connection layer data. In our work, we propose an effective35

encoding method for the pooling layer data, which is able to make better use of spatial information and help36

to obtain more distinguishable descriptors for general and fine-grained human actions.37

1.1. Overview of our method38

In this section we provide an overview of the proposed method, highlighting important steps. Given a39

video, the following steps are performed to recognise fine-grained actions: firstly, we introduce a pose esti-40

mation method, which evaluates pose candidates based on appearance information and motion information,41
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(b) From image patch sequences to fine-grained action descriptor.

Figure 1: Illustration of the proposed method pipeline. (a) Raw video sequence as system input, and then human pose detector
is used for each frame to help segment all image region, human region and operation region patches for both color images and
optical flow images. (b) Each image patch is processed by related CNN structure, and data from pooling5 layer are encoded to
obtain final fine-grained action descriptor.

and then we use the human pose estimation method to obtain the human body positions and regions in each42

video frame. Secondly, six image patch sequences are obtained based on the human body positions, and43

these patches are later fed to CNN structures as inputs. Finally, we construct human action discriminative44

features for videos by encoding pooling layer outputs of the CNN structures.45

A detailed pipeline of our method is shown in Fig. 1. The main contributions of this work are explained46

as follows:47
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(i) Firstly, we propose a coarse human pose tracking and estimation method by extending our recent work48

on human pose tracking [17], see steps (i), (ii) and (iii) of Fig. 1(a). Unlike in our previous work, for49

recognizing human actions, we are not interested in the very exact locations of human keypoints; but50

aim at obtaining human body foreground regions and the corresponding appearance and motion cues51

to distinguish different human actions. In this case, our proposed human coarse pose tracker focuses52

on achieving the continuity and consistency of human foreground region in the video.53

(ii) Secondly, we propose a method to use six image patch sequences to enhance and extract different scales54

and types of information for both appearance and motion cues. RGB and optical flow image sequences55

are used for obtaining appearance and motion information separately. The tracked human poses (from56

step (iii) of Fig. 1(a)) are used to crop regions from both RGB and optical flow images (see steps (ii)57

and (vii) of Fig. 1(a)). For each type of image, we get patches that contain human foreground regions58

(see steps (v) and (ix) of Fig. 1(a)), and regions around human arms (see steps (vi) and (x) of Fig. 1(a)).59

As a result, six image patch sequences are obtained for each video sequence. Each image patch has60

been resized to be of the same size i.e., 224 × 224 pixels. The obtained patches enhance and insert61

effective pixels for recognizing fine-grained human actions.62

(iii) Thirdly, instead of using the fully connected layer outputs of CNN structures, we propose a feature63

constructing method by encoding the outputs of last pooling layers (see steps (iii) and (vii) of Fig. 1(b))64

using the vector of locally aggregated descriptors (VLAD) encoding method (see steps (iv) and (viii) of65

Fig. 1(b)). The last pooling layer data contain more spatial information than that of the fully connected66

layer, and some of the spatial information would be lost in the following full connection operation.67

Consequently, in our proposed method, we utilize data and information from the last pooling layer for68

patches of different types and scales. The proposed encoding and assembling method makes better use69

of multiple types of action information.70

We test our method on two publicly available datasets: sub-JHMDB dataset and MPII Cooking dataset,71

and the results are compared against six other state-of-the-art algorithms.72

The remainder of the paper is organized as follows. The methods that are closely related to our work are73

presented in Section 2. The proposed method for obtaining contextual cue regions is presented in Section 3.74

Experiments performed to validate the proposed method are discussed in Section 4. Section 5 provides75

concluding remarks and suggestions for future work.76

2. Related Work77

Human action recognition is a key research area in the field of computer vision, and has been previously78

surveyed by many researchers [18, 19]. In this section, we discuss some of the most relevant related work.79
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In the past decade, local features such as SIFT [20], HOG [21], HOF [22] etc. have been widely used80

for accomplishing visual recognition tasks [23, 24]. These methods often firstly extract spatial and temporal81

local features, and then use encoding methods, for example, bag of features (BoF) [25] to encode local82

features into vectored collections, and finally a classifier such as SVM is used for classification. However,83

each kind of feature is only able to describe a single property, such as color, contour or salient points. As a84

result, researchers rely more and more on combining several features together [26, 27] to represent complex85

properties. For instance, from their survey on multi-view learning, Xu et al. [28] identified that multi-86

view learning is rendered more effectively by exploring the consistency and complementary properties of87

different views. Later in [29], they handled the incomplete-view problem for image restoration by exploiting88

the connections between multiple views. Similarly, Li et al. [30] solved the image re-ranking problem by89

exploiting the complementarity between the deep features and shallow representations, and by integrating90

these two heterogeneous features into a multi-view feature learning model. Furthermore, Bregonzio et al. [31]91

fuse local pace and time individual descriptors with global spatio-temporal distribution information to solve92

action recognition problem. It is clear that these combined features improve the visual recognition accuracy93

compared with single feature methods.94

In other cases, hierarchical structures [32, 33, 34] have been studied for creating more sophisticated hand-95

crafted features. For instance, Ma et al. [33] proposed a hierarchical structure for action recognition, where96

video segmentation trees are computed in the first layer using Ultrametric Contour Map (UCM) [35]. These97

trees are then pruned in the second layer using shape, color, motion, and other information. Later in the98

third layer, the method tracks the remaining segment trees both forwards and backwards in time, and used99

the bag-of-words representation for recognition. Liu et al. [36] also proposed a hierarchical structure for100

action recognition. In the first layer of their method, they combine optical flow with a biologically inspired101

feature to create a distinguishable feature, which is denoted as Pyramidal Motion Feature (PMF); then in102

the second layer, the PMFs are combined with spatial information to obtain final action descriptor.103

