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Abstract 

Metal pollutants have been considered one of the main factors underlying the depletion of 

biodiversity in natural populations unbalancing aquatic environments. The aim of this study was to 

evaluate the effects of exposure to inorganic Hg on myocardial contractility and the 

electrocardiogram (ECG) of two ecologically distinct Neotropical fish species, namely: matrinxã 

(Brycon amazonicus) and trahira (Hoplias malabaricus). Matrinxãs were exposed to a sublethal 

concentration of 0.1 mg L-1 of Hg in water for 96h. Trahiras were exposed to dietary Hg doses 

(0.45 mg of Hg, each 4 days, for 30 days) using juvenile B. amazonicus as the prey vehicle. Hg 

exposures decreased myocardial isometric twitch force development, harmed 

contraction/relaxation dynamics and cardiac pumping capacity (CPC), and reduced the relative 

contribution of the calcium stored in the sarcoplasmic reticulum (SR) to excitation contraction (E-C) 

coupling in both fish species. Analysis of the ECG revealed that Hg impaired electrical conduction 

across the heart, inducing first degree atrioventricular block and lengthening the plateau phase of 

action potential duration. In trahira trophic doses of Hg induced a marked bradycardia, increasing 

the duration of the ventricular action potential and delaying atrial and ventricular depolarization. 

These findings indicate that both acute and long-term Hg exposure, by different routes is 

cardiotoxic to matrinxã and trahira. Hg potently impaired intracellular calcium kinetics in the 

cardiomyocytes, myocardium contractility, and electrical conduction across the heart, all of which 

can be implicated in decreased cardiac output and putative heart failure. 

 

Key-words: fish, mercury, ECG, twitch force, force frequency relationship, excitation-contraction 

coupling, sarcoplasmic reticulum. 

 

 

1. Introduction 

Pollution of the aquatic ecosystems and its toxic effects on aquatic species has been of long-term 

interest and concern (Taylor, 1996). Mercury (Hg) is one of the most hazardous environmental 

pollutants occurring naturally and subject to increasing contamination from anthropogenic sources. 

In the aquatic environments, Hg is found as a metallic or elemental form, inorganic compounds or 

organic compounds (Black et al., 2007) and each form has a different toxicological profile and 

biochemical effects. Although organic mercury is the most toxic form, the inorganic mercury is the 

most common form of mercury released in the aquatic environments by industries (Oliveira Ribeiro 

et al., 1996). Inorganic Hg compounds have been widely used in the chlor-alkali, chemical and 

pharmaceutical industries. Particularly, mercuric chloride (HgCl2, sublimate corrosive) is widely 

used as fungicide for wood preservation, as a biocide in the paper industry, in fluorescent lamps, 

dry battery depolarizer, tanning agent for leather, catalyst in the manufacture of chemicals such as 

vinyl chloride and disinfectants, dental amalgam fillings among others (Broussard et al., 2002; 
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Wang et al., 2004; Rustagi and Singh, 2010). High concentrations of Hg (up to 0.05 mg L-1) have 

been found in water samples at the sites with extensive industrial activities (Hypolito et al., 2004; 

Alinnor, 2005; Bollen et al., 2008). The environmental impact of mercury can be aggravated by 

ecological disaster such the recent collapse of a mining dam in the Brazilian state of Minas Gerais 

(near Mariana County in November, 05th 2015). The dam burst at an iron ore mine released metal-

rich tailing wastes (arsenic, cadmium, copper, chromium, nickel and mercury) in concentrations 

that endanger human and ecosystem health (IGAM, 2015; Fernandes et al., 2016). 

Exposure to inorganic mercury may have harmful effects on fish inducing histopathological 

damage to liver, kidney, and gills (Oliveira Ribeiro et al., 2000, 2002), oxidative stress (Berntssen 

et al., 2003; Elia et al., 2003; Monteiro et al., 2010), reduced swimming capability (Vieira et al., 

2009), developmental damage and immunotoxicity (Zhang et al., 2016). In mammals, inorganic Hg 

also produces profound cardiotoxicity (Massaroni et al., 1992; Oliveira et al., 1994; Furieri et al., 

2011b) and induces endothelial dysfunction by reducing NO bioavailability (Massaroni et al., 1995; 

Furieri et al., 2011a). Therefore, mercury, even in the inorganic form, could be considered an 

important risk factor in cardiovascular disease (Fernandes Azevedo et al., 2012). However, 

knowledge of the toxicological impact of inorganic mercury on the cardiac function in tropical 

freshwater fish, under acute and long-term exposure by different routes is limited. In fish, as in all 

other vertebrates, the cardiovascular system is critical to performance and survival because it 

ensures the effective distribution/transport of oxygen and nutrients to the tissues (Gamperl and 

Driedzic, 2009). 

