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New findings 

 

What is the topic? 

One of the major unanswered questions in physiology is explaining how breathing matches metabolic 

rate.  Venous chemoreceptors seem to have been dismissed since the 1960s.  

 

What advances does it highlight? 

  New evidence shows that their apparent dismissal needs reappraisal: 

 the paper on which this depends has more than one interpretation and another obtained the 

opposite result. 

 previous search ignored all locations between skeletal muscle and the right heart. 

 Oxygen sensors other than the arterial chemoreceptors do exist.  Heymans et al., originally 

demonstrated some residual breathing response to hypoxia in sino-aortic denervated animals. 

Similar results occur in humans. 
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Reappraisal of systemic venous chemoreceptors- might they explain breathing matching metabolic rate in 

humans? 

 

Abstract (242 words) 

One of the major unanswered questions in physiology is explaining how breathing matches metabolic rate.  The 

existence in humans of venous chemoreceptors that might control breathing seeems to have been dismissed 

since the 1960s.  New evidence has emerged showing that this apparent dismissal needs reappraisal. First, the 

paper  in humans on which this depends has more than one interpretation. Moreover a previous paper obtained 

the opposite result and is not cited. Secondly,  previous search for venous chemoreceptors failed to examine all 

venous locations between skeletal muscle and the right heart and lungs. Thirdly, oxygen sensors other than the 

arterial chemoreceptors do exist. Heymans himself originally demonstrated some residual breathing response to 

hypoxia in sino-aortic denervated animals.  Others confirm a residual breathing response to hypoxia in 

mammals including humans. There is now considerable interest in the importance of afferent feedback in 

controlling the cardiovascular and respiratory systems.  Moreover, it is now clear that arterial, aortic and central 

chemoreceptors have no role in explaining breathing matching metabolic rate.  These together provide a timely 

reminder that venous chemoreceptors remain ideal candidates still to  be considered as metabolic rate sensors 

explaining matching in humans. First, this is  because venous PO2 and  PCO2 levels do change appropriately in 

proportion to metabolic rate, so a metabolic rate signal sufficient to drive breathing may already exist. 

Secondly, chemoreceptor-like anatomical structures are present in the systemic venous system  but remain 

unexplored. Finally, no extant experimental evidence precludes their existence. 
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introduction 

 Many scientific reviews outline the major difficulty in providing any coherent explanation of one of the 

simplest and vital control systems in physiology: how well breathing matches metabolic rate (the rate of oxygen 

consumption) between rest to maximum exercise (Dejours, 1964;Comroe, 1964;Comroe, 1974;Ward, 

1994;Dempsey et al., 1995;Waldrop et al., 1996;Forster & Pan, 1997;Dempsey & Whipp, 2003;Prabhakar & 

Peng, 2004;Poon et al., 2007;Forster, 2007;Forster et al., 2012;Kumar & Prabhakar, 2012;Parkes, 2013;Forster, 

2014;Paterson, 2014;Dempsey et al., 2014). There are difficulties too in the proposal that matching is explained 

only by combining more than one mechanism, either additively or multiplicatively  (Cunningham, 

1987;Comroe, 1974;Parkes, 2013;Paterson, 2014).  

After nearly 100 years of research, either a completely new discovery awaits us, or there may be better 

interpretations of published data.  

The simplest assumption is that there is a metabolic rate (oxygen) sensor somewhere and that this 

ultimately controls breathing. The systemic veins (and or in skeletal muscle itself) are the obvious site to locate 

the metabolic rate sensor(s).  It  has long been known  (Bock et al., 1928) that  in humans the partial  pressure 

of oxygen in systemic venous blood (PvO2) falls linearly (figure 1b) in proportion to metabolic rate (Mitchell et 

al., 1958;Edwards et al., 1972;Casaburi et al., 1989;Sun et al., 2001) and that of carbon dioxide (PvCO2)  rises 

linearly (figure 1a) in proportion to metabolic rate. These changes are sustained as long as metabolic rate is 

raised. Moreover there are two reasons why the CNS does not need  simultaneous measures of both arterial and 

venous blood gases to measure metabolic rate; first, the CNS could safely assume normal arterial partial 

pressures of oxygen and carbon dioxide ( PaO2 and PaCO2 ) because PaO2 does not fall and PaCO2  does not 

rise during  exercise (figure 1a &b) and secondly, it is already known that  removal of such arterial 

measurements (carotid arterial chemoreceptor denervation) has little effect on breathing  matching metabolic 

rate during exercise in humans  (Wasserman et al., 1975b;Honda et al., 1979a). So combining the venous blood 

gas signal alone with knowledge of cardiac output could enable the CNS to estimate metabolic rate 

continuously for  matching.   

 The idea of metabolic rate sensors in the systemic venous system is implied at least as early as 1886 

and was last resurrected by Riley et.  al.,  (Dutton et al., 1960;Riley et al., 1960;Armstrong et al., 1961;Riley, 

1963;Riley et al., 1963). Despite the undisputed existence of such an obvious metabolic rate signal, the 

particular problem is that nobody has yet succeeded in demonstrating whether it is used i.e., that venous 

chemoreceptors either do or do not exist.  One negative study in humans  (Dejours et al., 1955) is often cited. 

Dejours wrote the series of reviews  (Dejours, 1962;Dejours, 1963;Dejours, 1964) cautiously proposing that 

"such chemoreceptors do not seem to exist" 

and to which many articles defer. 

But  Dejours et al.,(1955) is directly contradicted by a previous study (Mills, 1944) that is not cited. Since 

neither study has been independently validated,  

“absence of evidence is not evidence of absence”  (Sagan, 1980) 

 and the better judgement is “inconclusive”.  In which case, venous chemoreceptors could explain matching all 

the time, but we fail to see them.  
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Failure of carotid & aortic (arterial) or central chemoreceptors to explain matching. 

