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Abstract 15 

The identification of neurobiological markers that predict individual predisposition to pain are not only important for 16 

development of effective pain treatments, but would also yield a more complete understanding of how pain is 17 

implemented in the brain. In the current study using electroencephalography (EEG), we investigated the relationship 18 

between the peak frequency of alpha activity over sensorimotor cortex and pain intensity during capsaicin-heat pain (C-19 

HP), a prolonged pain model known to induce spinal central sensitization in primates. We found that peak alpha 20 

frequency (PAF) recorded during a pain-free period preceding the induction of prolonged pain correlated with 21 

subsequent pain intensity reports: slower peak frequency at pain-free state was associated with higher pain during the 22 

prolonged pain condition. Moreover, the degree to which PAF decreased between pain-free and prolonged pain states 23 

was correlated with pain intensity. These two metrics were statistically uncorrelated and in combination were able to 24 

account for 50% of the variability in pain intensity. Altogether, our findings suggest that pain-free state PAF over 25 

relevant sensory systems could serve as a marker of individual predisposition to prolonged pain. Moreover, slowing of 26 

PAF in response to prolonged pain could represent an objective marker for subjective pain intensity. Our findings 27 

potentially lead the way for investigations in clinical populations in which alpha oscillations, and the brain areas 28 

contributing to their generation are used in identifying and formulating treatment strategies for patients more likely to 29 

develop chronic pain. 30 

Highlights 31 

Relationship between EEG peak alpha frequency and prolonged pain is examined 32 

PAF during pain-free state correlated with prolonged pain intensity 40 minutes later 33 

PAF change from pain-free to prolonged pain correlated with reported pain intensity  34 

PAF and PAF changes could represent distinct mechanisms predicting pain sensitivity   35 
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Introduction 36 

Pain is a salient, multidimensional experience that varies widely between individuals in both intensity and duration. 37 

Identifying biomarkers that can determine individual susceptibility for the development of chronic pain is a fundamental 38 

step for improved pain treatments. One approach to this problem has been to investigate the role that neural 39 

oscillations like the alpha rhythm play in the individual pain experience (Peng et al., 2015; Ploner, Sorg, Gross, 2016). 40 

The alpha rhythm represents the predominant oscillatory activity in the EEG which is chiefly observed in primary sensory 41 

regions (e.g. vision, auditory). Although previously considered a signature of cortical “idling,” significant evidence now 42 

suggests that alpha activity plays a top-down role in gating information in sensory cortices depending on task demands 43 

(Foxe et al., 1998; Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Klimesch, 2012, Pfurtscheller et al., 1996).  44 

The peak frequency of alpha activity (i.e the frequency within the 8-12Hz, that has the maximal power) has been found 45 

to change across the life span, increasing from childhood to adulthood, and subsequently decreasing with age (Aurlien et 46 

al., 2004; Lindsley, 1939,Hashemi et al., 2016; Bazanova & Vernon, 2014). There is evidence that the frequency of alpha 47 

activity is positively correlated to measures such as working performance (reviewed in Klimesch, 1999). More recently, it 48 

has been demonstrated that individuals with higher alpha frequencies in the occipital cortex are able to perceive visual 49 

information with a finer temporal resolution (Samaha et al., 2015). Peak alpha frequency has been found to be reliable 50 

in test-retest studies (Grandy et al., 2013), and appears to be a heritable phenotypic trait (Posthuma et al., 2001; Smit et 51 

al., 2006). Taken together, these studies suggest that peak alpha frequency (PAF) could be viewed as a ‘state’ variable 52 

with its subtle fluctuations within an individual reflecting shifts in the excitability of the underlying cortex and its 53 

capacity to process information. Alternatively PAF can be viewed as a ‘trait’ variable with its variability across individuals 54 

reflecting cognitive ability.  55 

In recent years, the variability of alpha frequency has been studied in the context of characterizing disease states in 56 

clinical populations, and the subjective experience of pain in the typical population. In patients suffering from central, 57 

visceral, and neuropathic pain conditions, PAF was slowed relative to matched, healthy controls (Sarnthein et al., 2005; 58 

Walton et al., 2010; de Vries et al., 2013, Lim et al., 2016). It has been hypothesized, that the slowing of PAF and that the 59 
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increased power of slower alpha rhythms (8-9.5 Hz) contributes to the generation of pathological pain, perhaps 60 

reflecting thalamocortical dysrhythmia (Llinas et al., 2005). 61 

 In contrast to the slowing of PAF associated with chronic pain, exposure to acute, painful stimuli in healthy subjects has 62 

been found to increase the frequency of alpha activity (Nir, et al 2010). Furthermore, PAF collected from healthy 63 

individuals either during or, perhaps more importantly, prior to stimulation were positively correlated with pain intensity 64 

(Nir et al., 2010), suggesting that PAF reflects processes related to both ongoing pain and individual vulnerability.  65 