Convolutional Neural Networks (CNNs) firstly emerged with the proposition of visual nervous system104

by Hubel and Wiesel [37], and were later implemented by Fukushima [38]. Since then, many researchers105

made efforts to improve the performance of CNN structures for various tasks. Wu et al. [39] proposed a106

kind of quantized CNN (Q-CNN) framework, which simultaneously speeds up the computation and reduces107

the storage and memory overhead of CNN models. It uses an effective training scheme to suppress the108

accumulative error while quantizing the whole convolutional network. Ijjina et al. [40] proposed a genetic109

algorithm based CNN (GA-CNN) structure, which uses solutions generated by genetic algorithms to initialize110

the weights of CNN classifier. The proposed GA-CNN structure is able to combine the global optimization111

capabilities of genetic algorithms with the local optimization ability of gradient descent algorithm, and as a112

result, it minimizes the classification error and improve the performance. Wang et al. [41] proposed a CNN113
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packing framework (CNNpack), which handles convolutional filters in the frequency domain using discrete114

cosine transform to compress neural networks. The CNNpack has high compression ratio and speed-up ratio115

proofed by experiments, which creates a bridge to link traditional signal and image compression with CNN116

compression theory.117

Recently, CNNs have been used in a wide range of applications in different fields including computer118

vision, e.g. object detection [15, 42] and image classification [43]. Girshick et al. [15] constructed region-119

based CNN (R-CNN) features for detecting objects in still images, and the regions are pre-detected multiple120

parallel regions which are possible to contain distinguishable object information. Later, Gkioxar et al. [16]121

extended multiple parallel regions in [15] to become one primary region which is detected by a human122

detector and a set of secondary regions for human action recognition problem in static images. Lin et al. [44]123

proposed a bilinear CNN model for fine-grained object recognition in still images. In their work, they have124

used two similar CNN architectures for one RGB frame and calculated the outer product of the two CNN125

output matrices to obtain a vector descriptor for object recognition in static images. Yang et al. [3] made126

use of a two-stream CNN structure for recognizing human grasp actions in videos. In that work, one CNN127

stream was used for classifying the hand grasp type and the other for object recognition. Karpathy et al. [12]128

used a two stream CNN structure for video classification: one stream for low-resolution images and another129

for high-resolution center regions. Simonyan and Zisserman [2] extended the two stream CNN structure for130

action recognition in videos, but used one stream for color images and the other for optical flow images. This131

structure improved the action recognition accuracy by making use of both spatial and temporal information.132

Cheron et al. [10] extracted image patches around estimated human pose joints for CNN processing, showing133

that knowledge of human pose contains useful information about human actions. They also revealed that the134

accuracy of detected human poses plays an important role. However, human pose estimation and tracking135

is another challenging problem in its own right [17].136

Inspired by region-based methods for still images [15, 16], we propose a region-based action recognition137

method for videos. We propose a coarse human pose detector, which estimates human poses in each frame138

of the video to identify human foreground regions. Additionally, we define an operation region for humans139

who are performing fine-grained actions. Heretofore, we achieve six-stream patch sequences that are then140

processed by the CNN structures. We use two types of CNN structures: one for the three RGB streams,141

and the other for the three optical flow streams. The three RGB streams represent the pyramid appearance142

cues whereas the three optical flow streams represent the pyramid motion cues. The last CNN pooling layer143

outputs are then processed by encoding to generate final video descriptors, which are able to recognize a144

variety of fine-grained human actions.145

6
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Figure 2: A sample DS puppet model for the human upper body. Colored wireframes represent different body parts and grey
points represent the corresponding keypoints.

3. Method146

The procedure and pipeline of our proposed method is illustrated in Fig. 1. In this section we introduce147

them in detail.148

3.1. Human pose estimation in video sequence149

We build on our recently published state-of-the-art human pose tracker [17] to track human poses,150

yielding information-rich features which can then be fed into the CNN architecture. The utilized DS puppet151

model [45] (see Fig. 2) is a part-based probabilistic model, which represents human body parts as their152

natural shapes, connected in a kinematic chain. This model is learned from training contours derived from153

SCAPE [46], which is a 3D model for articulated human shape. The variability of the model parts is gained154

through Principle Component Analysis (PCA). The DS puppet model and the corresponding keypoints are155

illustrated in Fig. 2.156

Human body pose candidates are initialized by utilizing the method of flowing DS puppets [47], which157

proposes DS pose candidates through the entire video. With image evidences from adjacent frames propa-158

gated forwards and backwards over time, each frame obtains much richer cues for consistent pose estimation.159

In this case, for each frame t in a video sequence {t|t ∈ [1, 2, ..., T ]}, we have body poses generated for160

the frame t as well as body poses propagated from frame t − 1 and t + 1. The body pose is evaluated by161

a contour-based term pct(It|xt), a color based term pcl(It|xt), and a hand likelihood term ph(It|xt) [17], as162

shown in Eq. (1):163

p(It|xt) = λctpct(It|xt) + λclpcl(It|xt) + λhph(It|xt). (1)

where, It means the image of frame t in the video sequence, and xt = [kt, st] represents the vector of DS164

model variables. kt represents body pose keypoints location vector, which contains 2D location information165

7
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of nine elements, i.e. belly button, face, neck, left/right shoulders, left/right elbows as well as left/right166

wrists. st means the scale which used to fit human pose models into certain images of various size. λct, λcl167

and λh are fixed coefficients whose values and the selection criteria are shown in Table 1.168

Using the cost function given by Eq. (1), we are able to select one pose candidate with the highest score169

for each frame, but the consistency throughout the entire video sequence cannot be ensured. Besides, in170

our case i.e. for the problem of human action recognition in videos, we only need to use the human pose171

estimation outcome to extract various types of image patches which contain multiple action information.172