  Corneille Heymans won the 1938 Nobel prize in Physiology or Medicine for the discovery of arterial 

chemoreceptors. These have dominated all thinking about the control of breathing ever since. Yet 3 sets of  

experiments in humans show that they cannot act as metabolic rate sensors (Forster et al., 2012;Kumar & 

Prabhakar, 2012;Parkes, 2013;Parkes, 2014;Forster, 2014;Dempsey et al., 2014). 

1) figures 1 & 2 show  that the arterial chemoreceptors are in the wrong location to 

measure metabolic rate, as they receive no known blood borne signal related to metabolic 

rate (PaCO2 fails to rise and PaO2 fails to fall during exercise), 

2)  their severest stimulation by  hypoxia, to levels that can cause unconsciousness, fails 

to increase breathing to anywhere near the levels seen at maximum exercise (Dripps & 

Comroe, 1947;Parkes, 2013), 

3) bilateral denervation of carotid chemoreceptors has remarkably little effect on 

breathing in humans at rest or during exercise (Lugliani et al., 1971;Wasserman et al., 

1975b;Honda et al., 1979a), 

Even evidence for arterial chemoreceptors routinely acting as “mismatch sensors”, or “fine tuning” breathing if 

it  ever fails to match metabolic rate, is not easily obtained (Dripps & Comroe, 1947;Lambertsen et al., 

1953;Dejours et al., 1958;Forster & Pan, 1994;Parkes, 2013). Neither is there evidence in humans that aortic or 

central chemoreceptors could be the metabolic rate sensor, because they too receive no blood borne (or other) 

signal linked to metabolic rate. 

   Arterial chemoreceptors undoubtedly do provide rapid warning about the chemical composition of 

blood supplying the brain. But even when hypoxia stimulates breathing, this has only limited benefit. This 

hyperventilation  itself  uses up more oxygen. Moreover all it achieves is raising alveolar PO2 by 1 mmHg 

for every 1 mmHg that it lowers alveolar PCO2 (Luft, 1965). So at best it can only increase the partial 

pressure gradient driving oxygen from the lungs into the blood stream by about 27 mmHg  (Malconian et 

al., 1993).  There is also much interest in their potential in driving maladaptive cardiorespiratory outcomes 

(e.g., hypertension) in disease.  But something else is responsible for measuring metabolic rate.  Recent 

experimental evidence continues to emphasise important  roles for chemoreceptor feedback, now from muscle  

(Cui et al., 2011;Kaufman, 2012), and of afferent feedback from both muscle and the peripheral vasculature, in 

driving both the cardiovascular and respiratory systems  (Paterson, 2014;Haouzi, 2014;Dempsey et al., 2014).  

Yet apparently because of the Dejours reviews, the possibility that venous chemoreceptors might account for 

some of these intriguing observations  is not currently considered. 

 

Chemoreceptor-like anatomical structures exist in the venous system 

 Carotid chemoreceptors belong to a general class of anatomical structures, known as paraganglia- 

groups of neurons outside the CNS  believed to derive from the sympathetic nervous system (Bock, 1982).  All 

paraganglia are believed to be chemoreceptors for O2 and CO2, but the function of almost all of them is 

unknown.  They are almost invisible to the naked eye and their characteristic chromaffin granules are not easily 
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visible even with a light microscope  (Bock, 1982).  Intriguingly, the carotid bifurcation in humans is not the 

only location where paraganglia are found  (Comroe, 1964;Bock, 1982).  Not only are paraganglia found in the 

human aortic arch  (Comroe, 1964), these apparently having no respiratory function in humans  (Parkes, 2013), 

but also around the vagus nerves, some veins and pelvic viscera  (Bock, 1982).  They may be even more 

widespread in the systemic venous system, but we have no anatomical means yet of addressing this in humans 

using only post mortem material.  Yet encouragingly, even in 2016,  there is precedent for the discovery of new 

organs  (Coffey & O'Leary, 2016). 

 In mammals other than humans, there has always been dispute  (Bock, 1982) between the anatomical 

and functional identification of venous chemoreceptors.  For example, an anatomical study in cats published in 

Nature  (Hughes, 1965;Comroe, 1974) claimed to have discovered pulmonary chemoreceptors for systemic, 

mixed venous blood.  A letter disputed this  (Coleridge et al., 1966).  Later, one functional study failed to detect 

chemoreceptor-like activity when recording from some pulmonary vagal afferent nerves in anaesthetized cats 

(Coleridge et al., 1967), despite an earlier functional study  claiming to have found them (Duke et al., 1963).  

There is early work  in anaesthetized dogs and more recently rats, describing afferent neurones with 

chemoreceptor-like activity (i.e., stimulated by hypoxia), originating in the abdomen (i.e., outside the classical 

carotid and aortic regions), that are capable of stimulating breathing  (Bean, 1952;Howe et al., 1981;Child et 

al., 1990;Howe, 1990). But none of these studies are definitive nor have been pursued further. 

 

Stimulation as the main tool to search for functional venous chemoreceptors 

The classical scientific approaches to search for venous chemoreceptors are recording, ablation and 

stimulation   (Walshe, 1951;Cohen & Wang, 1959;Stein & Stoodley, 2006;Parkes, 2013). 