These findings together suggest a rather complex relationship between types of pain and variations in PAF: transient 66 

acute pain, increases alpha frequency in the healthy population, whereas alpha frequency is slowed down in patients 67 

with chronic pain. The slowing of alpha frequency in chronic pain populations could reflect changes in the brain’s neural 68 

architecture brought about by the constant experience of pain. Supporting this view is a finding that PAF had an inverse 69 

relationship with duration of chronic pancreatitis (de Vries et al., 2013). An alternative explanation could be that 70 

individuals with slower alpha frequency are more prone to develop chronic pain. Why some people will go on to develop 71 

chronic pain following an injury that would normally heal and not lead to persistent pain remains a major question in the 72 

field, and cerebral functional connectivity might be one way to predict this transition from acute to chronic pain (Baliki 73 

et al., 2012).  74 

Here we investigated the relationship between PAF and sensitivity to prolonged pain. The prolonged pain model we 75 

used – the capsaicin-heat pain model – lasts for hours to days and recapitulates cardinal sensory aspects of chronic 76 

neuropathic pain (Culp et al., 1989; LaMotte RH, et al,1992; Baron 2009; Lotsch et al., 2015). The prolonged pain model 77 

might thus be more similar to chronic pain – or the early transition period from acute to chronic pain – than acute pain, 78 

where there is no central sensitization, and the pain disappears as soon as the stimulus is removed. The personal 79 

experience of pain is highly variable among individuals even if the underlying noxious stimulation is similar. The 80 

objective of our study was to systematically investigate the relationship between PAF prior to and during prolonged pain 81 

and the subjective experience of pain. We recorded EEG activity during pain-free and prolonged pain states, which 82 

allowed us to determine the relationship of PAF and pain intensity, as well as how PAF shifts (i.e. change in PAF between 83 
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states) relate to individual pain intensity. We tested the hypothesis that PAF slowing reflects the intensity of prolonged 84 

pain. 85 

Materials and Methods 86 

Participants 87 

Forty-four pain-free, neurotypical adult participants (22 males, mean age = 28.4, age range = 19 – 42) took part in the 88 

experiment. Twenty-seven participants were randomly assigned to the Pain group (would be administered topical 89 

capsaicin), while seventeen were assigned to the Non-Pain group (not administered topical capsaicin). The Non-Pain 90 

group served as a control to confirm that prolonged pain was a result of the capsaicin application and not only the warm 91 

thermode, as well as to control for effects of ongoing stimulation and attention. More participants were assigned to the 92 

capsaicin group to account for the variability in response to topical capsaicin (Liu et al., 1998). This study was approved 93 

by the University of Maryland, Baltimore Institutional Review Board, and informed written consent was obtained from 94 

each participant prior to any study procedures. 95 

EEG 96 

Scalp EEG was collected from an EEG cap housing a 64 channel Brain Vision actiCAP system (Brain Products GmbH, 97 

Munich, Germany) labeled in accord with an extended international 10–20 system (Oostenveld and Praamstra, 2001). All 98 

electrodes were referenced online to an electrode placed on the right earlobe and a common ground set at the FPz site. 99 

Electrode impendences were maintained below 5kΩ throughout the experiment. Brain activity was continuously 100 

recorded within .01 to 100 Hz bandpass filter, and with a digital sampling rate of 1000 Hz. The EEG signal was amplified 101 

and digitized using a BrainAmp DC amplifier (Brain Products GmbH, Munich, Germany) linked to Brain Vision Recorder 102 

software (version 2.1, Brain Products GmbH, Munich, Germany).  103 

Prolonged pain induced by the Capsaicin-Heat Pain model 104 

Thermal stimuli were delivered to the volar surface of participant’s left forearm using a thermal-contact heat stimulator 105 

(30 × 30 mm Medoc Pathway ATS Peltier device; Medoc Advanced Medical Systems Ltd., Ramat Yishai, Israel). Prior to 106 

the beginning of the experiment all participants underwent a brief sensory testing session in which they were asked to 107 

report when they felt a change in temperature (for warmth detection threshold (WDT)) or when the temperature first 108 
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became painful (heat pain threshold (HPT)). For WDT and HPT three and four trials were presented, respectively, and 109 

the average across trials, rounded down to the nearest integer, was used.  110 

Prolonged pain was modelled following a procedure modified from previous studies (Anderson et al., 2002). We applied 111 