Matrinxã, Brycon amazonicus (Characiformes, Characidae), is an omnivorous and rheophilic 

species that inhabits clear and well oxygenated waters. It was originally native to the Amazon 

basin, but has spread over most Brazilian hydrographic basins (Margarido and Galetti, 1996). 

Trahira, Hoplias malabaricus (Characiformes, Erythrinidae), is a carnivorous freshwater fish found 

in a large diversity of South American aquatic environments, including lakes, reservoirs, and 

streams (Bialetzki et al., 2002). Both species constitute a potential resource for local consumption 

and sport fishing (Craig, 2015; Dias et al., 2012) and are interesting animals to evaluate toxic 

effects of pollutants in Brazilian ecosystems due to their food chain positions. 

Considering the Hg contamination of aquatic ecosystems and scarcity of cardiac physiological 

studies with native species, we investigated the effects of inorganic mercury on in vivo cardiac 

function and ex vivo myocardial contractility after acute waterborne exposure or longer-term 

exposure by trophic route. This study provided direct evidence of how mercury impacts the heart 

plus the mechanisms underlying toxic effects of Hg on cardiac muscle. Understanding how Hg 

impacts the heart of native fish species may provide an important tool for monitoring and predicting 

the ecotoxicological effects of pollutants in the aquatic environment. 
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2. Materials and Methods 

 

2.1 Animal care 

Matrinxã, Brycon amazonicus (Teleostei, Characiformes, Characidae), and trahira, Hoplias 

malabaricus (Teleostei, Characiformes, Erythrinidae), were obtained from fish culture farms and 

acclimated for 30 days prior to experimentation in 500 L holding tanks equipped with a continuous 

supply of well-aerated and dechlorinated water at a constant temperature (25 ± 2 ºC) under natural 

photoperiod (~12h light:dark cycle). During this period, matrinxãs were fed ad libitum with 

commercial fish pellets (40% of protein) and trahiras were fed at a ratio of 2 % of biomass day−1 

with small alive matrinxãs (~10 g). The water quality parameters were maintained at controlled 

levels: dissolved oxygen (~ 7.3 mg L-1), pH (~7.2), conductivity (~130 µS cm-1), alkalinity (38-43 mg 

L-1 as CaCO3), and total hardness (40-50 mg L-1 as CaCO3). 

 

2.2 Experimental Design 

For waterborne Hg exposure, specimens of B. amazonicus (body mass = 139.3 ± 8.6 g, mean ± 

SE) were divided into two experimental groups: control (Ctrl; n = 24) and HgCl2-exposed (wHg; n = 

24) at the sublethal concentration (~20% of LC50-96 h, as previously established by Monteiro et al., 

2010) of 0.1 mg L-1 of Hg (HgCl2 > 99.5 % purity, Sigma-Aldrich) for 96h in static holding tanks (see 

details in Monteiro et al., 2010). Hg concentrations were evaluated by Cold Vapor Atomic 

Fluorescence Spectrometry (CV-AFS) according to the USEPA 1631 detection technique (USEPA 

2002). This concentration was chosen based on the concentration range often detected in water 

bodies near industrialized areas (from 0.01 to 0.23 mg L-1) as reported by Alinnor (2005), Bollen et 

al. (2008), Hypolito et al. (2004). 

For trophic Hg exposure, specimens of H. malabaricus (body mass = 230.2 ± 23.5 g, mean ± SE) 

were divided into two treatment groups: control (Ct, n = 24) and Hg exposed group, via 

contaminated food (tHg, n = 24). The food supply consisted of four live young specimens of B. 

amazonicus (5-80 g) at each 96h (from clean water or following exposure to 0.1 mg of HgCl2 

during 96h), corresponding to 2% of the total body weight (bw) per day, over 30 consecutive days. 

This food ratio was based on the studies of Rios et al. (2005) and the experimental design is fully 

described in Monteiro et al. (2013a).The total Hg concentration in these young matrinxãs was 

analyzed by a Cold Vapor Atomic Absorption Spectrometry (CV-AAS) following the method 

recommended by the United States Pharmacopeia (USP 2000). Considering the average mass of 

the prey, each H. malabaricus received about 0.45 mg of Hg every 96h. This tested dose of total 

Hg was estimated from fish collected in impacted areas (Francesconi and Lenanton, 1992; Alho 

and Vieira, 1997; Hylander et al., 2000). The trophic contamination carried out in the present study 

refers exclusively to Hg inorganic forms, since no methyl mercury levels exceeding 1 µg kg-1 were 

detected in the matrinxãs exposed to HgCl2 and provided as prey for the trahiras. Methyl mercury 
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was analyzed by gas chromatography mass spectrometry according to the method of AOAC 

(2006). 