Nobody yet has “recorded” the sensitivity to hypoxia and hypercapnia of paraganglia other than those 

of the arterial chemoreceptors in the carotid bifurcation and aortic arch  (Torrance, 1996).  Such descriptions of 

the properties of the arterial chemoreceptors are invaluable.  But if venous chemoreceptors exist, the range and 

time course of blood gas changes to which they are exposed are very different.  So their responses too would be 

very different.  Presently “recording” can only be established indirectly from sampling the composition of 

venous blood.  Figure 1 confirms that the operating range to which venous chemoreceptors would be exposed is 

very different and, more importantly, that appropriate changes in both PO2 and PCO2, in proportion to changes 

in metabolic rate, are already present.  

“Ablation” is difficult; venous chemoreceptors have not been found so we do not know what nervous 

structures to ablate.  If widespread, we may guess that their afferent pathways might include the spinal cord in 

addition to some cranial nerves.  So “ablation” here can consider the implications for their existence of 

experiments in humans involving spinal anaesthesia and paraplegia. 

So far “stimulation” (applying hypoxia, hypercapnia, asphyxia or occlusion cuffs) is the principal 

scientific approach used to search for venous chemoreceptors.  

Some of the basic principles for evaluating experimental evidence  (Parkes, 2013) also need reiteration 

here, in particular the need for independent verification of the key experiments (at least 2 citations for each), for 

validation of negative results and to put stimulation experiments in the context of maximum metabolic rate 
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being at ~ 5.6 LO2.min-1 (~1.9kW) in exercise (~400W of external work, with maximum breathing at ~100-150 

L.min- 1.  Here, the useful terminology  for quantifying  breathing is  as minute ventilation ( eV ) in litres per 

minute ( L.min-1), for  exercise and metabolic rate are  as L O2.min-1 or in watts  (W), with  external work  as 

watts of external work (Wew) and for variance in the data as ± standard error of the mean (SEM). 

 

 

 

Initial but misleading preconceptions about venous chemoreceptors 

In order to achieve matching, the control system needs a sensor to measure metabolic rate (rate of O2 

consumption) continuously.  This would then drive breathing appropriately between rest and maximum 

exercise.  What is known about chemoreception to O2 and CO2 in general is derived principally from studying 

carotid chemoreceptors.  This has led to the obvious preconception that venous chemoreceptors must have 

similar properties i.e., that stimulation of one discrete population of chemoreceptors (for humans, only the 

carotid chemoreceptors), at one bilateral location (the carotid bifurcation), produces a substantial and rapid 

stimulation of breathing (typically within ~ 1 second  (Cropp & Comroe, 1961)).  

Applying this  preconception to systemic venous chemoreceptors proposes that one population - 

located only at or near the right atrium and or in pulmonary artery- could estimate metabolic rate of the whole  

body by sampling the composition of mixed venous blood and stimulating breathing immediately.  It should be 

easy to reveal this population, by testing whether appropriate stimuli applied here stimulate breathing 

substantially and immediately.  The failure of such “easy experiments” to produce unambiguous and positive 

results (a stimulation of breathing) revealing them has contributed to the apparent dismissal of venous 

chemoreceptors.  But this preconception is misleading.  There are many reasons that would account for such 

negative results while remaining consistent with the existence of venous chemoreceptors. 

 

The ideal stimulus, its duration and location, to reveal venous chemoreceptors 

Venous chemoreceptors could have three properties radically different from this preconception of one 

population at one location.  These were not taken into account in the original evaluation of these “easy 

experiments” (e.g.,  (Dawes & Comroe, 1954)) and would explain why venous chemoreceptors could be much 

more difficult to find. 

First, venous chemoreceptors might instead be located at multiple locations along the systemic venous 

side, anywhere between each skeletal muscle and the right heart (figure 2).  So the ideal stimulus would need to 

be applied at as many locations as possible from muscle to the right heart to produce a big (and therefore 

detectable) stimulation of breathing.  The CNS would derive metabolic rate by adding or multiplying these 

many chemoreceptor signals with appropriate weighting.  This would provide the ideal graded stimulation of 

breathing that perfectly matched the number of metabolically active muscles and would explain how breathing 

matches metabolic rate so well.  This would also explain why venous chemoreceptors are so difficult to find 

experimentally: because there are few at any one location, they are difficult to reveal.  Even maximal 
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stimulation at just one location (or ablation at one location) might barely increase (or ablation barely decrease) 

breathing sufficiently to be noticed.  

Secondly, we accept the importance of the rapid breathing response (within 1 second) to carotid 

chemoreceptor stimulation.  This is because if arterial blood gas levels ever do change in a threatening 

direction, this represents an immediate threat to the brain.  But the breathing response to venous chemoreceptor 

stimulation may not, and need not, be so rapid because of a combination of two factors: 

1) the metabolic rate of the whole body ( and consequently venous blood gas levels) does 

not normally change within 1 second, so their natural stimulus could take more time to build 

up,  

2) it may take longer for the CNS to integrate the inputs from multiple venous 

chemoreceptor sites (also, venous chemoreceptors might just respond more slowly).  

  So the duration of ideal stimulus for venous chemoreceptors should be much longer than 1 second.  

Providing a sustained stimulus that is isolated solely to the venous side from muscle to the right heart, is 

technically not straightforward and has not yet been attempted.  Furthermore, this duration issue also exposes 

the difficulty in interpreting the “easy” and classic studies infusing hypoxic or hypercapnic venous blood at the 

right atrium (e.g.,  (Cropp & Comroe, 1961;Sylvester et al., 1973)).  If a slow breathing increase in response to 

venous chemoreceptor stimulation overlapped with the more rapid breathing response once such blood reached 

the arterial chemoreceptors, the arterial chemoreceptor response would “interpretatively” mask any venous 

chemoreceptor response.  Thus the observed response may not represent solely that of arterial chemoreceptors 

and distinction of these two possibilities requires repeating these experiments after arterial chemoreceptor 

denervation. 