~1g 10% capsaicin paste (Professional Arts Pharmacy, Baltimore, MD) topically to the volar surface of the left forearm, 112 

fixing it in place with a Tegaderm bandage. After 15 fifteen minutes of exposure, we placed the thermode over top of 113 

the Tegaderm bandage at a temperature that was greater than the WDT and at least 1°C below the HPT. We term this 114 

model the capsaicin-heat pain model (C-HP).  115 

To ensure that the capsaicin produced a stable, long-lasting pain, participants were asked to provide pain intensity 116 

ratings every minute for the first five minutes following thermode placement. The thermode temperature was adjusted 117 

during this time to achieve a consistent pain intensity above 20 on a 0-100 point scale (i.e. if pain was intolerable, the 118 

temperature was lowered slightly, and if there was no pain, the temperature was increased closer to the HPT). Once this 119 

five minute period elapsed, the temperature was held in place for 25 minutes. Participants were asked to rate pain 120 

intensity every 5 minutes. This procedure does not cause lasting tissue damage (Moritz and Henriques, 1947). Previous 121 

work has found that topical capsaicin evokes no pain or hypersensitivity in some participants (Liu et al., 1998; Walls et 122 

al., 2017). Therefore, we excluded participants who did not develop moderate pain, which we set at a reported pain 123 

intensity level of 20 (details of the scale provided below).  124 

Procedure 125 

A summary of the order of procedures is described in Figure 1. Once the EEG set-up was complete, participants were 126 

seated in a comfortable chair and underwent a brief sensory testing session to establish their individual HPT. 127 

Participants were then trained on and performed a simple cognitive task which will be detailed elsewhere. The total 128 

duration of this task was approximately thirty minutes. While performing this task, participants rate their current pain 129 

intensity every five minutes on a 0-100 scale, with the anchors 0, not at all painful and 100, most intense pain 130 

imaginable. In total participants provided six pain intensity ratings during this testing session. Ratings were always given 131 

during a rest period. At the conclusion of this testing session, and immediately following the final pain intensity rating, 132 

all lights in the testing room were turned off and participants were instructed to close their eyes, remain still, and relax 133 
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without falling asleep. Continuous EEG was recorded during this pain-free resting state for three minutes in both the 134 

Pain and Non-Pain groups. 135 

 136 

Figure 1. Outline of the experimental procedure. Participants first underwent sensory testing to determine their 137 

Heat Pain Threshold (HPT). After a 30 minute cognitive task, EEG was collected while participants completed a 3-138 

minute eyes closed session in the absence of any thermal stimulus (pain-free state). Next, capsaicin was applied 139 

(Pain group) to the forearm and a temperature no more than one degree below their HPT was introduced 140 

fifteen minutes later. Five minutes later, when pain in response to the model has stabilized, the same cognitive 141 

task from earlier in the experiment was repeated. Following this task, EEG was collected while participants 142 

completed a 3-minute eyes closed session in the presence of capsaicin and warm thermode (prolonged pain 143 

state). Subjects in the Non-Pain group underwent identical procedures, but without capsaicin application. 144 

After finishing this pain-free state EEG recording, the lights in the testing room were turned on, capsaicin was applied to 145 

the participant’s left forearm, as described above, and the thermode was placed directly on top of the capsaicin 146 

application. During this incubation period participants were instructed to relax without falling asleep. The thermode was 147 

kept at 32°C, and participants provided a pain intensity rating every three minutes over a total of fifteen minutes. For 148 
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participants in the Non-Pain group, this process was identical, including thermode placement, except there was no 149 

capsaicin application.  150 

Following this incubation period, the thermode temperature increased to a warm temperature 3°C below the previously 151 

determined HPT. Every minute, for the next five minutes, participants were asked to provide a pain intensity rating. If 152 

the participant did not report feeling any sensation from the capsaicin, the temperature was adjusted in 1°C increments 153 

with the requirement that the final testing temperature be at least 1°C below their HPT. For Non-Pain group 154 

participants, adjustments were only made to lower the temperature in the event that pain was reported. When this five 155 

minute period had elapsed, the full twenty-five minute cognitive task from earlier in the experiment was performed 156 

once more. As before, participants were asked to provide a total of 6 pain intensity ratings during this testing. 157 

Immediately after the last rating was provided, a three minute “stimulation” resting state EEG was collected. For the 158 

Pain group, this “prolonged pain” resting state was collected with the capsaicin and warm thermode placed on the 159 

forearm. For the Non-Pain Group, this “nonpainful warmth” resting state was collected with the warm thermode placed 160 

on the forearm without capsaicin.  161 

Data Processing  162 

The primary data of interest in this study were the within-subject resting state EEG acquired prior to and during 163 

prolonged capsaicin pain. For the primary set of analyses the preprocessing of EEG data was done using EEGLAB 13.6.5b 164 