In the present study, both water and food Hg concentrations caused a metal bioaccumulation in 

different tissues of matrinxã and trahira, as described in Monteiro et al. (2010; 2013a). In brief, the 

concentration of Hg in the tissues after waterborne exposure and trophic exposure occurred as 

follow: gills (~17.8 mg kg-1) > liver (~10.5 mg kg-1) >> heart (~0.7 mg kg-1) ≈ white muscle (~0.6 mg 

kg-1) for B. amazonicus; and gills (~1.5 mg kg-1) > liver (~1.1 mg kg-1) >> white muscle (~0.2 mg kg-

1) ≈ heart (~0.1 mg kg-1) for H. malabaricus. 

 

2.3 Ex vivo Experiments 

In order to analyze of the cardiac excitation-contraction coupling in cardiac myocytes, fish (n = 12 

per experimental group) were euthanized by concussion followed by spinal cord transection and 

the hearts were carefully excised and immediately transferred to a Ringer solution containing 

(mM): 125.0 NaCl, 2.5 KCl, 0.94 MgSO4, 1.0 NaH2PO4, 30.0 NaHCO3, 1.5 CaCl2, 10 glucose at pH 

7.4. Strips of ventricular muscle with a maximal thickness of 3 mm (mean mass 2.90 ± 0.27 mg) 

were excised then tied at each end to two metal rings and immersed in a bath containing the 

Ringer solution at 25°C, continuously bubbled with a gas mixture of 2% CO2 and 98% O2. One ring 

was attached to a LETICA isometric force transducer (Letica Corporation, USA), through a 

stainless steel wire and the other was tied around a platinum electrode connected to an AVS 100D 

stimulator (Solução Integrada Ltda., Brazil) which delivered square electrical pulses of 8 ms and a 

voltage 50% above that eliciting maximal twitch force. Preparations were stretched to obtain a 

twitch tension at the maximum of the length-twitch tension relation. 

After the stabilization period (40 min at 0.2 Hz or 12 bpm), twitch force were recorded by dedicated 

data-acquisition software (Soft & Solutions, Solução Integrada Ltda., São Paulo, Brazil). The length 

and wet mass of each strip were measured and isometric force (Fc) relative to cross-sectional area 

(mN mm-2) was calculated assuming a muscle density of 1.06·mg·mm-3 (Layland et al., 1995). 

Time-dependent parameters such as the rates of contraction and relaxation, represented by the 

maximum rate of tension rise (+dF/dt – mN mm-2 s-1) and maximum rate of tension decline (-dF/dt 

– mN mm-2 s-1), were also determined. 

 

2.3.1 Experimental protocols: force-frequency relationship and post-rest behavior 

The effect of stimulation frequency on the contractility of fish heart was studied by increasing 

pacing rate from 0.2 Hz (12 bpm) until the frequency at which at least 80% of the strips were still 

able to contract regularly. The cardiac pumping capacity (CPC) at each stimulation frequency was 

calculated as the product of Fc and heart rate as previously described by Matikainen and 

Vornanen (1992). Thereafter, post-rest potentiation was measured at 0.2 Hz. Electrical stimulation 

was switched off during pause intervals of 10, 30, 60, and 300 s and isometric twitch tension was 
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analyzed at the first beat upon re-stimulation. The relative potentiation was evaluated as the ratio 

of post-rest contraction and last contraction in a steady-state train. Post-rest contractile behavior 

reflects the amount of Ca2+ stored within and released from the SR in the first contraction after rest 

(Pieske et al., 1996). 

To evaluate the role of SR Ca2+ stores in excitation-contraction coupling, the experiments 

described above were repeated after addition of the alkaloid ryanodine (10 M) to the bath 30 min 

before each protocol to inhibit SR function (Mill et al., 1998). Ryanodine promotes continuous 

leakage of the stored Ca2+ in SR and disrupts SR Ca2+ release by the Ca2+ pool that enters the 

cardiomyocyte through sarcolemmal Ca2+ channels (Bassani et al., 1999). 