Thirdly, since both PvCO2 and PvO2 always change as metabolic rate changes (i.e., in the direction of 

asphyxia), the ideal stimulus to reveal venous chemoreceptors should be simultaneously to lower PvO2 and to 

raise PvCO2 to their levels at maximum exercise.  It is already known that changing both simultaneously is a 

better stimulus than the simple sum of either  alone to the arterial chemoreceptors (Torrance, 1996) and to  

increase breathing (Nielsen & Smith, 1951;Cormack et al., 1957;Lloyd, 1965;Bernards et al., 1966;Swanson & 

Bellville, 1974;Comroe, 1974;Teppema & Dahan, 2010).  But this ideal stimulus has not yet been applied 

systematically in the search for venous chemoreceptors. 

These 3 points could explain why venous chemoreceptors have not yet been seen: applying the wrong 

stimulus at the wrong location and for the wrong duration. 

 

The residual stimulation of breathing by hypoxia in sino-aortically denervated animals 

If arterial chemoreceptor denervation completely abolishes all stimulation of breathing by hypoxia (i.e., 

if the breathing increase is now zero in every subject), then venous chemoreceptors cannot be the metabolic rate 

(oxygen) sensor.  But it has always been known that there is still a residual stimulation of breathing by hypoxia 

after arterial chemoreceptor denervation. Its mechanism has never been explained. 

   Heymans described this residual response in his original discovery of the arterial chemoreceptors  

(Heymans et al., 1930) (see figure 3) and deliberately confirmed it subsequently in unanesthetized dogs  
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(Cordier & Heymans, 1935;Bouckaert et al., 1938).  While others have not seen this, neither were they looking 

for it  (Wright, 1936;Gernandt, 1946;Bjurstedt, 1946;Dumke et al., 1941)).  But many other independent 

studies confirm the existence of a residual response (Selladurai & Wright, 1932;Marshall & Rosenfeld, 

1936;Gesell & Moyer, 1937;Smyth, 1937;Davenport et al., 1947;Schmidt, 1932;Jongbloed, 1936;Comroe, 

1939;Schmidt & Comroe, 1940;Moyer & Beecher, 1942;Watt et al., 1943;Decharneux, 1934):  

 “an increase in respiration sometimes occurred during systemic anoxemia even after denervation of the carotid and 

aortic chemoreceptors”  (Comroe, 1939) 

“Heymans et al found…..that section of the sinus and depressor nerves changed the violent hyperpnea and marked 

hypertension produced by nitrogen inhalation into a very slight respiratory stimulation and a relatively small rise in blood 

pressure………………….  

 …..  instances are not lacking … of a distinct anoxemic hyperpnea remaining after section of the sinus and depressor 

nerves..”   (Schmidt & Comroe, 1940) 

They were also fully aware of its importance in suggesting chemoreceptors, other than arterial, mediate the 

stimulation of breathing by hypoxia.  Thus:-  

" in unanesthetized dogs ....after denervation ...depression of depth and rate... was succeeded by acceleration of rate.  

Therefore known chemoreceptor reflexes cannot be responsible for all the increase in rate during prolonged anoxia" 

(Watt et al., 1943) 

 “and after removal of all known chemoreceptors by additional section of the aortic nerves, anoxemia still produced the 

same acceleration …...  If all means of peripheral chemical excitation are thus removed how then was acceleration 

produced?......................" (Gesell & Moyer, 1937) 

"The possibility that the stimulation of respiration attending hypoxia, in the absence of carotid and aortic and possibly 

pulmonary chemoreceptor innervation, may be due to unknown chemoreceptive mechanisms cannot be ruled out by these 

experiments" (Moyer & Beecher, 1942) 

“some mechanism other than the carotid and aortic bodies causes delayed tachypnea in lightly anaesthetized or 

unanesthetized animals.  Another mechanism may also be involved in the hyperpnea of chronic anoxemia….This could 

represent central stimulation by anoxia (concomitant with central depression), reflex stimulation from an unidentified 

group of peripheral chemoreceptors ……….”   (Comroe, 1964). 

Later, its description disappears  (Cropp & Comroe, 1961;Sylvester et al., 1973). But it resurfaces  

(Comroe, 1974;Miller & Tenney, 1975;Gautier & Bonora, 1980) and  there is allusion in Teppema & Dahan 

(2010) .  

One possibility is that this residual breathing response to hypoxia is mediated by venous 

chemoreceptors.  Its effect on breathing may appear small only because the ideal  stimulus, duration and 

location to reveal venous chemoreceptors have yet to be applied. 

 

 

The residual stimulation of breathing by hypoxia in humans after arterial chemoreceptor denervation  

The common misconception that in humans only carotid chemoreceptors  (Parkes, 2013) mediate the 

breathing response to hypoxia arises from the belief that hypoxia supposedly produces no increase (i.e.  an 

increase in breathing of zero) after carotid chemoreceptor denervation in humans  (Lugliani et al., 1971;Honda 
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et al., 1979b;Dahan et al., 2007).  And  because temporary sinoaortic anaesthetic blockade in just 2 subjects 

(Guz et al., 1966) apparently  produces no further deficits in breathing  than carotid chemoreceptor denervation 

alone, (thereby eliminating any stimulation of breathing by aortic chemoreceptors in humans (Lugliani et al., 

1971;Honda et al., 1979b;Parkes, 2013;Wasserman et al., 1994). 