(Delorme and Makeig, 2004) using an approach similar to that used previously (Scheeringa et al., 2011a; Scheeringa et 165 

al., 2011b). Here, the first step involved band-pass filtering the EEG between 5 and 16 Hz using the function ‘eegnewfilt’ 166 

after which Infomax (extended) independent component analysis (ICA) was performed (Bell and Sejnowski, 1995). It 167 

should be noted that the ICA was performed on resting state EEG data combined across the pain-free and prolonged 168 

pain states. The obtained unmixing matrix was applied to the unfiltered data resulting in components that retained 169 

broadband spectral content. A Fourier transform was done on the time series of each component to obtain a frequency-170 

power spectra for each component. Next for each participant we visually inspected the frequency-spectra of the 171 

components, and identified components that had a clear alpha peak (8-14 Hz) and a scalp topography that suggested a 172 
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source predominately over the sensorimotor cortices. This component is referred to as the “central component” for the 173 

remainder of the manuscript. 174 

Quantification of PAF 175 

The frequency decomposition of the sensorimotor component data was done using the routines in FieldTrip (Oostenveld 176 

et al., 2011). The data was segmented into 5-second epochs and power spectral density in the 2-40 Hz range was derived 177 

for each epoch in 0.2 Hz bins using the ‘ft_freqanalysis_mtmfft’ function. A Hanning taper was applied to the data prior 178 

to calculating the spectra to reduce any edge artifacts (Mazaheri et al., 2010; Mazaheri et al., 2009; Mazaheri 2014).  179 

The peak alpha frequency for each 5 second epoch was estimated using a center of gravity (CoG) method (Jann et al., 180 

2012; Jann et al., 2010; Klimesch, Schimke, & Pfurtscheller, 1993). We defined CoG as follows:  181 

 𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗𝑎𝑎𝑖𝑖
∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1

 182 

where fi is the ith frequency bin including and above 9 Hz, n is the number of frequency bins between 9 and 11 Hz, and ai 183 

the spectral amplitude for fi. PAF, as well as power at the PAF bin (PAF Power), were estimated for the central alpha 184 

components for every 5 second epoch and then averaged.  185 

Statistical analysis  186 

We first investigated whether capsaicin led to heightened pain intensity using an independent samples t-test. We 187 

determined average pain intensity ratings to capsaicin for each participant by averaging the six ratings during the 188 

prolonged pain state. Average pain intensity ratings were compared between Pain and Non-Pain groups using an 189 

independent samples t-test. This test was performed separately for the whole sample and the sample that excluded 190 

subjects in the Non-Pain group who developed pain and subjects in the Pain group who had <20/100 pain. 191 

 In order to investigate if central component PAF during pain-free and prolonged pain states were related to pain 192 

intensity, we correlated each Pain group participant’s central component PAF during the pain-free state (i.e. before the 193 

administration of capsaicin) and during prolonged pain with their averaged pain intensity. In order to account for the 194 

possibility that the relationship between PAF and pain intensity ratings could be confounded by the temperature of the 195 

thermal device, we performed a partial correlation between PAF and pain controlling for thermode temperature. Due to 196 
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technical error, thermode temperatures were missing for two participants in the Pain Group and one participant in the 197 

Non-Pain Group.  198 

For all correlational analyses, Pearson’s correlation coefficients were used to test the relationship between variables. 199 

Analyses were also conducted using Spearman’s rank order correlations, but these did not change any of the results and 200 

are therefore not reported.  201 

As an additional test to investigate whether alpha frequency was related to pain sensitivity, we separated our Pain group 202 

participants into “high” and “low” pain sensitive groups by performing a median split based on pain intensity. Here, a 203 

2x2 Repeated Measures ANOVA with group (high pain sensitive vs low pain sensitive vs Non-Pain) x state (pain-free vs 204 

prolonged pain state) serving as between- and within-subject factors, respectively, was used to assess how central PAF 205 

differed amongst groups and how it changes in response to C-HP.  206 

Next, we investigated if changes in central PAF from baseline to prolonged pain state were related to the pain intensity 207 

reported by the participants. This PAF shift (∆PAF) was calculated by subtracting pain-free state PAF from the prolonged 208 

pain state PAF. We then correlated ∆PAF with pain intensity, and, as above, we also performed a partial correlation to 209 

control for the impact of thermode temperature.  210 

Hierarchical multiple regression was used to test the independent contributions of baseline resting state PAF and ∆PAF. 211 

In this model, pain intensity was the dependent variable and baseline resting state PAF and ∆PAF were the independent 212 

variables entered sequentially in the model. 213 

We followed this multiple regression with a leave one out regression approach to formally evaluate the ability of 214 

baseline PAF and ∆PAF to predict C-HP model sensitivity. To do so, we generated a series of regression models using 215 

central baseline PAF and central ∆PAF from all but one Pain group individual. The resulting model intercept and 216 

unstandardized beta coefficients were used to generate a pain prediction for the single individual withheld from model 217 

building. This procedure was repeated iteratively so that each individual served as the test participant for exactly one 218 

regression model. The accuracy of these pain predictions were then tested by calculating the Pearson correlation 219 

between actual pain intensity and the pain intensity predicted by the leave one out models. To test the significance of 220 
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this prediction, the aforementioned procedure was repeated 10,000 times using randomly shuffled pain and PAF 221 

measures to bootstrap a null distribution of r values. The 95% of the null distribution was used as a significance cutoff 222 

