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NEW FINDINGS 31 

What is the central question of this study? 32 

High altitude hypoxia increases muscle sympathetic nerve activity (MSNA), but whether 33 

intravenous infusion of dopamine, to blunt the responsiveness of the carotid chemoreceptors, 34 

reduces MSNA at high altitude is not known. 35 

 36 

What is the main finding and its importance? 37 

MSNA was elevated after 15-17 days of high altitude hypoxia (3,454 m) compared to sea level 38 

(432 m) values. However, intravenous dopamine infusion to blunt the responsiveness of the 39 

carotid chemoreceptors did not significantly decrease MSNA either at sea level or high altitude, 40 

suggesting that high altitude sympathoexcitation arises via a different mechanism.  41 
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ABSTRACT  42 

High altitude hypoxia causes pronounced sympathoexcitation but the underlying 43 

mechanisms remain unclear. We tested the hypothesis that intravenous infusion of dopamine to 44 

attenuate carotid chemoreceptor responsiveness would reduce muscle sympathetic nerve activity 45 

(MSNA) at high altitude. Nine healthy individuals (mean [SD]; 26 [4] yr) were studied at sea 46 

level (SL, Zurich) and at high altitude (ALT, 3454 m, 15-17 days after arrival), both while 47 

breathing the ambient air and during an acute incremental hypoxia test (8 x 3 min stages, PETO2 48 

90-45 mmHg). Intravenous infusion of dopamine (3 µg·kg-1·min-1) and placebo (saline) were 49 

administered on both study days, according to a single blind randomized cross-over design. 50 

Sojourn to high altitude decreased PETO2 (to ≈60 mmHg) and increased minute ventilation (VE; 51 

mean±SE; saline [SL, ALT], 8.6±0.5 to 11.3±0.6; dopamine, 8.2±0.5 to 10.6±0.8 L·min-1; 52 

P<0.05) and MSNA burst frequency by ≈80% (saline [SL, ALT], 16±3 to 28±4; dopamine, 16±4 53 

to 31±4 bursts·min-1; P<0.05) when breathing the ambient air, but were not different with 54 

dopamine. Increases in MSNA burst frequency and VE during the acute incremental hypoxia test 55 

were greater at ALT than SL (P<0.05). Dopamine did not affect the magnitude of the MSNA 56 

burst frequency response to acute incremental hypoxia at either SL or ALT. However, VE was 57 

lower with dopamine than saline administration throughout the acute incremental hypoxia test at 58 

ALT. These data indicate that intravenous infusion of low-dose dopamine to blunt the 59 

responsiveness of the carotid chemoreceptors does not significantly decrease MSNA at high 60 

altitude. 61 

 62 

Keywords: autonomic nervous system, high altitude, microneurography 63 

 64 
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INTRODUCTION 66 

Hypoxia increases the afferent discharge of the carotid chemoreceptors causing reflex 67 

increases in ventilatory drive and efferent sympathetic nerve activity directed towards the heart, 68 

kidneys and peripheral vasculature (Guyenet, 2000; Kumar & Prabhakar, 2012). In humans, the 69 

use of the microneurography technique to directly record sympathetic nerve activity to skeletal 70 

muscle vasculature (MSNA) reveals that acute hypoxic exposure elicits variable but typically 71 

dose dependent sympathoexcitation once SpO2 reaches <85% (breathing hypoxic gas mixtures 72 

with an of FiO2 0.11-0.13%) (Saito et al., 1988; Rowell et al., 1989; Somers et al., 1989; Seals et 73 

al., 1991; Duplain et al., 1999). However, such increases in MSNA are dwarfed by those elicited 74 

by chronic hypoxic exposure which can reach ≈300% above sea level values, despite reductions 75 

in SpO2 being equivalent (Hansen & Sander, 2003). The mechanism for this difference is 76 

unclear, which is unfortunate because similar mechanisms may be important for the 77 

pathophysiology of a variety of disease states characterized by chronic sympathoexcitation and 78 

chronic intermittent or sustained hypoxaemia (e.g., sleep apnoea related hypertension (Carlson et 79 

al., 1993; Narkiewicz & Somers, 1999), chronic obstructive pulmonary disease (Heindl et al., 80 

2001) and chronic heart failure (Leimbach et al., 1986; Narkiewicz et al., 1999)). 81 