That is to say, in our specific work, coarse but consistent human pose results are enough, and there are no173

needs to seek the exact positions of each key point of the human body.174

In order to assure the consistency of human pose estimation, we add an additional term called consistency175

penalty term to the cost function Eq. 1. The penalty term, denoted by pcs(It−1, It, It+1|xt−1,xt,xt+1), helps176

filtering inconsistent pose candidates in the video sequence.177

In frame t (1 < t < T ), the estimated pose candidate variable xt is then propagated to frame t + 1178

using the optical flow affine matrix to get a pose candidate variable x̂t+1 = [k̂t+1, ŝt+1]. Similarly, xt is also179

propagated to frame t−1 to get x̂t−1 = [k̂t−1, ŝt−1]. As a result, we are able to calculate two distance terms:180

dt,t−1 =
N∑

i=1

|k̂t−1(i)− kt−1(i)|; dt,t+1 =
N∑

i=1

|k̂t+1(i)− kt+1(i)|. (2)

At an initial attempt, we chose the coarse consistency penalty term to be the average of two distance181

terms. However, we found that this would lead to over-penalty when the optical flow matrix was not reliable.182

To resolve this problem, we compute a summarized distance dc between neck and face, neck and left shoulder,183

and neck and right shoulder. By selecting dc/2 as a threshold, we define the consistency penalty term to be:184

pcs(It−1, It, It+1|xt−1,xt,xt+1) =




w × (dt,t−1 + dt,t+1)/2, if < dc/2

dc/2 , otherwise

(3)

where, w is a weight coefficient. In our implementation, we set this value to be w = 2 found by trial and185

error.186

For the frame t = 1, the consistency penalty term is defined as:187

pcs(It−1, It, It+1|xt−1,xt,xt+1) = pcs(It, It+1|xt,xt+1) =




w × dt,t+1, if < dc/2

dc/2 , otherwise

(4)

8
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while for the frame t = T , the consistency term is defined as:188

pcs(It−1, It, It+1|xt−1,xt,xt+1) = pcs(It−1, It|xt−1,xt) =




w × dt,t−1, if < dc/2

dc/2 , otherwise

(5)

Then the cost function for evaluating consistent human poses in video sequences for each frame is defined189

as:190

s = λpp(It|xt) + λcspcs(It−1, It, It+1|xt−1,xt,xt+1) (6)

where, p(It|xt) is the cost function for human part pose candidates in each image frame as illustrated in191

Eq. (1). λp and λcs are fixed coefficients, which are described in Table 1.192

The parameter values used to test the method and their corresponding selection criteria are summarized193

in Table 1 based on their applications and magnitudes. The values of the parameters reported in Table 1194

are fixed for all our experiments i.e. for all video sequences of various datasets.195

Table 1: List of the parameters used in the experiments and corresponding selection criteria.

Equation Coefficients Selection

Cost function for each image Eq. (1) λct = 4, λcl = 1, λh = 1 0 < λh ≤ λcl < λct
Cost function for video sequence Eq. (6) λp=1, λcs = −3 λcs < 0 < λp

3.2. Obtaining Contextual Cues Regions196

Information presented by a video sequence is often divided into spatial and temporal information. The197

spatial information exists in each individual frame, i.e. scenes and objects; while the temporal information198

lies within the motion between adjacent frames, i.e. the movement of observers or cameras and the motion199

of objects in the scene. In order to obtain rich temporal information, in addition to the original RGB video200

frame images, we also calculate the optical flow images for each pair of adjacent frames.201

3.2.1. Appearance cues202

For any given video frame, we first extract the pose of the human actor using our method described203

in Section 3.1, for example, as shown in Fig. 3(a). Next, for the given frame, we use the obtained pose204

information to extract three different area patches: full image area (red), human area (green) and operation205

area (blue), as shown in Fig. 3(b). Full image patches are obtained by resizing the original video frames to206

be 224× 224.207

Using the human pose estimation method illustrated in Section 3.1, we are able to obtain points of entire208

human pose contours. The top left and bottom right points of the counters are calculated and are represented209

9
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(a) Human pose estimation result (b) Patches extraction

Figure 3: Crop the raw video frame image utilizing the pose estimation result to get different types of patches. (a) the human
estimation result for each video frame. (b) different color boxes represents the crop edges: red box is for the full image patch,
green box represents the body patch, while blue box means the operation patch.

htp

hbk

thresholdlhtk

hbp

thresholdl

Figure 4: Calculation and selection of the body area.

as kht and khb respectively, as illustrated in Fig. 4. By assuming the size of the original video image frame210

t as [a× b], we define and set a patch margin threshold lthreshold as shown in Eq. (7).211

lthreshold =
min(a, b)

10
× st (7)

where, st represents the scale used to fit human pose models into certain images of various size (see expla-212

nation below Eq. (1)).213

Using kht, khb, and lthreshold, we are able to calculate the top left point pht and the bottom right point214

phb of the human body area, as defined in Eq. (8) and shown in Fig. 4. The corresponding human body215

10
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patch is obtained by resizing the region among pht and phb to be 224× 224, as shown in Fig. 6(b).216




pht(x) = kht(x)− lthreshold,

pht(y) = kht(y)− lthreshold,




phb(x) = khb(x) + lthreshold,

phb(y) = khb(y) + lthreshold.

(8)

otp

otk

leftl
obk

rightl

obp

thresholdl

thresholdl

Figure 5: Calculation and selection of the operation area.