 

2.4 In vivo Experiments 

Fish (n = 12 per experimental group) used for electrocardiogram (ECG) recordings were 

anaesthetized by immersion in a solution of benzocaine (0.5 g L-1) and then placed on a surgical 

tray. Using sterile techniques, two ECG electrodes (for details see Monteiro et al., 2013) were 

inserted under skin in the ventral midline approximately 2 cm apart, one just anterior to the heart 

and the second caudal to the heart. The procedure took about 5 minutes. Recovery from 

anesthesia was achieved by gill/skin irrigation with anesthetic-free water. Each fish was then 

placed in the experimental tank for 12h enclosed in an open flow-through respirometer supplied 

with normoxic water (140 mmHg) at 25 oC and allowed to fully recover from the operation. The 

electrodes were connected to a bioamplifier and a ground electrode was immersed in the 

experimental tank. ECG was recorded at 1 KHz, amplified and filtered using the bioamplifier and 

PowerLab data acquisition supplied by ADInstruments, Brazil. Besides heart rate (fH), ECG 

recordings were used to determine: a) duration of the P wave, QRS complex, and T wave (atrial 

depolarization, ventricular depolarization and ventricular repolarization duration, respectively); b) 

RR intervals (time measurement between the R wave of one heart beat and the R wave of the 

preceding heart beat); c) PR interval (time for impulse propagation from atrium to ventricle); d) QT 

interval (duration of ventricular action potential); and e) ST segment (representing phase two or the 

plateau of the action potential). 

 

2.5 Statistical analysis 

Results are presented as means ± S.E.M. Data from control and Hg exposed groups were tested 

for statistically significant differences using the Student t-test. The Kolmogorov and Smirnov 

method was applied to evaluate normality of the samples and the F-test was applied for 

homogeneity of variances. Analysis of variance one-way Anova followed by Dunnett’s post hoc 

tests was used to check the existence of significant variations between the values obtained at 

different stimulation frequencies for the same experimental group. Differences between means at a 

5% (P < 0.05) level were considered significant. 
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3. Results 

 

The effects of increasing stimulation frequency on contractile parameters of both experimental 

groups are shown in Fig. 1. Mercury exposure reduced the maximum sustained frequency of 

ventricular strips of both species, from 120 bpm to 96 bpm. Matrinxã and trahira ventricle strips 

showed a negative force frequency relationship, revealed by the significant and progressive 

reduction of Fc values from 24 and 48 bpm (Figs. 1A and 1D), respectively, and reaching minimum 

values at the highest sustained frequencies. For matrinxã, the changes in the +dF/dt with the 

increased stimulation frequency were similar to that observed in the contractile force under control 

conditions or after exposure to Hg. The +dF/dt values decreased significantly above 60 e 72 bpm 

in Ctrl and wHg groups, respectively, when compared to initial values (Fig. 1B), while -dF/dt was 

maintained constant in the range of tested frequencies (Fig. 1C). However, increases in the 

stimulation frequency had no effect on +dF/dt and -dF/dt of trahira ventricle strips (Figs. 1E and 

1F). Both Hg exposure routines significantly decreased the force development and the contraction 

and relaxation rates at all frequencies studied. Nevertheless, the decreases in contraction force 

and rates of contraction and relaxation of matrinxã preparations, caused by wHg exposure (~ 48%, 

48%, and 51%, respectively), were more prominent than those caused by tHg exposure in trahira 

(~ 20%, 35%, and 32%, respectively). 

 

Fig. 1 

 

Cardiac pumping capacity (CPC) is shown in Fig. 2. For matrinxã (Fig. 2A), CPC increased 

significantly above 24 bpm (0.4 Hz) in relation to the initial values of 12 bpm in both the Ctrl and 

wHg groups. For trahira (Fig. 2B), the optimum frequency for the pumping capacity in the C group 

ranged between 48 and 120 bpm (0.8 to 2.0 Hz) while it ranged between 48 and 96 bpm in the tHg 

group. Statistical analysis revealed that the CPC values of the Hg groups (waterborne and trophic 

exposure) were lower than the control groups at all stimulation frequencies analyzed in both 

species (50% and 32% respectively). 

 

Fig. 2 

 

The relative participation of sarcoplasmic reticulum (SR) in total force-associated Ca2+ flux as a 

function of the stimulation frequency is presented in Fig. 3. This variable was assessed as the 

effect of ryanodine on isometric tension development in isolated ventricular strips for each species 

and treatment. A leftward and downward shift in the force frequency relationship was detected after 

treatment with ryanodine in both control and Hg groups. The proportion of the SR Ca2+ contribution 
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to excitation-contraction coupling in the myocardium of control groups of matrinxã and trahira was 

approximately 81% and 69% respectively (Figs. 3A and 3D). Following Hg exposure the SR 

contribution to tension generation revealed by treatment with ryanodine, fell to around 51% in 

matrinxã and 53% in trahira (Figs. 3B and 3E). Thus, mercury exposures per se reduced the 

relative SR contribution to a rise in intracellular Ca2+ in matrinxã (~ 30%) and trahira (~ 16%) at all 

stimulation frequencies analyzed (Figs. 3C and 3F). 