Following acclimatization to high altitude there is an augmentation of the ventilatory 82 

response to hypoxia that has been ascribed to a sensitization of peripheral chemoreceptors 83 

(Forster et al., 1971). Ventilatory and sympathetic chemoreflexes share common afferent 84 

pathways and the central neurocircuitry responsible for the efferent activation of the phrenic and 85 

sympathetic nerves act in parallel (Guyenet, 2000; Kumar & Prabhakar, 2012). For example, 86 

denervation of the carotid body markedly reduces the increases in ventilation and renal 87 

sympathetic nerve activity induced by hypoxia in rabbits with pacing-induced congestive heart 88 

failure (Marcus et al., 2014). However, it has been suggested that a peripheral chemoreceptor 89 



	

	

5 

mechanism only modestly contributes to increase in MSNA accompanying chronic exposure to 90 

high-altitude hypoxia. Indeed, Hansen and Sander (2003) observed that 100% oxygen breathing 91 

following 4 weeks at 5,260 m slightly reduced MSNA (by 7 bursts·min-1), but it still remained 92 

robustly elevated (41 bursts·min-1) compared with sea level values (16 bursts·min-1). As 93 

acknowledged by the investigators, oxygen administration may have led to a fall in ventilation 94 

and an increase in arterial CO2, which in turn could attenuated the sympathoinhibitory effects of 95 

pulmonary stretch reflex engagement and increase central chemoreflex activation. Hyperoxia 96 

also has non-specific effects and can cause peripheral vasoconstriction in some individuals 97 

(Crawford et al., 1997). Taken together these factors suggest that the contribution of the 98 

peripheral chemoreceptors to the control of MSNA in hypoxia warrants further consideration.  99 

Chemoreceptor signalling within the carotid and aortic bodies involves a plethora of 100 

excitatory (e.g., adenosine, ATP, acetylcholine and endothelin) and inhibitory neurotransmitters 101 

(Lazarov et al., 2009). Dopamine is one of these primary signalling molecules and has an 102 

inhibitory effect on high-affinity D2 autoreceptors (D2R) located on Type 1 glomus cells 103 

(Gonzalez et al., 1994). Intracarotid infusion of dopamine inhibits chemoreceptor afferent 104 

activity in dogs (Bisgard et al., 1979), while systemic administration of low-dose dopamine (i.e., 105 

<3 µg·kg−1·min−1) is an established method of acutely reducing the responsiveness of the carotid 106 

chemoreceptors in humans (Boetger & Ward, 1986; Dahan et al., 1996; Limberg et al., 2016). 107 

One study suggests that the suppressive effects of dopamine on the hypoxic ventilatory response 108 

are unaltered after individuals have been exposed to isocapnic hypoxia for 8 h (Pedersen et al., 109 

1999). However, ventilatory acclimatization is not complete in humans after 8 h (Dempsey & 110 

Forster, 1982) and the effect of low-dose dopamine on the ventilatory response to acute hypoxia 111 

following more prolonged high altitude exposure in humans remains unexamined. 112 



	

	

6 

The purpose of the present study was to determine whether elevations in steady-state 113 

MSNA and ventilation are reduced following 15-17 days of exposure to high altitude hypoxia 114 

(3,454 m) (i.e., ambient air breathing) by intravenous infusion of low-dose dopamine (Aim 1). 115 

We also determined whether the MSNA and ventilatory responses to an acutely administered 116 

incremental hypoxia test were attenuated following intravenous dopamine infusion (Aim 2) and 117 

whether the magnitude of any such inhibitory effect was altered following 15-17 days of 118 

exposure to high altitude hypoxia (Aim 3). We tested the hypothesis that intravenous dopamine 119 

would reduce MSNA and ventilation both at high altitude with ambient air breathing and during 120 

an acute incremental hypoxia test, and that the inhibitory effects of dopamine during the 121 

incremental hypoxia test would be augmented at high altitude.   122 

 123 

 124 

  125 
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METHODS 126 

Ethical Approval. 127 

The experiments were undertaken in accordance with the Declaration of Helsinki, except 128 

for registration in a database, and were approved by the Ethical Committee of the Swiss Federal 129 