The calculation of operation patch is shown in Fig. 5. Operation patch represents the visual details217

around human actor’s lower arms. We first obtain the top left kot and bottom right kob points of left/right218

elbows and left/right wrists. Then, we calculate the lengths lleft and lright, which represent the length of219

left and right lower arms, respectively. Next, the top left (pot) and the bottom right (pob) endpoints of the220

operation area are computed as shown in Eq. (9).221




pot(x) = kot(x)− lthreshold − 1

2 × lmax,

pot(y) = kot(y)− lthreshold − 1
2 × lmax,




pob(x) = kob(x) + lthreshold + 1

2 × lmax,

pob(y) = kob(y) + lthreshold + 1
2 × lmax,

(9)

where, lmax = max(lleft, lright) represents the maximum length of lower arms.222

The operation area is the region from pot to pob. We resize this region to be 224 × 224, and get the223

operation patch as shown in Fig. 6(c).224

3.2.2. Motion cues225

As well as obtaining appearance information from the extracted three image patches, we calculate optical226

flow images between adjacent video frames using the method proposed by Brox et al. [48], Fig. 7 shows the227

magnitude image of the two-dimension optical flow image for two adjacent images calculated using the228
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Figure 6: Three RGB patches for each frame of fine-grained action video sequence.

method of Brox et al. [48]. The optical flow image for each frame t− 1 and t is represented as Ût:229

Ût =




fflow(It, It+1), if t = 1

fflow(It−1, It), otherwise
(10)

where, fflow(·) represents the method of calculating the optical flow matrix for two images proposed by [48].230

According to the requirement of flow-CNN (described in Section 3.3), patches should be of three channels,231

so we need to transfer every [a× b× 2] dimension optical flow image Ût which is calculated by Eq. (10) into232

an [a × b × 3] matrix. This has been performed in the following steps. First, using Eq. (11) we calculate233

|U(x, y)|, which is the magnitude of Ût. Later, this magnitude is processed using the linear transformation234

shown in Eq. (12). The resultant matrix of this step serves as the additional third channel of the new optical235

flow image Ut. Next, the first two channels of Ut are calculated using Eq. (13). Finally, all three channels236

are concatenated to form the new optical flow image Ut. Fig. 8 shows the computed three channels of the237

optical flow image.238

|U(x, y)| =
√
Ût(x, y, 1)

2
+ Ût(x, y, 2)

2
(11)

Ut(x, y, 3) = 16× |U(x, y)| (12)

Ut(x, y, c) = 16× Ût(x, y, c) + 128, where c = 1, 2 (13)

Similar to the RGB patches in Fig. 6, we also extract three patches for each frame, i.e. full image patch,239

body patch and operation patch, as shown in Fig. 9.240
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Figure 7: Calculation of the optical flow image for adjacent two video frames. (a) The image of frame t − 1; (b) The optical
flow magnitude between the frame t− 1 and t; and (c) The image of frame t.

(a) 1st channel (b) 2nd channel (c) 3rd channel  

Figure 8: Three channels of optical flow patches for each frame of fine-grained action video sequence.

full image patch body patch operation patch

Figure 9: Three optical flow patches for each frame of fine-grained action video sequence.
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3.3. Convolutional Neural Network Structures and Action Descriptor Construction241

Considering that the properties for RGB images and flow images are different, we use similar but different242

CNN networks for RGB and flow patches separately. For simplicity, we call them RGB-CNN and flow-CNN243

respectively. Each of these networks have five convolutional layers and three pooling layers, as shown in244

Table 2. In Table 2, n1 × k1 × k1 for convolutional layers mean using n1 numbers of k1 × k1 kernels, and245

k2×k2 for pooling layers mean using k2×k2 kernels. Besides, in Table 2, “str” means stride, and “pad” means246

padding. To make our proposed method more general, unlike some other related works which train data and247

parameters for each dataset specifically and individually, we use the same pre-trained CNN configurations248

for all the video sequences of various datasets. In our method, the data and parameters of the RGB-CNN249

architecture are pre-trained by Chatfield and Simonyan [49] using ILSVRC-2012 dataset [50]; while the data250

and parameters of the flow-CNN are trained by Gkioxari and Malik [42] using UCF101 dataset [51].251

Table 2: CNN structures

Layer conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 fc6 fc7

RGB- 64x11x11
2x2

256x5x5
2x2

256x3x3 256x3x3 256x3x3
2x2 4096 4096CNN str 4 str 1 str 1 str 1 str 1

pad 0 pad 2 pad 1 pad 1 pad 1

flow- 96x7x7
3x3

384x5x5
3x3

512x3x3 512x3x3 384x3x3
3x3 4096 4096

CNN str 2 str 2 str 1 str 1 str 1

As depicted in Table 2, pool5 refers to the features of the last pooling layer, while fc6 and fc7 represent252

the features of first and second fully connected layers, respectively. Most current related works, for example,253

Girshick et al. [15] and Cheron et al. [10], use features of fc6 or fc7 to construct image descriptors, as254

illustrated in Fig. 10(a). However, other works claim that pool5 contains more spatial information and255

could provide more distinguishable descriptors [52]. In our proposed work, we use the features of pool5 to256

construct image descriptors, as illustrated in Fig. 10(b). Consider RGB-CNN for instance, the pool5 layer257

has 6 × 6 × 256 features, which corresponds to a vector of 9216 dimension, while fc6 and fc7 features are258

of 4096 dimension. In order to reduce the computational cost, we obtain reduced dimension by encoding.259

The most common used encoding methods are Fisher vector encoding [53] and vector of locally aggregated260

descriptors (VLAD) [54]. Xu et al. [52] analyzed the discriminating ability of Fisher and VLAD encoding261

methods, and found that VLAD is more feasible for CNN descriptors.262

Assuming that the size of features in pool5 layer is a × a × b, we reshape them into a2 features, each of263

which is of b dimension, and we denote the new reshaped features as {x1, x2, ..., xa2}. For entire video with T264

number of frames, a2T features are obtained, which are denoted as {x1, x2, ..., xTa2}. For each fine-grained265

action video, we extract six image patch sequences as shown in Fig. 6 and Fig. 9. We feed each image patch266

into corresponding CNN structure, and consequently we get a2T features of b dimension for each patch267

sequence. Imaging that how huge amount the total features for fine-grained action sequence should be. In268
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(a) Common usage of CNN architecture, which extract data from fc7 layer.
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(b) Our proposed usage of CNN architecture, which extract data from pool5 layer.