 

Fig. 3 

 

Fig. 4 illustrates the post-rest contraction behavior of cardiac strips from matrinxã (Fig. 4A) and 

trahira (Fig. 4B) when stimulated at 0.2 Hz at varied diastolic periods after interruption of repetitive 

stimulation, with or without ryanodine. Both control and Hg groups showed a significant post-rest 

potentiation which was completely abolished by ryanodine. The amplitude of the first contraction 

after the prolonged diastolic interval (10 - 300 sec) was higher than the preceding contraction in all 

experimental groups (Crtl, wHg, Ct, and tHg). Maximum post-rest potentiation occurred after 300 

sec, with increments of 31% and 42% for matrinxã and trahira, respectively, under control 

conditions, and 17% and 12% after waterborne or trophic Hg exposure, respectively. In the control 

groups the post-rest potentiation values were significantly higher in matrinxã ventricle strips after 

rest periods of 30 - 300 sec, while in trahira this potentiation was higher during steady stimulation 

(0.2 Hz).only following a rest period of 300 sec. 

 

Fig. 4 

 

Changes in the ECG recordings of matrinxã (Brycon amazonicus) and trahira (Hoplias 

malabaricus) after Hg exposures are shown in Table 1 and Figures 5 and 6. 

For waterborne Hg exposure, the T wave duration decreased from 167 to 103 ms (- 38%) while PR 

interval and ST segment were elongated from 81 to 91 ms (12%) and from 168 to 212 ms (26%), 

respectively. These alterations are evidenced in Fig. 5. 

 

Table 1 

Fig. 5 

 

On the other hand, the ECG pattern of H. malabaricus was profoundly influenced by Hg trophic 

exposure. Heart rate was significantly slowed down to 39.8 beast min-1 (- 27%) and T wave 

duration was shortened by 50% while the duration of P wave and QRS complex was found to be 

significantly higher (from 93 to 106 ms and from 69 to 93 ms, respectively). Concomitantly, RR, PR 

and QT intervals, and ST segment were also significantly prolonged by 38, 13, 20, and 34%, 
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respectively. In addition, QRS complexes were frequently directed downward, opposite to the 

polarity of the P and T waves as shown in Fig. 6. 

 

Fig. 6 

 

4. Discussion 

 

This study on two South American freshwater teleost fish (matrinxã, B. amazonicus, and trahira, H. 

malabaricus) is the first to demonstrate that inorganic mercury, whether accumulated from the 

external environment or from the diet (waterborne or trophic exposure), impairs in vivo heart 

function and ex vivo myocardial contractility, falling E-C coupling efficiency and 

contraction/relaxation kinetics. 

Myofilaments are activated during the E-C coupling in response to an increased cytosolic Ca2+ 

concentration which can occur in response to mobilization of these ions from the sarcoplasmic 

reticulum (SR) as well as by influx through the sarcolemma (SL), which can occur via L-type Ca2+ 

channels and/or Na+/Ca2+ exchanger (NCX) acting in the reverse mode. On the other hand, cardiac 

muscles relax when intracellular Ca2+ content is reduced back to its diastolic resting levels by Ca2+ 

transportation out of the cell via the sarcolemmal Ca2+-ATPase and, in addition, mainly by the NCX 

and/or its accumulation inside the SR, which occurs by pumping activity via SERCA - 

sarcoplasmic-endoplasmic Ca2+-ATPase (Kalinin et al., 2009). Regardless of stimulation frequency 

(including the in vivo frequency range, Table 1) the ventricular strips of Hg-exposed animals 

presented a reduced contraction force compared with controls. This reduction in performance may 

result from a decrease in Ca2+ transients, including reduced calcium-induced calcium release 

(CIRC) from the SR. In both species studied, Hg exposures shifted the force frequency relationship 

to the left and downward, reflecting a lower amplitude Ca2+ transient. The negative staircase effect, 

characteristic of the teleosts force frequency relationship, may be explained by the frequency 

dependent decline in Ca2+ transient due to a decreased transarcolemmal Ca2+ influx (via L-type 

Ca2+ channel or NCX reverse mode) or a reduced SR Ca2+ release associated with a shortest time 

for mechanical restitution at high frequencies (Shiels et al., 2002). The decrease in cardiac 

contractility and in maximum pacing frequency represents an important and deleterious effect of 

Hg on matrinxã and trahira heart function. Hg2+ oxidizes sulfhydryl groups of Na+/K+-ATPase under 

in vitro and in vivo conditions (Kade, 2012). The inhibition of the sarcolemmal Na+, K+-ATPase 

results in a digitalis-like effect, increasing the intracellular Na+ levels and thus, reducing the NCX 

activity (Oliveira et al., 1994). 