  But for 2 reasons this is a misconception.  First, some studies do confirm the presence of  some residual 

breathing sensitivity (or an enhancement of kinetics) to hypoxia in bilaterally carotid chemodenervated patients 

(Swanson et al., 1978;Whipp et al., 1994;Bellville et al., 1979;Guz et al., 1966;Wade et al., 1970;Honda et al., 

1979b;Honda, 1992).  Furthermore, this arises too quickly to be caused by central chemoreceptors  (Swanson et 

al., 1978). 

Secondly, in most of these studies the level of hypoxia applied  may not always have been intense 

enough to reveal definitively whether or not this residual response exists.  The inspired oxygen level apparently 

needs to be lowered to <9% (Dripps & Comroe, 1947;Comroe, 1964), i.e., apparently to a PaO2 of ~<40 mmHg  

(Parkes, 2013) before substantial stimulation of breathing is evident.  But in chemo-denervation studies such 

levels levels of hypoxia may not always have been applied (Lugliani et al., 1971;Honda et al., 1979b;Dahan et 

al., 2007).  

Some (e.g.,  (Honda et al., 1979b)) suggest that this residual stimulation in humans might be due to 

regrowth and re-innervation of carotid chemoreceptor tissue.  But such regrowth is impossible when residual 

stimulation is detected immediately after sinoaortic denervation (Schmidt & Comroe, 1940).  Furthermore, 

explaining the residual stimulation by the presence of additional chemoreceptors (e.g., venous chemoreceptors) 

is as valid as by re-innervation of denervated chemoreceptors.  There is no experimental evidence yet to 

distinguish between these two explanations.  

 

How does  CO2 stimulate breathing after arterial chemoreceptor denervation? 

Central chemoreceptors for CO2 do exist and their stimulation does stimulate breathing (Heymans et 

al., 1930;Cordier & Heymans, 1935;Dejours, 1962;Ballantyne & Scheid, 2000). 

There is also a common mis-attribution that all breathing responses to raised PCO2 (hypercapnia) 

remaining after arterial chemoreceptor denervation are caused solely by central chemoreceptors.  This is a mis-

attribution because nobody yet has confirmed that ablation of central chemoreceptors abolishes this remaining 

breathing response to hypercapnia  (Spode & Schlaefke, 1975;Schlaefke et al., 1974;Schlaefke et al., 

1979;Schlaefke, 1981;Whipp, 1983). Neither can central chemoreceptors account for  the continued matching 

of breathing with metabolic rate after bilateral carotid denervation in humans, because they have no means of 

sensing metabolic rate. 

This mis-attribution has two important implications for venous chemoreceptors.  First, it implies, 

without ever  establishing, that venous chemoreceptors  cannot mediate any of the stimulation of breathing by 

raised PCO2.  Secondly,  it creates an interpretative problem that discourages further “stimulation” experiments 

to search for venous chemoreceptors using their ideal stimulus of combined hypoxia and hypercapnia and after 

arterial chemoreceptor denervation.  Any detectable stimulation of breathing is attributed solely to  CO2 
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stimulating central chemoreceptors. Whereas it could equally represent some stimulation of venous 

chemoreceptors. This misconception continues to hinder the search for venous chemoreceptors. 

 

 

How would we know if we had discovered venous chemoreceptors? 

The ideal stimulation experiment would be to induce  in resting subjects for a sustained period the 

venous PO2 and  PCO2  levels attained during maximum exercise, without simultaneously changing their 

systemic arterial levels.  At present, this is technically too difficult to achieve, the nearest being the sudden 

release of occlusion cuffs, described below.  (It might also be useful to change both systemic venous and  

arterial PO2 in carotid sinus denervated patients, but this straightforward experiment is yet to be undertaken). 

The ideal positive result is that such stimulation  increases breathing to the levels of  maximum  

exercise (e.g., ≥100 L.min-1 in humans), followed up by independent confirmation and appropriate outcomes 

from “ablation” and “recording” experiments (Parkes, 2013).  

 

How would we know if we had established that  venous chemoreceptors don’t exist? 

The ideal negative is to show zero change in  breathing following  the ideal venous stimulus and or a 

complete abolition of any increase in breathing by denervation of arterial and central chemoreceptors.  There 

are two common approaches that fail to validate the  negative result; -the “hyperoxia argument”- abolishing any 

response by applying hyperoxia is inadequate (because this might simply weaken any venous chemoreceptor 

response); and  the “response time argument”- demonstrating breathing increases only after the stimulus could 

have reached the carotid or central chemoreceptors (because a breathing response to their stimulation might just 

overlap with  a slower breathing response to venous chemoreceptor stimulation). 

 

The following paragraphs show how stimulation experiments  in both humans and in other mammals 

fail to  establish the existence  of venous chemoreceptors, but neither do they establish that venous 

chemoreceptors do not exist.  

 

Inconclusive stimulation experiments in animals for  cardiopulmonary venous chemoreceptors  

The  early literature (with animals- ie., not humans- and with anaesthesia), that could not find venous 

chemoreceptors, is inconclusive because these “easy experiments” were incomplete and focussed only on the 

right heart and pulmonary arteries (Aviado & Schmidt, 1955;Dawes & Comroe, 1954;Cropp & Comroe, 

1961;Comroe, 1974).  They did not undertake a systematic and exhaustive search  for them by applying the 

ideal stimulus, duration and location between muscle and the right heart. Thus:- 

1)  Heymans originally discovered the carotid chemoreceptors in dogs only by accident 

(Heymans, 1967) and his research thereafter appears to have concentrated on these,  rather than 

searching for more. 



    page 11/27 

2). Even this early literature (Aviado & Schmidt, 1955;Dawes & Comroe, 1954;Cropp & Comroe, 

1961;Comroe, 1974;Sylvester et al., 1973) contains ambiguities that  indicate something else might 

be present.  For instance Aviado & Schmidt (1955)   describe (their page 261) 

“a respiratory component of the [vena cava] infusion reflex…Dogs responded by stimulation of 

respiratory rate and minute volume as long as the vagi were intact.  These observations have been 

confirmed…………… and denied…… …if accepted….is like that of chemoreceptor stimulation”.  