Figure 10: Emphasize CNN architecture used in our proposed system.

order to extract efficient information from these CNN features, we propose an encoding method. Note that269

different sequences focus on different information, for instance, RGB upper body patches focus on human270

pose spatial information, optical flow operation patches focus on hands and object motion information, etc.271

In this case, we handle each type of patch sequence separately. In the following description, we use RGB272

operation patch sequence as an example, but the handling method is the same for the other five sequence.273

We assume that the number of fine-grained action video in the training dataset is Ntrain, and the length274

of all these videos are {T1, T2, ..., TNtrain} separately. For RGB operation patch sequence, the number of275

b dimension features are (T1 + T2 + ... + TNtrain
) × a2. We use k-means [55] to cluster these features, see276

Algorithm 1.277

Based on Algorithm 1, we obtain K cluster centers for all RGB operation patch sequences of training278

dataset, denoted as {c1, c2, ..., cK}. Then for each sequence of testing dataset, we cluster the corresponding279

a2T features of b dimension, and then calculate the nearest cluster center for each feature, and store the280
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Algorithm 1 Use k-means to cluster pool5 features.

1: Select K = 128 cluster centers of dimension b;
2: while centers not stable do
3: for i = 1, 2, ..., (T1 + T2 + ...+ TNtrain) do
4: for j = 1, 2, ...,K do
5: Calculate distance between ith vector and jth center, denoted as di,j ;
6: end for
7: Calculate ki = argmin

j=1,2,...,K
di,j as the index of cluster center for ith vector;

8: end for
9: for j = 1, 2, ...,K do

10: Calculate the mean location of vectors belong to the jth cluster as the updated jth center;
11: end for
12: end while
13: Output the updated K centers.

index as NN(xi), as follows:281

NN(xi) = argmin
j=1,2,...,K

||xi − cj ||. (14)

Focusing on each cluster center cj , we calculate distance between cj and xi which satisfies NN(xi) = j,282

and summarize the distance as uj :283

uj =
∑

xi:NN(xi)=j

(xi − cj). (15)

Now, the VLAD encoding vector is obtained by concatenating all the uj of k-means cluster centers, which284

is denoted as f = [u1, u2, ..., uK ]. The dimension of feature f is b ·K.285

We use three RGB patches and three flow patches for each frame, and we suppose that the size of pool5286

features of the RGB-CNN and the flow-CNN are a1 × a1 × b1 and a2 × a2 × b2, respectively. We denote287

VLAD descriptor of RGB full image patch, body patch, and operation patch as f1, f2, and f3 separately;288

we denote VLAD descriptor of optical flow image patch, body patch, and operation patch as f4, f5, and289

f6 respectively. Finally, we concatenate the obtained VLAD descriptors, to generate a fine-grained action290

descriptor for video as follows:291

faction = [f1, f2, f3, f4, f5, f6]. (16)

The obtained fine-grained action descriptor has 3(b1 + b2)K dimensions. In our implementation, we292

calculate faction of training dataset, and then use these video descriptors to train SVM (Support Vector293

Machines) classifier [56]. The obtained SVM classifier is able to recognize fine-grained actions from different294

videos.295
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4. Experiments296

4.1. Dataset297

Two publicly available human action datasets have been used for evaluation experiments. The first one298

is sub-JHMDB dataset [57], as shown in Fig. 11, which is proposed by Jhuang et al. contains 316 videos of299

twelve different actions, which are catch, climb stairs, golf, jump, kick ball, pick, pull-up, push, run, shoot300

ball, swing baseball and walk. This dataset is provided with three kinds of training/testing split modes. The301

other dataset is MPII Cooking dataset [7], as shown in Fig. 12, which contains 65 different cooking activities302

such as cut slices, pour spice, wash objects, etc., recorded from 12 participants. In total there are 44 videos303

with a total length of more than 8 hours. This dataset is provided with seven kinds of training/testing split304

modes. In our experiments, we test on each split mode of each dataset, and calculate the average accuracy305

among all splits.306

catch posecatch
(a) 

golf posegolf
(b) 

pull up posepull up
(c) 

push posepush
(d) 

Figure 11: Sample frames of sub-JHMDB dataset. We show each frame twice: firstly the original video image; secondly the
image overlaid with the estimated human pose which is used to extract human region patches.

From Fig. 12 it is seen that with MPII Cooking dataset, most human action information is contained307

in the upper body, while with sub-JHMDB dataset (see Fig. 11), the action information is encoded in the308

entire human body pose. In this case, for the computation of body path on the sub-JHMDB dataset, we309

obtain the person’s torso bottom position kbelly estimated in Section 3.1, and mirror the human upper body310

(obtained in Section 3.2) vertically using the center of kbelly, as shown in Fig. 13(b). The region within the311

upper body rectangle patch and the vertically mirrored patch is denoted as body patch for the calculation312

on the sub-JHMDB dataset, as shown in Fig. 13(c).313
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stir posestir
(a) 

taste posetaste
(b) 

squeeze posesqueeze
(c) 

wash hands posewash hands
(d) 

Figure 12: Sample frames of MPII Cooking dataset. We show each frame twice, the first one is the original video frame from
dataset, the second one is overlaid with the estimated human pose which is used to extract human region patches.

 

upper 

body 

region mirror

(a) (b) (c)

bellyk

Figure 13: Obtaining body patches for the sub-JHMDB dataset. (a) Human upper body patch (green); (b) Mirrored green
patch vertically with the center of belly button to get blue patch; (c) The obtained whole body patch.