Under Hg exposures, the negative force-frequency relationship becomes significantly steeper at 

physiological frequencies, denoting a mercury negative lusitropic effect. Accordingly, ventricular 

strips from both species exhibited slower rates of contraction and relaxation, indicating that the 
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beat-to-beat intracellular Ca2+ cycling dynamics was impaired by Hg. Moreover, Hg exposures 

attenuated the cardiac pump capacity (CPC = product of heart rate and force) curves. The 

calculated CPC can be used as an index of power output for isolated heart preparations since it 

integrates the effects of changes in force and changes in stimulation frequency (Shiels et al., 

1999). Thus, Hg exposures, via water or food-chain, decreased the optimum frequency for power 

output in both species and this is probably related to the slower rates of tension development and 

relaxation of the ventricular strips. Previous studies have demonstrated that inorganic Hg 

functionally disrupts E-C coupling in the mammalian heart by inhibition of the sarcolemmal Na+/K+-

ATPase, SERCA, and myosin ATPase (Hechtenberg and Beyersmann, 1991; Vassallo et al., 

1999; Moreira et al., 2003). These actions might also be the way the metal exerts its effects on the 

fish heart, acting at several sites on the myocytes. 

The survival of vertebrates depends on uninterrupted heart function and efficient adjustments of 

cardiac output under different physiological or adverse conditions (Driedzic and Gesser, 1994). 

According to Vornanen et al. (2002), the fish cardiac myocytes E-C coupling is a greatly variable 

and flexile process that enables fish to have an appropriate cardiac scope to take advantage of a 

diverse range of environments. The efficiency of the heart is critically dependent on the myocardial 

contractility which, in turn, depends on the intracellular Ca2+ homeostasis. After Hg exposure, 

matrinxã and trahira hearts were unable to maintain a normal cardiac output due to Hg-induced 

myocardial contractility dysfunction. Since strategies for modulating cardiac output to meet 

cardiovascular demands are crucial, the impact of Hg on cardiovascular performance of both fish 

species can compromise their survival. 

The post-rest potentiation of force occurs due to the accumulation of calcium ions in the SR 

terminal structures during the rest period. The SR Ca2+ content tends to increase with increased 

duration of pauses, resulting in an increased Ca2+ release in the first contraction after rest 

(Kondratyeva et al., 2012). Thus, changes in post-rest contractile force result primarily from 

changes in the amplitude of the intracellular Ca2+ transients, reflecting the SR capacity of calcium 

storage (Mill et al., 1992; Pieske et al., 1996). In matrinxã and trahira, SR Ca2+-stores have a 

predominant role on cardiac contractility since ryanodine effectively abolished post-rest 

potentiation and reduced contraction force. The relative contribution of the SR Ca2+ to force 

generation varies remarkably among species (Bers, 2002), mostly in fish (Vornanen et al., 2002; 

Haverinen and Vornanen, 2009; Korajoki and Vornanen, 2013). In mammalian cardiac muscle, SR 

plays a key role as source of activator Ca2+ meanwhile in fish cardiac myocytes, the extracellular 

Ca2+ cycling is generally more important than intracellular Ca2+ stores (Driedzic and Gesser, 1994; 

Vornanen et al., 2002). In this study, although force-frequency relationship was negative, the 

substantial role of SR Ca2+-release in force generation (70-80%) is similar to humans and rabbits, 

suggesting that matrinxã and trahira can be alternative and attractive models to study myocardial 

contractility. 
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The importance of the SR as a source of Ca2+ to force development was attenuated after Hg 

exposures (via water or food) probably due to a reduced Ca2+ reuptake caused by a SERCA2a 

dysfunction. Consequently, a decreased amount of activator Ca2+ will be available for the next 

contraction. These results highlight the Hg-induced negative inotropic effect. In accordance with 

these possibilities, inorganic mercury is a strong inhibitor of SERCA activity in rabbit cardiac 

muscle (Hechtenberg and Beyersmann, 1991). In isolated rat ventricular tissue, the exposure to 

mercury reduced the SERCA/phospholamban ratio, decreasing the SR Ca2+ uptake and thus, 

contributing to a calcium overload and contractility dysfunction (Furieri et al., 2011b). 