Later studies confirm a small stimulation of breathing (e.g., by ~ 1 L.min-1) in anaesthetized animals 

by obstruction of the inferior vena cava (Haouzi et al., 1995;Haouzi et al., 2005;Haouzi & Bell, 

2010). The proposed mechanism includes involvment of distension of the veins  (Haouzi, 2014).  It is 

also possible that venous chemoreceptors make a contribution.  

3).   To interpret the results of cyanide or phenyl diguanide  infusions in these “easy experiments” 

(Dawes & Comroe, 1954;Comroe, 1974), the “response time argument” was applied, whose weakness 

is explained above. 

 

Inconclusive stimulation experiments for venous chemoreceptors in animals between muscle  and  the right 

atrium  

Some cross circulation experiments did find evidence for  the existence of venous chemoreceptors 

(breathing increased in anaesthetized resting [recipient] dogs when venous blood from the hind legs of 

“exercised” [donor] dogs was returned to the recipient’s iliac vein (Kao & Ray, 1954;Riley, 1963)).  But these 

were done under anaesthesia, at low “exercise” intensities (Forster & Pan, 1997), the crucial time intervals  are 

not reported and results are not consistent between different experiments (Kao, 1956;Kao, 1963;Kao et al., 

1963;Kao et al., 1964;Kao, 1974;Forster & Pan, 1997). 

  Attempts have also been made  in anaesthetized (Wasserman et al., 1975a) or unanaesthetized animals 

(Yamamoto & Edwards, 1960;Phillipson et al., 1981a;Phillipson et al., 1981b;Phillipson et al., 1981c), to test 

whether raising only  systemic PvCO2 can stimulate breathing without raising  PaCO2 (and hence without 

involving arterial and central chemoreceptors).  One purpose was to test the  possibly that breathing might be 

controlled just from CO2 (the “CO2 flow” hypothesis). But another equally valid possibility  is that such 

experiments  partially stimulate venous chemoreceptors. Indeed if so, the better experiment would be to 

simultaneously raise systemic PvCO2 and lower systemic PvO2- the ideal  venous chemoreceptor stimulant (and 

again without altering PaCO2 or PaO2). In any event, the interpretation of  the results of such experiments 

remains controversial (Dempsey et al., 2014). The arterial blood sampling regimes were  not frequent  enough 

to establish convincingly that no PaCO2 rise occurred and arterial chemoreceptor denervation was not always 

applied.  Interestingly, some acknowledged that they were unable to rule out venous chemoreceptors.  

 

Inconclusive stimulation experiments in humans for venous chemoreceptors within skeletal muscle  

 Venous chemoreceptors might exist even within skeletal muscle (and within other organs), since 

muscle contributes most to the increased metabolic rate of exercise.  It has been known since the 1930s (Alam 

& Smirk, 1937;Coote et al., 1971;Rowell et al., 1976;Rowell & O'Leary, 1990;Fisher & White, 2004)  that 
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stimulation of chemoreceptors within skeletal muscle increases blood pressure (a ” pressor response”).  The 

receptors  mediating this pressor response are  termed here  “muscle metabolo-receptors” to distinguish them 

from putative muscle/venous chemoreceptors that might stimulate breathing.  These muscle metabolo-receptors 

are revealed by inflating an occlusion cuff wrapped round exercising  limbs  during exercise to trap metabolites 

within the muscle.  When the exercise is stopped but the cuff remains occluded (“post exercise occlusion”), the 

trapped metabolites stimulate muscle metabolo-receptors that in turn sustain a pressor response at or above its 

exercise level until the cuff is released (see figure 3 of  (Rowell et al., 1976)).  

 Applying the same technique should also reveal if muscle metabolites stimulate breathing.  The cuff 

could be inflated either during exercise (ideally at high -but not maximum- intensity), or after  maximum 

exercise stops (“post-exercise occlusion”).  A positive result occurs if  occlusion  further stimulates breathing 

during exercise and or sustains breathing post exercise at its exercise level for as long as  occlusion is 

maintained. (The further importance of releasing the post exercise occlusion cuff is considered later). 

 The problem however is in validating the negative result– no stimulation of  breathing- to establish 

muscle chemoreceptors cannot stimulate breathing.  A  major difficulty is in ensuring no blood leaked round 

the cuff and hence weakened the stimulation.  This may well occur since the pressor response can decrease 

while cuff inflation is maintained (Crisafulli et al., 2008).  There are two reasons why the negative result is not 

validated simply by confirming that  post exercise occlusion sustains some sort of pressor response: 

1) if some of the trapped metabolites had leaked out, the remnant might be sufficient to provoke a 

pressor response but insufficient to produce a detectable effect on breathing.  

2) the venous chemoreceptors that stimulate breathing might be different chemoreceptors from 

muscle metabolo-receptors and hence the  pressor response does not reflect their response.  

The  key validation, (yet to be applied), is to demonstrate complete retention of a tracer (a dye or  CO2 itself) 

within the occluded limb, or that CO2 production at the mouth is decreased by exactly the amount expected 

from the total amount of  CO2 produced (but trapped) within the limb. 

 Overall, the occlusion studies on humans during exercise are inconclusive (Dempsey et al., 2014).  

Some find no effect on breathing (Asmussen et al., 1943;Dejours et al., 1957;Rowell et al., 1976) or an 

increase (Comroe & Schmidt, 1943;Sargeant et al., 1981) or a decrease (Barman et al., 1943). 