4.2. Preliminaries314

In video sequences, human movement is typically continuous. However, through observation we found that315

some adjacent frames are similar while others have significantly different human position and pose. That is316

to say, different frames contribute different amounts of information for human fine-grained action recognition317

in videos. In this case, the calculation of similar frames in video may lead to redundant information and318

increase the amount of calculation.319

The problem described above is not serious in short sequences. However, the calculation of k-means320

centers for long videos of the MPII Cooking dataset as expounded in Algorithm 1 causes very large cost321

of computation time and computation space. To solve this problem, when calculating k-means centers for322

pool5 layer (Algorithm 1), we calculate and select key frames of each video sequence instead of using all the323
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frames. This has been accomplished as follows and illustrated in Fig. 14.324

For every video (whose length is denoted to be T ), we use the features of fc7 layer from the CNN structure325

of the RGB full image patches to form a T × 4096 matrix. The columns whose elements are all zeros are326

removed, and then we select the largest elements (denoted as “m”) from the remaining matrix (denoted as327

C). We transfer every element of C into binary sequence with the length of log2m. In this case, the obtained328

new matrix is denoted by Ĉ, as shown in Fig. 14.329

CNN

Key Frame Obtain

output7fc

0.63 1.14 3.63 2.17 7.48 4.02 0.33

0000 0001 0011 0010 0111 0100 0000

Decimal to Binary Conversion

Calculate Hamming Distance

max

..
. ...

T

T-13

2

Figure 14: Calculate and select key frames from video sequence using CNN fc7 layer output.

For t = 2, 3, ..., T , we calculate the hamming distance between Ĉt−1 and Ĉt, which is denoted as ∆Ĉt,330

see Eq. (17).331

∆Ĉt = hamming(Ĉt − Ĉt−1), t = 2, 3, ..., T (17)

Ranking all the frames according to descending order of the hamming distance ∆Ĉt, we select k frames with332

the largest hamming distance, which are called key frames. These key frames are then used to calculate the333

k-means centers for the VLAD encoding.334

The number of k-means cluster centers K (see Algorithm 1) should always be greater than the total335

number of actions. This can be justified by analyzing the clustering performance with different values of336

K. For instance, consider the calculation of cluster centers (as described in Algorithm 1) for the RGB full337

image patch sequence of the MPII Cooking dataset, which has 65 actions. For a range of K = [32, 256],338

the average value of cluster radiuses (average cluster radius, ACR) are calculated. A cluster radius is the339

largest distance between each point and the corresponding cluster center, and can be used for evaluating the340
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Figure 15: Relationship between the number of cluster centers K and the average cluster radius. Smaller the ACR better the
clustering performance.

clustering performance i.e., smaller the ACR better the performance. From Fig. 15, it can be seen that the341

performance improves with the number of cluster centers (larger K). Although the performance is improved,342

with higher values of K, overall computation time also increases. Hence, an appropriate balance between343

cluster performance and calculation time should be maintained while selecting K. From Fig. 15 we can see344

that the performance rapidly improved until K = 128 and progressed gradually afterwards. Therefore, in345

our experiments, we choose the number of cluster centers to be K = 128 (step 1 of Algorithm 1).346

Also it is worth mentioning that all the experiments are conducted on a lab computer running Ubuntu347

14.04 with 2.80GHz Intel Core i7 CPU and 16 GB of RAM. We have used Matlab for implementation348

purposes.349

4.3. Action classification performance350

Our proposed action recognition system is able to classify fine-grained actions, but also works well for351

general physical actions. For the reason to verify that our proposed action recognition method is not limited352

to fine-grained actions, we use a very commonly used public human action dataset to test the system’s353

performance. In this section, we use sub-JHMDB dataset to test the precision and recall performance of our354

proposed system. The definition of evaluation criterion “precision” and “recall” are described in Eq. (18)355

and Eq. (19) separately.356

precision =
count((recognized as action A) ∪ (action A in dataset))

count(recognized as action A)
(18)

recall =
count((recognized as action A) ∪ (action A in dataset))

count(action A in dataset)
(19)

The detailed per-class human actions classification results are shown in Fig. 16. From Fig. 16(a) we can357

see that the action classification precision of actions such as golf, pull up, push, jump and climb stairs are very358
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high, with mean precision of 100%, 100%, 92% 87% and 86% respectively. The mean action classification359

precision of catch, kick ball, pick, run, swing baseball and walk are 57%, 63%, 61%, 69%, 58%, 61% and 73%360

respectively, which is somewhat less good, but is still highly competitive compared with other state-of-the-art361

methods. The mean precision of shoot ball is the lowest, at 44%.362
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(a) Precision bar figure for all splits of sub-JHMDB dataset.
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(b) Recall bar figure for all splits of sub-JHMDB dataset.

Figure 16: Performance on the dataset of sub-JHMDB.

Fig. 16(b) reveals the recall of each training/testing split for sub-JHMDB dataset. As presented in363

Fig. 16(b), the mean recall of actions such as climb stairs, jump, kick ball, pull up, push and swing baseball364

are more than 80%, while catch, pick, shoot ball and walk are between 60% - 80%. The mean recall of golf365

and run are 55% and 46% respectively. From the performance revealed in Fig. 16, it is obvious that our366

proposed method performs well for common physical action recognition problem.367
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4.4. Comparison with state-of-the-art methods368

In this section, we present the experimental results obtained by validating our proposed human actions369

classification method against various other state-of-the-art methods proposed by Wang et al. [26], Gkioxari370

et al. [42], Peng et al. [24] and Cheron et al. [10] on the sub-JHMDB dataset (Table 3), and against the371

methods of Ni et al. [58] and Rohrbach et al. [7] on MPII Cooking dataset (Table 4). The reason that we372

use different comparison methods for different testing dataset is that the compared methods are the state-of-373

the-art methods which have been published on each dataset respectively. I.e. we compare against the best374

methods on each dataset for which performance data is publicly available.375

Table 3: Performance on sub-JHMDB dataset compared with related state-of-the-art methods.