Our results are also corroborated by those of Oliveira and Vassalo (1992) and Oliveira et al. (1994) 

which reported a progressive reduction of the post-rest potentiation with increased concentrations 

of HgCl2 in isolated rat cardiac muscle, showing that SR function was depressed by mercury in a 

dose-dependent manner. According to Pieske et al. (1996), a reduced SR Ca2+ storage ability, 

alterations in SR Ca2+ release channels and/or excessive Ca2+ leak via ryanodine receptors 

(RyR2s) may contribute to abnormal Ca2+ handling and diminished post-rest potentiation. This 

uncontrolled CIRC has been related to a spectrum of cardiac disease states ranging from triggered 

and reentrant arrhythmias to heart failure as result from Ca2+ overload and/or sensitization of 

RyR2s by enhanced luminal Ca2+ leading to spontaneous Ca2+ releases (Györke and Carnes, 

2008). Moreover, the ex vivo effects of Hg on myocardium contractility were further supported by in 

vivo experiments with these two different Hg-exposure routes (Monteiro et al., 2013b). We 

demonstrated that inorganic Hg impaired cardiorespiratory function in these species, promoting 

tachypnea in matrinxã and, in trahira, bradypnea associated with a decreased metabolic rate (O2 

uptake), and severe bradycardia. Another aspect that should be mentioned is that these different 

doses and routes of inorganic Hg-exposure caused oxidative stress damages and mercury 

bioaccumulation in the cardiac tissues of both species under same experimental conditions (for 

details, see Monteiro et al., 2010, 2013a). 

Inorganic Hg strongly influenced the contractile performance of cardiac muscle and impaired the 

electrical conduction activity in both fish species. Hg exposures induced: shortening of the T wave 

duration that represents the repolarization of the ventricles; prolongation of the PR interval, 

conventionally known as first-degree atrioventricular block; and lengthening of the ST segment that 

reflects the duration of ventricular action potential. The electrocardiographic findings indicate a 

cation imbalance leading to an altered excitability and, consequently, a limited heart pumping 

capacity. Massaroni et al. (1992; 1995) described similar electrical responses to inorganic mercury 

in rats and suggested that these changes may be related to the depression of Na+,K+- ATPase and 

of SR activity produced by mercury. In addition, the H. malabaricus ECG recordings also showed a 

negative chronotropic response after longer-term and trophic Hg exposure with reduced RR 

intervals, delayed atrial and ventricular depolarization (increased P and QRS duration), lengthened 

duration of ventricular electrical systole, including depolarization and repolarization (prolongation of 
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the QT interval), and a QRS complex with P and T waves apparently reversed in polarity. Altered 

QRS duration and morphology may indicate myocardial fibrosis and bundle branch block (Farraj et 

al., 2011), while QT interval prolongation is associated with delayed repolarization of cardiac 

myocyte action potential, thereby predisposing individuals to heart failure (Yu et al., 2010). The 

inversion of the QRS complex after Hg exposure may represent a real change in the direction of 

ventricular depolarization, though is difficult to explain in functional terms and likely to result in 

profound cardiac dysfunction. The recorded changes in the ECG waveforms after mercury 

exposure raise several questions that invite further investigation. 

The in vivo cardiac activity was harmed by exposure to mercury in different ways depending on the 

route and/or time of exposure. Variations exist across species in terms of susceptibility. Further, in 

Hoplias malabaricus, a longer-term exposure could also contribute to the pronounced effects of 

inorganic Hg on cardiac rhythm and electrical conduction. Indeed, metal toxicity depends upon the 

absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic as well as the 

age, gender, genetics, and nutritional status of exposed individuals (Tchounwou et al., 2012; 

Jaishankar et al., 2014). 

In summary, our results provide clear evidence that different routes of exposure to inorganic Hg 

disturb electrical and mechanical performance of the heart of two fish species with different life 

styles and ecological demands. Hg disrupted E-C coupling and potently impaired the contraction 

force and maximal cardiac pumping capacity by interfering with SR Ca2+ stores and reducing the 

SR importance to E-C coupling. So, mercury produces negative inotropic effects in fish heart 

resulting in weakened contractility and, consequently, decreased cardiac output. Moreover, Hg 

harmed heart electrophysiological mechanisms leading to atrioventricular conduction block and 

depolarization/repolarization events abnormally delayed. The Hg-induced dysregulation on 

myocardial Ca2+ handling and electrical conduction have been implicated in heart failure and 

hemodynamic abnormalities, which can affect energy-demanding activities in fish such as 

swimming, foraging or reproduction. 
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Legends 

 

Figure 1. Ventricular strips from: matrinxã (A, B, and C) and trahira (D, E, and F). Effects of 

increases in stimulation frequency on isometric twitch force (Fc; A and D), rates of contraction 

(+dF/dt; B and E) and relaxation (-dF/dt; C and F) developed by ventricular strips of control (Hg-

free water = Crtl or Hg-free diet = Ct, n =12) and mercury exposed (via water = wHg or trophic 

exposure = tHg, n = 12). Mean values ± SEM. Open symbols denote a significant difference in 

relation to the values obtained at 0.2 Hz (P < 0.05), while asterisks indicate significant differences 

between experimental groups at the same frequency (P < 0.05). 