for assessing the predictive ability of PAF and ∆PAF. To ensure that results generalized beyond this maximally sized 223 

training set, we repeated the above analysis with training set sizes ranging from 3 individuals to 19 individuals. For each 224 

training set size, a separate regression model was generated for each possible unique combination of a given training 225 

size and the overall correlation between all predictions and observed pain intensity was assessed with a Pearson 226 

correlation.  227 

Results 228 

Pain Intensity and the C-HP model 229 

Prolonged pain was evoked using C-HP model on the forearm. Six participants in the Pain group were excluded for failing 230 

to develop moderate pain to the capsaicin (consistent with previous observations that about 25% of people are 231 

insensitive to capsaicin (Liu et al., 1998; Walls et al. 2017) and three participants in the Non-Pain group were excluded 232 

for developing pain that was rated as greater than 10 on average. For the remaining 21 participants in the Pain group, 233 

mean pain intensity was 56.01 (s.d. ±16.96). For the Non-Pain group, which underwent identical procedures without 234 

capsaicin exposure, mean pain was 1.99 (s.d. ±2.68). As a manipulation check, an independent samples t-test comparing 235 

these two groups confirmed that the presence of capsaicin led to heightened pain in response to a warm stimulus, t(36) 236 

= 11.86, p < .01. (This test was also performed for the entire sample (i.e. including subjects who did not respond to the 237 

C-HP model and subjects who reported pain with just the warm stimulus): t(42) = 6.78, p < .01). This difference appears 238 

to be a result of the capsaicin rather the heat stimulus given that applied temperatures were not significantly different 239 

between the group (Pain Group: mean = 38.52, std = 2.71, range = 32-41; Non-Pain group: mean = 38.25, std = 1.57, 240 

range = 37-41; t(33) = .36, p = .72). Furthermore, there was no difference between the groups in terms of HPT (Pain 241 

Group: mean = 43.67, std = 2.22, range = 39 – 47; Non-Pain group: mean = 43.52, std = 2.74, range = 39 – 50; t(36) = .86, 242 

p = .17) or difference between HPT and thermode temperature (Pain Group: mean = 5.21, std = 2.16, range = 1-9; Non-243 
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Pain Group: mean = 5.44, std = 2.13, range = 2-9; t(33) = .75, p = .31) .In addition, there was no relationship between 244 

thermode temperature and pain intensity in the Pain group (r = -0.25, p =0 .30) or Non-Pain group (r = -.02, p = .94).  245 

PAF at pain-free and prolonged pain states correlated with pain intensity 246 

The topography of the central alpha component used in our analysis, averaged across Pain group participants can be 247 

seen in Figure 2A. 248 

We first set out to investigate if central component PAF recorded during the pain-free state correlated with pain 249 

intensity. We found that pain-free state central component PAF correlated negatively with pain intensity (r = -.57, p = 250 

.01); that is, the lower an individual’s average central PAF, the greater their pain (Figure 2B). This provides initial 251 

evidence that an individual’s central PAF in the absence of a noxious stimulus may play a role in determining an 252 

individual’s vulnerability to a prolonged pain. There was not a significant relationship between the pain-free state power 253 

estimate of the central component PAF (PAF power) and subsequent pain intensity ratings (r = .23, p = .32). 254 

Next, we assessed whether central component PAF during the prolonged pain state was related to pain intensity. We 255 

found central PAF during prolonged pain correlated negatively with pain intensity (r = -.73, p < .01); i.e., slower PAF was 256 

associated with greater pain intensity (Figure 2C). The relationship between prolonged pain state central component 257 

PAF and pain intensity remained significant when controlling for thermode temperature using a partial correlation (r = -258 

.72, p < .01), suggesting that this relationship is driven by factors other than the magnitude of the sensory stimulus 259 

alone. Again we did not observe a significant relationship between central component PAF power during prolonged pain 260 

and pain intensity (r = 0.10, p = .67), highlighting the importance of PAF rather than PAF power in prolonged pain. 261 

PAF can distinguish between high and low pain sensitive individuals 262 

The foregoing correlations suggest that the frequency of central alpha activity at baseline and during pain is related to 263 

the pain intensity an individual experiences. To investigate this relationship further we performed a median split of our 264 

Pain group participants into high and low pain sensitivity groups based on their reported pain intensity.  265 

The difference in central PAF between Non-Pain (control), high pain sensitive, and low pain sensitive groups was 266 

statistically assessed using a 2x2 Repeated Measures ANOVA with group (controls vs high pain sensitive vs low pain 267 

12 
 



sensitive) x state (pain-free vs prolonged pain state) serving as between- and within-subject factors. The main effect of 268 

group was significant, F(2,32) = 3.48, p = .04. As can be seen qualitatively in Figure 2D, the low pain sensitive group 269 

displayed the fastest central PAF across both states, the high pain sensitive group displayed the slowest central PAF 270 

across both states, and the control group displayed PAF somewhere in between the two; this last observation likely 271 

reflects that the Non-pain group contains some combination of high and low pain sensitive individuals. Critically, neither 272 

the main effect of state F(2,32) = .127, p = .72, nor the group x state interaction F(2,32) = .397, p = .68 were significant. 273 