Institute of Technology Zurich (EK 2011-N-51). Written informed consent to take part was 130 

obtained from all participants after they had received a detailed verbal and written explanation of 131 

the study procedures.  132 

 133 

Participant characteristics. 134 

Nine healthy individuals (mean (SD); 26 (4) yr, 179 (9) cm, 75 (10) kg, 1 woman) 135 

participated in this study. No participant had a medical history of cardiovascular, respiratory or 136 

neurological disease and no participant slept >2,500 m in the 3 months prior to the start of the 137 

study. Abstinence from caffeine, alcohol and exercise was requested for the 12 h before 138 

experimental sessions.  139 

 140 

Experimental measures. 141 

Participants rested in semi-recumbent position while continuous recordings of MSNA, 142 

respiratory and cardiovascular variables were made. Heart rate (HR) was monitored using a lead 143 

II electrocardiogram (ECG, BioAmp, ADInstruments, Bella Vista, Australia). Mean arterial 144 

pressure (MAP) and stroke volume (SV) were recorded on a beat-to-beat basis via finger 145 

photoplethysmography (Nexfin, BMEYE B.V, Amsterdam, the Netherlands)(Bogert et al., 146 

2010). Peripheral capillary oxygen saturation (SpO2) was determined using finger pulse 147 

oximetry. However, due to technical issues data steady-state SpO2 data are presented for n=6 148 
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participants and acute incremental hypoxia test SpO2 data are presented for n=7 participants. 149 

Participants breathed through a mouthpiece whilst wearing a nose clip and minute ventilation 150 

(VE), tidal volume (TV), respiratory frequency (Rf), and the partial pressure of end-tidal oxygen 151 

(PETO2) and carbon dioxide (PETCO2) were measured breath-by-breath (Cosmed Quark b2, 152 

Rome, Italy). Multi-unit recordings of MSNA were obtained (FE185 NeuroAmp EX, 153 

ADInstruments, Bella Vista, Australia) from the peroneal nerve using tungsten microelectrodes 154 

(FHC, Bowdoin, USA) (Adlan et al., 2017). A reference electrode was inserted subcutaneously 2 155 

to 3 cm away from the recording electrode which was selectively inserted into a sympathetic 156 

nerve fascicle. Neural signals were amplified (x100k), filtered (100 Hz high pass, 2,000 Hz low 157 

pass), rectified and integrated (absolute value, time constant decay 0.1 s) to obtain a mean 158 

voltage sympathetic neurogram. An acceptable MSNA recording exhibited the following 159 

characteristics: displayed a pulse-synchronous bursts pattern, had a signal-to-noise ratio of >3:1, 160 

was increased during an end-expiratory breath-hold or Valsalva manoeuvre, and was 161 

unresponsive to an unexpected loud noise or skin stroking.  162 

 163 

Experimental protocol. 164 

Each individual participated in two experimental sessions, the first was conducted in 165 

Zurich, Switzerland (SL, 432 m) and the other at the high altitude Jungfraujoch research station 166 

(ALT, 3,454 m), 15-17 days after arrival. Participants were familiarized with the study 167 

procedures before collection of study data. At both research sites, following instrumentation and 168 

acquisition of an acceptable MSNA signal the stability of the recording was verified for ≈10 169 

mins. The experimental protocol then commenced with the collection of 5 min of eupnoea 170 

baseline data (SL-baseline, ALT-baseline) (i.e., ambient air breathing). The SL-baseline was then 171 
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followed by the addition of supplemental CO2 to the inspired air in order to raise PETCO2 by 2 172 

mmHg (Altitrainer, SMTEC, Nyon, Switzerland). A 3-min period was permitted to allow a new 173 

steady-state to be established (stage 1) following which the incremental hypoxia test commenced 174 

(stages 2-8). First, PETO2 was reduced to 75 mmHg for 3 min, and then incrementally reduced by 175 

a further 5 mmHg every 3 min until it reached 45 mmHg, while PETCO2 remained clamped at +2 176 

mmHg throughout, following the modified methods of Mou et al. (1995) (Altitrainer, SMTEC, 177 

Nyon, Switzerland). At high-altitude, the ALT-baseline was followed by the addition of 178 

supplemental CO2 and O2 to the inspired air to raise PETO2 and PETCO2 to the SL-baseline levels 179 