 

Figure 2. Cardiac pumping capacity (CPC) developed by ventricular strips of control (Hg-free 

water = Crtl or Hg-free diet = Ct, n =12) and mercury exposed (via water = wHg or trophic 

exposure = tHg, n = 12) specimens of matrinxã (A) and trahira (B). Mean values ± SEM. Open 

symbols denote a significant difference in relation to the values obtained at 0.2 Hz (P < 0.05), while 

asterisks indicate significant differences between experimental groups at the same frequency (P < 

0.05). 

 

Figure 3. Role of sarcoplasmic reticulum (SR) in force generation of ventricular strips from 

specimens of matrinxã (A, B and C) and trahira (D, E and F) at different stimulation frequencies: A 

and D are controls (Hg-free water = Crtl or Hg-free diet = Ct, n =12) B and E are mercury exposed 

(via water = wHg or trophic exposure = tHg, n = 12) in absence or presence of 10 M ryanodine 

(RYAN). Fc as a proportion of control are shown in C and F. Mean values ± SEM. Open symbols 

denote a significant difference in relation to the values obtained at 0.2 Hz (P < 0.05), while 

asterisks indicate significant differences between experimental groups at the same frequency (P < 

0.05). 

 

Figure 4. Post-rest force contraction of ventricular strips of matrinxã (A) and trahira (B) from 

control (Hg-free water = Crtl or Hg-free diet = Ct, n =12) or mercury exposed groups (via water = 

wHg or trophic exposure = tHg, n = 12) with or without ryanodine (RYAN, 10M) after rest periods 

of 10, 30, 60, and 300 seconds. Amplitude was expressed as a percentage of the previous steady-

state contraction (0.2 Hz or 12 bpm), which is indicated by the dotted line. Mean values ± SEM. * 

indicates significant difference (P < 0.05) in relation to steady-state force, # indicates significant 

difference (P < 0.05) between Ctrl and wHg or Ct and tHg groups. 

 

Figure 5. Electrocardiogram tracings of matrinxã, Brycon amazonicus, from (A) control (Hg-free 

water = Crtl) or (B) mercury exposed group (via water = wHg) showing reduced T wave duration 

and prolonged PR intervals and ST segments. 
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Figure 6. Electrocardiogram tracings of trahira, Hoplias malabaricus from (A) control (Hg-free diet 

= Ct) or (B) mercury exposed group (trophic exposure = tHg) showing that the QRS complex was 

frequently directed downward and prolonged besides increases in the P wave duration, PR and QT 

intervals and ST segments. 
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Table 1. Effects of Hg exposures on different variables of in vivo ECG of matrinxã (Brycon 

amazonicus) and trahira (Hoplias malabaricus) Results are means ± SEM. # indicates significant 

differences between experimental groups (P < 0.05). 

 

 Brycon amazonicus Hoplias malabaricus 

ECG parameters Ctrl wHg Ct tHg 

fH (beats min-1) 65.0  3.7 73.4  5.5 54.6  5.2 39.8  3.13 # 

RR intervals (ms) 877.7 ± 46.7 856.0 ± 43.5 
1252.5 ± 

118.2 

1732.6 ± 145.4 

# 

P duration (ms) 41.6 ± 2.7 38.0 ± 1.7 93.0 ± 2.9 106.3 ± 3.8 # 

QRS duration 

(ms) 
65.6 ± 4.7 63.5 ± 2.7 69.1 ± 8.1 93.2 ± 4.0 # 

T duration (ms) 167.3 ± 17.9 103.5 ± 8.7 # 344.1 ± 33.5 175.4 ± 24.9 # 

PR interval (ms) 81.2 ± 1.6 91.2 ± 3.8 # 190.0 ± 5.7 213.9 ± 5.9 # 

QT interval (ms) 373.9 ± 9.4 373.5 ± 14.9 587.7 ± 28.0 704.1 ± 38.6 # 

ST segment (ms) 168.4 ± 15.8 211.7 ± 6.5 # 283.6 ± 31.6 379.0 ± 28.8 # 
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