Method Accuracy

Wang et al. [26] 56.6%
Gkioxari et al. [42] 62.5%

Peng et al. [24] 69.3%
Cheron et al. [10] 72.2%

Ours 76.9%

Table 3 shows our proposed system performance on sub-JHMDB dataset compared with related state-376

of-the-art methods. The “accuracy” in Table 3 means the proportion of correct recognized in all the videos377

of test dataset. As reported by Wang et al. [26], they proposed a method which describe videos by sampling378

dense points from each frame and tracking them based on displacement information from a dense optical379

flow field. Gkioxari and Malik [42] proposed a method which selects image regions containing salient motion380

and use spatial and temporal information to build action representations. These two methods extract image381

regions utilizing motion information, while we use our human pose tracking method to obtain consecutive382

regions which contain human action information. Table 3 reveals that on the sub-JHMDB dataset the383

accuracy of our proposed method is 20.3% higher than the method of Wang et al. [26], and 14.4% higher384

than the method of Gkioxari and Malik [42].385

Peng et al. [24] proposed stacked Fisher vectors to represent action features. This method uses Fisher386

vectors to encode local features extracted from the densely sampled sub-volumes in the first layer, and387

compress the sub-volumes Fisher vectors as well as encodes them again with Fisher vectors. Cheron et388

al. [10] proposed a method which aggregates motion and appearance information along tracks of human389

body parts through CNN structures. Instead of using stacked Fisher vectors or soft-max CNN features, we390

proposed a VLAD encoding method using pool5 layer features. From Table 3 we can see that the accuracy391

of our proposed method is 7.6% higher than the method by Peng et al. [24], and 4.7% higher than the392

method of Cheron et al. [10].393

Table 4 shows our proposed system performance on MPII Cooking dataset compared with related state-394
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Table 4: Performance on MPII Cooking dataset compared with related state-of-the-art methods.

Method Precision Recall Average Precision (AP)

Ni et al. [58] 28.6% 48.2% 54.3%
Rohrbach et al. [7] 50.4% 45.1% 57.9%

Ours 57.7% 56.4% 70.3%

of-the-art methods. The “Average Precision (AP)” in Table 4 means the performance obtained by drawing a395

precision-recall curve based on the SVM classification score and calculating the area under the curve (AUC).396

Ni et al. [58] proposed a strategy to detect and define the interaction between hands and objects. This397

strategy infers coarse interaction status and uses the obtained information to get compact action feature.398

Instead of focusing only on hand and object to construct action features, our proposed method extracts399

image patches according to the estimated human pose and uses six different patch sequences containing400

spatial and temporal information. From Table 4 it can be seen that the precision and recall of our proposed401

method is 29.1% and 8.2% higher than the method of Ni et al. , and the average precision of our method402

is 16% higher than Ni et al. method.403

Rohrbach et al. [7] proposed a method which estimates human pose joint points among frame sequence,404

and compute a separate codebook for each distinct sub-feature (i.e. velocity, acceleration, exponential bands405

etc.), then extracts histograms of oriented gradients (HOG), histograms of optical flow (HOF), and motion406

boundary histograms (MBH) around densely sampled points. With all these features and methods, the407

average precision of [7] is 57.9%, and their precision and recall are 50.4% and 55.1% respectively. Instead of408

relying on hand-crafted features, we use the pool5 layer features of CNN structure, which are more intelligent409

and distinguishable. The results are summarized in Table 4. It can be seen that our precision, recall and410

average precision are 7.3%, 11.3% and 12.4% higher than Rohrbach et al. .411

4.5. Contribution of each system component to the overall performance412

In this section we examine the contribution of each part of our proposed method to overall performance413

on MPII Cooking dataset. With our method, firstly we proposed a pose tracking and estimation schema for414

constructing human action region patches. To verify the efficiency of pose estimation method, we compute415

the CNN features based only on RGB and flow full-image patches. The obtained results are shown in the416

first row of Table 5. From these, we notice that the human action recognition precision and recall, without417

using our proposed body patches and operation patches approach, are 37.3% and 43.5%, which are lower418

than our full method by 20% and 12.9% respectively. The average precision by using only full image patch419

is 12.9% lower than our patch-based method. This is because the background of full images contains large420

amounts of redundant information that is less useful than foreground patches. In contrast, our human pose421

estimation method is able to extract and enhance foreground patches and make better use of the most422
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Table 5: Contribution of each system component to the overall performance on MPII Cooking dataset.

No. Method Precision Recall Average Precision (AP)

1 fp(both)+pool5+VLAD 37.7% 43.5% 57.4%
2 fp(both)+bp(both)+pool5+VLAD 41.8% 50.9% 64.6%
3 fp(RGB)+bp(RGB)+op(RGB)+pool5+VLAD 48.4% 46.5% 67.8%
4 fp(both)+bp(both)+op(both)+fc7+max 42.1% 53.0% 62.1%
5 fp(both)+bp(both)+op(both)+fc7+average 30.8% 28.7% 36.4%
6 fp(both)+bp(both)+op(both)+fc7+VLAD 47.1% 54.9% 64.2%
7 fp(both)+bp(both)+op(both)+conv4+VLAD 36.2% 42.3% 40.7%

8 fp(both)+bp(both)+op(both)+pool5+VLAD 57.7% 56.4% 70.3%

1 “fp” means full image patch, “bp” means body patch, and “op” means operation patch.
2 In the parentheses: “RGB” means using RGB patches (see Fig. 6), while “both” means using both RGB patches and
optical flow patches (see Fig. 9).