 274 

Figure 2. The relationship between PAF and prolonged pain. (A) The topography of the ‘central’ alpha 275 

component selected for peak frequency analysis averaged across Pain group participants during the pain-free 276 

state. (B) Central component PAF during the pain-free state was plotted against future pain-intensity ratings 277 

(pain during the prolonged pain state). There was a negative correlation between PAF and pain intensity. (C) 278 

Central component PAF during the prolonged pain state and pain intensity, showing a similar negative 279 

relationship. (D-E) Pain group subjects were divided into low- and high-pain sensitive groups based on a median 280 

split of pain intensity ratings in response to the capsaicin-heat pain model. (D) High pain sensitive subjects 281 

demonstrated significantly slower central PAF across both pain-free and prolonged pain states than low pain 282 
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sensitive subjects. Error bars reflect ± SEM. (E) High pain sensitive subjects show a selective increase in power at 283 

slower alpha frequencies relative to low pain sensitive subjects. The frequency spectra was normalized across 284 

participants by transforming the data into z-scores from the total mean amplitude of the frequency spectra in 285 

each 5 second epoch.  286 

Bonferroni corrected pair-wise comparisons revealed a significant difference in PAF between high and low pain sensitive 287 

groups in the pain-free state, p = .026. Visual inspection of the central component power spectra revealed differences 288 

between groups were largely restricted to the alpha frequency domain, further highlighting the specific importance of 289 

alpha in our model of prolonged pain (Figure 2E).  290 

PAF shift from pain-free to prolonged pain states (∆PAF) was associated with pain intensity 291 

Central component PAF in the pain-free and prolonged pain states were strongly correlated (r = 0.86, p < .05, Figure 3A). 292 

While this suggests PAF is largely stationary, it does not rule out the possibility that small changes in PAF also play a role 293 

in the experience of pain.  294 

To investigate this we calculated the PAF shift (∆PAF) as the difference between central alpha component PAF during 295 

prolonged pain and pain-free states). ∆PAF negatively correlated with pain intensity (r = -0.50, p = .02, Figure3B), 296 

indicating that PAF slowing is associated with increased pain. The average, absolute PAF shift across individuals was .05 297 

Hz (s.d. = .05).  298 

 299 

Figure 3. The relationship between PAF shifts (∆PAF) from pain-free to prolonged pain states and pain intensity. 300 

(A) Central component PAF at pain-free state was highly correlated with central component PAF during 301 
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prolonged pain, suggesting PAF is a relatively stable measure. (B) ∆PAF correlated with pain intensity. I.e., 302 

individuals whose PAF slowed during the prolonged pain state relative to pain-free state reported greater pain 303 

intensity. (C) There was no relationship between an individual’s pain-free state PAF and ∆PAF, suggesting that 304 

these two metrics independently predict pain sensitivity.  305 

PAF and ∆PAF provide distinct information about pain intensity 306 

Despite showing quantitatively similar relationships to pain intensity, central component ∆PAF and pain-free state 307 

central component PAF were uncorrelated (r = .05, p = .82, Figure 3C), suggesting that pain-free state PAF and ∆PAF 308 

represent distinct elements of pain sensitivity.  309 

To formally test the degree to which pain-free state central PAF and central ∆PAF independently predict pain sensitivity, 310 

we performed a hierarchical regression using pain sensitivity as the dependent variable and pain-free state, central 311 

component PAF and central component ∆PAF as independent variables entered first and second, respectively, into the 312 

model. The full regression model significantly predicted pain intensity (F(2,18) = 10.72, p < .01) with an adjusted R2 of 313 

.493, indicating that pain-free state central PAF and ∆PAF accounted for nearly 50% of the variance in pain intensity.  314 

Importantly, addition of pain-free state PAF (β = -.543, p <.01) and ∆PAF (β = -.47, p < .01) each yielded significant 315 

changes to the R2 of the regression model (Pain-free state ∆R2 = .323, ∆F = 9.065, p < .01; Shift ∆R2 = .221, ∆F = 8.70, p < 316 

.01). Taken together, this analysis provides evidence that PAF characteristic to an individual, indexed by pain-free state 317 

central component PAF, and the extent to which PAF is modulated by prolonged pain, indexed by central component 318 

∆PAF, are distinct mechanisms whose action play an important role in determining pain sensitivity. 319 