11/12 studies  report  that occlusion fails to stimulate breathing during exercise and  or fails to sustain 

breathing  post-exercise at its exercise levels (Wiley & Lind, 1971;Rowell et al., 1976;Fordyce et al., 

1982;Innes et al., 1989;Haouzi et al., 1993;Scott et al., 2000;Haouzi et al., 2001;Fukuba et al., 2007;Lykidis et 

al., 2010;Olson, 2010;Bruce & White, 2012;Bruce & White, 2015).  Only one found breathing was sustained 

post-exercise by arm occlusion (Piepoli et al., 1995).  But this was not confirmed with post-exercise leg 

occlusion  (Scott et al., 2000).  

Recently some (Lykidis et al., 2010;Bruce & White, 2012;Bruce & White, 2015), but not all  (see 

figure 1 in Olson et al., 2010), have observed a small increase in breathing (4 – 7  L.min-1) if cuff occlusion is 

combined with raising the end tidal partial pressure of carbon dioxide (PetCO2) by ~7 mmHg in healthy 

subjects.  There are a number of possible explanations for this. 
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Possibly the unnatural stimulus of raising  PCO2 (which does not occur as metabolic rate increases)  

just exaggerates the breathing response to exercise.  This is supported by the  absence of this small stimulation 

if only the occluded limb is exposed to the raised PCO2 (Bruce & White, 2015). 

Another possibility is that raising PetCO2 compensates for incomplete muscle occlusion (i.e., for cuff 

leakage) and thereby at last provides a sufficiently intense stimulus to reveal a detectable increase in breathing.  

In any event, increases in breathing greater than 4 – 7  L.min-1  need to be demonstrated before accepting the 

presence within muscle of chemoreceptors capable of making an important contribution to controlling 

breathing. 

 

Inconclusive stimulation experiments for  venous chemoreceptors in humans between muscle and the right 

heart 

Here the basic stimulation technique is to release venous blood  (to release  the post-exercise occlusion 

cuff) containing trapped metabolites and or drugs known to stimulate carotid chemoreceptors directly ( e.g., 

cyanide, (Anichkov & Belenkii, 1963;Comroe, 1964;Winder et al., 1933)) and to measure the size and timing 

of any increased breathing.  Ideally all 4 limbs are exercised at maximum intensity before all  are occluded (to 

maximise the mass of trapped metabolites and hence any effect on breathing).  If a convincing increase in 

breathing occurs after cuff release and before such blood could have reached the carotid chemoreceptors, then 

venous chemoreceptors must exist. But they may still exist even if breathing is stimulated only after this blood 

passes through the carotid chemoreceptors.  There are two contradictory studies. 

Mills et al., (1944) produced the first functional evidence that venous chemoreceptors might exist in 

humans.  They applied a cuff  for 10-15 minutes round one or two rested limbs.  In 11/13 subjects, sudden 

release of the cuff produced a substantial stimulation of breathing ( to a remarkable 16 – 92  L.min-1 as 

measured in 2 subjects).  Indeed the stimulation was so intense that the resulting  hypocapnia “was sometimes 

so vigorous as to produce paraesthesia” (i.e., PaCO2   levels < 20 mmHg).  This occurred “within at most 4.2 

sec”  which is too fast for the blood transport time as measured at rest (~19 sec) from limbs to the carotid 

chemoreceptors (Robb & Weiss, 1933;Dejours et al., 1955;Winning et al., 1986).  Furthermore, in some 

subjects, the chemoreceptor stimulant sodium cyanide  was injected into the muscle distal to the occlusion  just 

before release.  On release (see figure 4), “the hyperpnea was always diphasic..”  [ in two subjects occurring  at 

2 and 11-13 sec]  with the first phase again being too fast to have stimulated carotid chemoreceptors.  

Astonishingly, nobody has ever attempted to confirm these remarkable results. 

Instead, and without reference to Mills, Dejours et al., (1955)  had just 4 subjects perform and bilateral 

leg exercise at low intensity (only 14Wew), with the leg cuffs inflated for 2 minutes as exercise ended.  Post 

exercise release of the cuff resulted in deoxygenated blood reaching the carotid region (earlobe) 17 seconds 

later (range 13 – 21 seconds) and in none did breathing increase until a mean of 2.5 ±1 seconds after this (range 

0.9 – 6.4 seconds).  Figure 5 shows the results from one subject.  Dejours cautiously concluded 

“……seems to show the absence of ventilatory chemoreceptors situated along the path of the venous blood to the level of  

the vena cava of the right heart” [my translation] 
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But there is more than one interpretation. Venous chemoreceptors could still exist but have  a longer 

latency. Without carotid chemoreceptor denervation, this possiblity cannot be ruled out.  Neither  are these 

results compatible with Mills et al., (1944).  Nor has anyone directly confirmed Dejours’s results.  Nor has 

anyone  (Winning et al., 1986) confirmed Dejours’s methodological claim, remarkable with apparatus of  

unspecified response time available in 1955, that they could even measure accurately the time course of the 

arrival at the earlobe of deoxygenated blood suddenly released from the leg! 

Instead of this discrepancy provoking new experiments to distinguish between Mills and Dejours, it 

was Dejours who wrote the series of reviews (Dejours, 1962;Dejours, 1963;Dejours, 1964) cautiously 

proposing that 

 "such chemoreceptors do not seem to exist” 

Whereas, despite Mills et al., (1944) being published in a mainstream journal, this has been cited so 

rarely since that it is reasonable to describe it as new evidence.  (Even when cited,  (Ross et al., 1962) no 

confirmatory experiments were undertaken). 