information-rich parts of each image.423

An additional contribution of our work is to define and extract the operation areas for human actions,424

which are denoted by operation patches as shown in Fig. 3. To verify the contribution of our operation425

patches to overall system performance, we test the MPII Cooking dataset with and without using our426

operation patches method. The results are shown in the second row of Table 5. These results reveal that,427

by using our operation patch method, the precision, recall and average precision are increased by 15.9%,428

5.5% and 5.7% respectively. The reason is that the operation patch emphasizes the information around hand429

regions which includes hand pose, object, as well as hands interaction information. Human fine-grained430

action information mostly exists around lower arms, while common action recognition methods often resize431

the original images and indirectly reduce effective pixels. Our proposed method overcomes this problem432

by extracting human operation areas and enhancing the corresponding pixels. This improves the action433

recognition results.434

As mentioned before, RGB images offer appearance cues for human actions, while the calculated optical435

flow image sequence contains motion cues. In order to verify that the motion information from the optical flow436

images helps to get better results in recognizing human actions, we test our method with and without optical437

flow images separately. The results are summarized in the third row of Table 5. The results illustrate that438

without the motion information obtained from optical flow images, precision, recall and average precision439

would decline by 9.3%, 9.9% and 2.5% respectively (compared with the eighth row of Table 5). The reason for440

the better performance is that the temporal information contained in optical flow images offers human action441

motion cues, which contributes to human action recognition problem and improves the system performance.442

We use pool5 features with VLAD encoding method instead of the common handling of fc7 features. In443

order to justify this, we compare our results with the two most commonly used handling methods for fc7444

features. Specifically, we connect the fc7 features of every image patch per frame as frame descriptor, and445

calculate the maximum and average number of each dimension of frame descriptors per video separately446
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as video descriptors. The obtained video descriptors are then used to train the SVM classifier in order to447

generate the human action recognition results. The results are shown in the fourth and fifth rows of Table 5.448

It can be seen from the fourth row that for the fc7+max method, the results are lower by 15.6%, 3.4%449

and 8.2% on precision, recall and average precision, respectively than our pool5+VLAD method (the eighth450

row in Table 5). The reason is that the “max” calculation would get rid of some useful information and only451

keep the extreme values caused by distractions. In this case, the remained extreme value features would not452

be bale to represent the action properly and lead to failure, especially in the case of strong light or other453

object distractions.454

The fifth row of Table 5 illustrates the results of using fc7+average method. The results in this case455

are much lower than the previous, i.e., lower by 26.9%, 27.7% and 33.9% on precision, recall and average456

precision respectively, compared with the proposed pool5+VLAD method. The reason is that the “average”457

calculation only keeps the most common and average values that are not discriminative. However, different458

fine-grained actions in MPII Cooking dataset are quite similar and the distinguishable features lie only in459

some specific frames or locations. As a result, the “average” calculation would make the descriptors of460

different fine-grained actions similar and lose the discrimination quality, due to which the results become461

lower. However, the proposed VLAD encoding method (see the eighth row in Table 5) does not have this462

problem and is able to organize video descriptors more effectively, even though these features are of less463

dimension.464

Furthermore, to demonstrate that pool5 layer output data contains more action information than fc7465

layer, i.e., spatial information, we test our method employing fc7 layer outputs instead of pool5 layer outputs,466

leaving the other methods and experimental settings (e.g. parameters) unchanged. Specifically, we calculate467

the k-means centers of 4096 dimensions for fc7 layer outputs on the training dataset, and use VLAD encoding468

method to encode fc7 layer outputs of all the frames for each video sequence into video descriptors. The469

results are shown in the sixth row of Table 5. By comparing these results with our pool5+VLAD (results in470

eighth row), it is illustrated that using the outputs of pool5 layer, the precision, recall and average precision471

are 10.6%, 1.5% and 6.1% higher than that of using the outputs of fc7 layer. The main reason is that pool5472

layer features contain more abundant spatial information than fc7 layer features, so the corresponding data473

are more effective. From these results, it is clear that the proposed feature handling method achieves higher474

performance in recognizing fine-grained actions in video sequences.475

Moreover, in CNN structures, the aim of convolutional layers is to extract certain features such as edges,476

angles, curves, or more complex higher-order features. Even though the outputs of earlier layers contain477

more spatial information, the features are eminently raw and are less distinguishable. In order to justify that478

using the pool5 layer features make an appropriate balance between distinguishable features and adequate479

spatial information, we test our method employing the fourth convolutional layer conv4 outputs with VLAD480
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encoding (see Table 2). The data size of the conv4 layer outputs is similar to that of the pool5 layer (which481

can be recorded as a×a×b), therefore the processing procedure is the same. The corresponding experimental482

results are shown in the seventh row of Table 5. By comparing the seventh and eighth rows of Table 5, we483

found that using conv4 layer data makes the precision, recall and average precision decline by 21.5%, 14.1%484

and 29.6% respectively than that of using pool5 layer features. Despite of the fact that conv4 layer outputs485

contain more spatial information, the contained features are hardly distinguishable. These results clearly486

demonstrates that utilizing pool5 layer outputs makes an appropriate balance between adequate spatial487

information and distinguishable features, which once again proves the effectiveness of the proposed method488

in recognizing human actions in videos.489

5. Conclusion490

We have proposed a novel region sequence based six-stream CNN feature for human action recognition in491

videos, which combines different scales of image appearance information and video motion information. We492

built on our recent state-of-the-art method for human pose estimation in video sequences, which localizes the493

human body parts. As a result, we can then crop different scale human region image patches. This approach494

uses human body part positions as prior knowledge, and makes better use of spatial image information, which495

enables fine-grained activities to be distinguished. A variety of different scales of appearance and motion496

patch sequences are processed in CNN structures to provides richer action information. The encoding of497

the outputs of the CNN pooling layer gives more effective descriptors. Our method offers a general human498

action recognition method for videos. Our proposed method outperforms six other state-of-the-art methods,499

in empirical experiments on two publicly available challenging human action datasets.500
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