PAF and ∆PAF can be used to predict pain intensity 320 

To further assess the robustness of our finding that pain-free state central component PAF and its changes in response 321 

to the C-HP model are predictive of pain sensitivity, we performed a leave one out regression analysis. In brief, we 322 

generated a series of regression models using pain-free state PAF and ∆PAF from 20 of the 21 individuals (training set) 323 

and then used the resulting model to generate a pain prediction for the withheld test individual. Each individual served 324 

as the test for exactly one regression model, yielding a total of 21 regression models and 21 predictions. The Pearson 325 

correlation between predicted pain intensity and actual pain intensity was r = .55 (Figure 4A). This observed relationship 326 
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surpassed the 95th percentile of a null distribution of r values generated using permuted PAF measures and pain 327 

intensity (r = .22), indicating that the two PAF measures can be used to predict pain intensities at a level greater than 328 

chance (Figure 4B).  329 

 330 

Figure 4. Individual pain sensitivity can be predicted. (A) Correlation between actual pain intensity and the pain 331 

intensity predicted by the leave one out regression approach using pain-free state central component PAF and 332 

∆PAF. (B) Histogram of correlation values for a null distribution of pain and PAF indices. Correlation values were 333 

obtained by randomly assigning PAF indices to pain intensity and then performing the same leave one out 334 

approach as before. The red line indicates the 95th percentile of the null distribution and the black line indicates 335 

the correlation value obtained in the actual leave out approach. (C) Correlation between predicted and observed 336 

pain scores obtained using a regression approach with a range of training set sizes ranging from three to twenty 337 

individuals. The model stabilizes with a training set of about 6, supporting the robustness of the prediction. 338 

To ensure that the apparent ability of pain-free state central component PAF and central component ∆PAF to predict 339 

pain intensity was not specific to this leave one out approach, we repeated the above analysis with training set sizes that 340 

ranged from 3 individuals to 20. Within a training set size, separate regression models were generated for all the unique 341 

combinations of participants; models were then evaluated together as the Pearson correlation between all predicted 342 

pain intensity and all observed pain intensity. As can be seen in Figure 4C, prediction became stable around a training 343 

set size of 6 (r = .49) and increased a relatively small amount to the maximum training size of 20 (.55). This suggests that 344 

our ability to predict future pain intensity from pain-free state PAF and ∆PAF to predict pain intensity is robust and not 345 

altered by the cross-validation procedures we employed. 346 
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Discussion 347 

The personal experience of pain is highly variable, even when the underlying tissue damage is identical. While previous 348 

research has found some genetic and psychological factors influencing pain susceptibility, methods to reliably predict 349 

pain intensity consequent to medical intervention are lacking. Here we report that the peak alpha frequency and its 350 

shifts over time, measured using EEG, were negatively related to the subjective pain intensity experience during induced 351 

prolonged pain. Specifically, slower PAF during the pain-free state and a shift to slower PAF (∆PAF) during the prolonged 352 

pain state were independently associated with higher pain intensity. Using these two metrics, we could predict 353 

individual pain sensitivity.  These observations taken together suggest that PAF could represent a brain biomarker of an 354 

individual’s predisposition to pain, which would have useful clinical applications. 355 

PAF has previously been suggested as a putative biomarker for individual differences in the experience of pain (Nir et al., 356 

2010; Bazanova & Vernon, 2014). For healthy individuals, acute pain intensity is related to faster PAF both before and 357 

during exposure to a noxious stimulus. In contrast, studies of chronic pain conditions have repeatedly demonstrated 358 

slowing of PAF, but little is known about whether this change reflects disease severity, symptom severity, individual 359 

vulnerabilities, or an interaction amongst the three. In the current study, we tested the hypothesis that PAF slowing 360 

reflects the intensity of prolonged pain by measuring PAF from healthy individuals in response to the capsaicin-heat pain 361 

model, which involves central sensitization (LaMotte RH, et al.1992; Lotsch J, et al 2015). In support of this hypothesis, 362 

we demonstrated that PAF recorded from central components during pain-free or prolonged pain states are inversely 363 

related to pain intensity. Also in support of our hypothesis, we found an inverse relationship between ∆PAF and 364 

prolonged pain intensity, suggesting that slowing of the alpha rhythm promotes prolonged pain intensity.  365 

Our finding that PAF recorded during pain-free and prolonged pain states are inversely related to pain intensity is 366 

notable for two reasons. First, the direction of this relationship is distinct from what has been previously reported for 367 

acute phasic pain (Nir et al., 2010; Nir et al., 2012), but consistent with reports of in chronic pain (Sarnthein et al., 2005; 368 

de Vries et al., 2013). This likely reflects the different nature of the prolonged pain model compared to acute phasic 369 

pain, with the CH-P model capturing at least some aspects of chronic pain (e.g. central sensitization), or the early 370 
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transition period to chronic pain (long lasting pain with peripheral nerve damage). Second, the ability of PAF recorded 371 

during the pain-free state to predict future prolonged pain intensity indicates that PAF indexes mechanisms that 372 

generate individual susceptibility sensitivity to prolonged pain. Our median split analyses provide strong support for this 373 

interpretation: the most sensitive individuals demonstrated PAF that were, on average, slower both before and during 374 

the pain state. In contrast, individuals with faster pain-free state PAF had a relatively less painful subsequent pain 375 

experience. We believe the median split analysis might have clinical relevance, since given identical injuries some 376 

individuals will develop persistent pain, while others will heal and be pain free. Taken together, we believe these 377 

findings suggest not only that PAF can predict the magnitude of future, prolonged pain but may also set the stage for 378 