Subsequent studies in dogs confirm that cyanide stimulates breathing by stimulating something at an 

unknown location other than the arterial or central chemoreceptors.  Levine et al., (1975) found that  intra-

aortic cyanide stimulates breathing (by 228%) in 8 anaesthetized dogs even after bilateral sinoaortic 

denervation in 4 of them (independently confirming (Winder et al., 1933)).  This  stimulation cannot be due to 

cyanide directly stimulating the head, brain, arterial or central chemoreceptors because it still stimulated 

breathing (by 163%) in 5 dogs when their heads were vascularly isolated from the rest of their body.  This 

could be explained by cyanide stimulating venous chemoreceptors. 

Many subsequent papers in humans confirm that cuff  release produces a sudden increase in breathing 

 (Rowell et al., 1976;Fordyce et al., 1982;Innes et al., 1989;Haouzi et al., 1993;Haouzi et al., 2001;Fukuba et 

al., 2007), without providing a complete or the same explanation, nor reference to Mills et al., (1944).  

 

Inconclusive ablation experiments for a venous chemoreceptor spinal  afferent pathway in humans 

 If venous chemoreceptors exist in peripheral veins, one obvious afferent pathway to the brain is via the 

spinal cord.  If they are the crucial metabolic rate sensors and use this afferent pathway exclusively, this 

predicts that, if the spinal cord is blocked and the muscle below the cord can somehow be “exercised”, 

breathing should now fail to increase in proportion to metabolic rate.  Again, experiments so far are 

inconclusive (Dempsey et al., 2014). 

 Fernandes et al., 1990  had 6 subjects exercise at  57% of  2OV  max  on a bicycle ergometer and up to 

exhaustion (~238±30 Wew ).  They found that maximum metabolic rate (1kW) and breathing (116 ±11 L.min-1) 

were not significantly different  between control and those with epidural anaesthesia at L3/L4.  But the fact that 

they could continue pedalling at all shows that the spinal cord was not completely blocked!  It is naïve to 

assume that epidural anaesthesia blocks all afferent  but no efferent pathways.  Furthermore, while pain 

sensation (to pin pricks) was lost, they demonstrated residual activity in one subconscious sensory pathway 

(their figure 1 shows persistence of an  “attenuated” pressor response to leg ischaemia). So it is not certain that 

all sensory pathsways were blocked and hence that venous chemoreceptors cannot exist. 
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Similarly, if breathing increased normally in paraplegics during  electrically evoked “exercise” of  the 

limbs below the spinal break, this too would oppose the existence of a spinal afferent pathway from venous 

chemoreceptors that drives breathing.  Evidence for such “exercise” stimulating breathing  has been presented 

in humans (Adams et al., 1984;Brice et al., 1988;Brown et al., 1990) and in other mammals under anaesthesia, 

see (Haouzi et al., 2005;Levine, 1979;Cross et al., 1982).  But there two  problems:- 

1) the intensity of such artificial exercise is too low to be definitive (increasing breathing by only 2 – 4 

L air .min-1! (Adams et al., 1984;Brice et al., 1988;Brown et al., 1990) 

2) warmed blood returning  from the exercising muscles will cross the spinal  break and thermal 

conduction may stimulate spinal thermoreceptors, whose stimulation could then explain the stimulation of 

breathing (Hales et al., 1970). 

 Two other related techniques are similarly inconclusive.  All that can be deduced from the fact 

breathing still increases during modest exercise in humans after heart or heart lung transplantation (Banner et 

al., 1988), or in those with left to right cardiac shunts (Storey & Butler, 1963), is that venous chemoreceptors 

may not exist solely in the cardiopulmonary region.  

 

The definitive studies still to be undertaken 

It is straightforward to resolve the venous chemoreceptor question in humans (to distinguish between 

Mills et al., (1944) and Dejours et al., (1955)). Bilateral carotid chemoreceptor denervation is still performed  

(Dahan et al., 2007). Definitive occlusion cuff-release experiments  using the scientific method outlined above 

could be done on such patients. How  fast (in relation to limb-carotid conduction time) and by how much does 

release of an occlusion cuff round 4 maximally exercised limbs (preferably also containing a dye and or 

cyanide) stimulate their breathing both before and after denervation?    

In such patients it should also be  possible to establish whether any residual breathing sensitivity to 

hypoxia is due to arterial, venous or other chemoreceptors. What is the size of any stimulation of their breathing 

at suitable FiO2 levels below 9%? By how much is their breathing at rest stimulated if both their PvCO2 and 

PvO2 levels are changed to those seen during maximum exercise? 

 

Conclusions 

On the one hand, venous chemoreceptors cannot be discovered if they do not exist. But this has not 

been established definitively.  If it is, the mystery deepens of how to explain breathing matching metabolic rate 

without involving arterial, central or venous chemoreceptors.  The many more complex hypotheses  attempting 

to explain this  (Dejours, 1964;Comroe, 1964;Comroe, 1974;Ward, 1994;Dempsey et al., 1995;Waldrop et al., 

1996;Forster & Pan, 1997;Dempsey & Whipp, 2003;Prabhakar & Peng, 2004;Poon et al., 2007;Forster, 

2007;Forster et al., 2012;Kumar & Prabhakar, 2012;Parkes, 2013;Forster, 2014;Paterson, 2014;Dempsey et al., 

2014) then  require fresh ideas to investigate them. 

On the other, venous chemoreceptors  may not have been found  because the wrong stimulus has been 

applied at wrong location for wrong duration.  If the ideal experiments ever reveal them, there is no 
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inconsistency with current scientific literature. The many more complex hypotheses then become unnecessary.  

Venous chemoreceptors may have  been present all the time but we fail to see them. 
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