PAF as a biomarker for distinguishing healthy and pathological pain.  One intriguing implication of our findings is that the 379 

slowing of alpha frequency observed in chronic pain patients is not solely a reflection of the changes in the brain 380 

brought about by the constant experience of pain, but that slower alpha frequency might have represented sensitivity to 381 

develop chronic pain in the future. 382 

We also observed that across individuals, changes in alpha frequency in the prolonged pain state relative to the pain free 383 

state (∆PAF), were inversely related to the subjective pain experienced. This is the first study to our knowledge 384 

demonstrate a relationship between ∆PAF and pain. The magnitude of ∆PAF was small (~0.05 Hz) and future 385 

investigations are needed to determine how these shifts represent meaningful changes in behavior. We here speculate 386 

that the slowing of PAF reflects a maladaptive change in the alpha state leading these individual to experience more 387 

pain. Conversely, the stability or increasing of PAF might reflect an adaptive response leading to pain resiliency.  388 

An important result from the current study was that ∆PAF is independent of pain-free state PAF. This finding suggests a 389 

potential new avenue for future pain treatments that use pain-free state PAF to identify high-risk individuals and 390 

generate interventions that aim to prevent injury induced changes in PAF. In fact, we believe that the current findings 391 

position PAF as a promising biomarker for treating and evaluating pain. Post-operative pain can sometimes lead to 392 

chronic pain, and one of the best predictors of chronicity is pain intensity immediately following surgery (Katz et al., 393 

1996). Thus, by predicting pain sensitivity following surgery with a simple metric such as alpha activity, patients at 394 

greater risk of developing chronic pain could be identified before the procedure begins, and appropriate measures could 395 
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be taken (e.g. pre- and post-operative pain management, or in some cases avoiding surgical interventions). Shifting PAF 396 

through transcranial alternating current stimulation (tACS) has been shown to affect perceptual ability (Samaha et al. 397 

2015; Cecere et al., 2015) and similar approaches could be used to modulate PAF for prophylactic and interventional 398 

pain treatments.  399 

Although it is tempting to speculate that the central independent component indexes this cortical hyper-excitability, the 400 

precise anatomical localization identity of the neural substrate giving rise to this component cannot be stated with any 401 

certainty. Inferring the location of EEG dipoles is always hazardous as different combinations of generators can give rise 402 

to the same apparent source (the so called “inverse problem” of EEG). For example, while 8-14 Hz “mu” rhythms 403 

originating from somatosensory cortex are modulated by painful stimulation (Ploner et al., 2006) combined EEG-fMRI 404 

studies have also suggested a coupling between scalp recorded alpha power and blood-oxygenation levels in the 405 

anterior cingulate cortex (Goldman et al., 2002). At present, both neural sources seem like equally good candidates for 406 

generating the independent component used in this study. Ultimately, future studies incorporating techniques, such as 407 

fMRI, that are better equipped to resolve the spatial identity of the currently sample source will be needed to fully 408 

resolve this question.  409 

It is important to acknowledge that the current study cannot determine whether PAF or PAF changes index the actual 410 

experience of pain as opposed to any process that may co-vary with it, such as the salience of the stimulus or the 411 

attention an individual pays to it. Importantly, our finding that PAF measured before capsaicin administration can 412 

reliably predict pain sensitivity provides some evidence that PAF does not index these confounding factors directly. 413 

Along similar lines, the pain intensity in our study and the Nir et al. (2010) study was relatively well matched, suggesting 414 

that potentially confounding factors such as stimulus saliency should be even across the studies and unable to account 415 

for the difference in findings.  416 

In summary, we provide novel data supporting the hypothesis that slowing of PAF is associated with prolonged pain 417 

intensity. These results extend previous findings that linked PAF and chronic neuropathic pain conditions, and suggest 418 

that slowing of PAF can be used as a potential marker of prolonged pain sensitivity, as well as a possible mechanism for 419 

understanding transitions from acute to chronic pain. The distinct mechanism we identified – PAF and ∆PAF – could 420 
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provide a number of innovative approaches for understanding, diagnosing, and treating chronic pain. Finally, slow alpha 421 

rhythms appear to have a specific relationship to prolonged pain and interventions that directly manipulate these 422 

rhythms may represent a viable means to prevent the transition from acute to chronic pain. Future work directly 423 

elucidating the neural mechanisms underlying our observation could offer new fundamental insights into how changes 424 

in neural oscillations shape the pain experience. 425 
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