(stage 1). A 3-min period was permitted to allow a new steady-state to be established following 180 

which the incremental hypoxia test (stages 2-8) was repeated using the PETO2 and PETCO2 levels 181 

observed at SL as a target. 182 

Both at SL and high altitude the protocols described above were repeated during the 183 

continuous infusion of dopamine into the antebrachial vein at a rate of 3 µg·kg-1·min-1 in 184 

accordance with several previous studies in humans (Boetger & Ward, 1986; Dahan et al., 1996; 185 

Limberg et al., 2016). Dopamine infusion was commenced a minimum of 10 minutes prior to 186 

any data collection. Termination criteria for dopamine infusions were: signs of poor perfusion 187 

(cyanosis or pallor), technical difficulties in monitoring ECG or systolic blood pressure, subject’s 188 

desire to stop, ST elevation (≥ 1.0 mm, in leads other than V1 or aVR), sustained ventricular 189 

tachycardia, arrhythmias other than sustained ventricular tachycardia (including multifocal 190 

premature ventricular complexes, triplets of premature ventricular complexes, supraventricular 191 

tachycardia, heart block, or bradyarrhythmias), chest pain, systolic blood pressure > 250 mmHg. 192 

Termination criteria were not met on any occasion. 193 

 194 
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Data analysis. 195 

Data was acquired using the Powerlab 16/35 data acquisition system and Labchart Pro 196 

software (ADInstruments, Bella Vista, Australia). ECG, MAP, SV, and SpO2 were sampled at 197 

1,000 Hz and raw MSNA was sampled at 20,000 Hz and stored for offline analysis (LabChart 7 198 

Pro v7.3.5 and Powerlab, ADInstruments, Bella Vista, NSW, Australia). Cardiac output (CO) 199 

was calculated as SV x HR, and total peripheral resistance (TPR) as MAP / CO. Sympathetic 200 

bursts were identified by a single observer (JPF) using a semi-automated scoring system created 201 

using Spike 2 (Cambridge Electronic Design, Cambridge, UK). MSNA was characterised in 202 

terms of burst incidence (bursts·100 heartbeats-1) and burst frequency (bursts·min-1). In one 203 

individual microneurography was unsuccessful, and in another individual the MSNA recording 204 

was lost during the final stages of the acute incremental hypoxia test. As a consequence, the 205 

steady-state MSNA data are presented for n=8 participants and acute incremental hypoxia test 206 

MSNA data are presented for n=7 participants. 207 

 208 

Statistics. 209 

Statistical analysis was performed using SPSS software, version 19 (SPSS Inc, Chicago, 210 

Ilinois). Physiological data were statistically analyzed using repeated measures analysis of 211 

variance (ANOVA), with Greenhouse-Geisser corrections applied where significant violations of 212 

the sphericity assumption were detected. More specifically, to determine whether dopamine 213 

lowers steady-state MSNA and ventilation at high altitude (SL-baseline vs. ALT-baseline; Aim 214 

1) a two-way repeated measures ANOVA was used, in which the factors were altitude (SL vs. 215 

ALT) and infusion (saline vs. dopamine), as well as the interaction between them. To determine 216 

whether dopamine lowers MSNA and ventilation during an acutely administered hypoxic test 217 
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(Aim 2), and whether the magnitude of this inhibitory test is augmented at high altitude (Aim 3), 218 

this model was extended to a three-way repeated measures ANOVA, additionally including the 219 

incremental hypoxia test stage (stages 1-8), as well as all two- and three-way interactions. Where 220 

the three-way interaction (altitude x infusion x stage) was not found to be significant, the 221 

approach was simplified by dividing the analysis into separate models for each altitude, each 222 

containing the infusion, hypoxia test stage and an interaction as factors. Post hoc analysis was 223 

employed using Student’s t tests with Bonferroni correction to investigate significant main 224 

effects and interactions. Data expressed as mean (standard deviation) unless otherwise stated. 225 

P<0.05 was considered statistically significant.   226 



	

	

12 

RESULTS 227 

High altitude hypoxia, ventilation and MSNA with ambient air breathing. 228 

Sojourn to high altitude decreased PETO2 (saline [SL, ALT], 93 (2) to 60 (4); dopamine 229 

[SL, ALT], 90 (5) to 57 (2) mmHg. P<0.001), PETCO2 (saline [SL, ALT], 40 (2) to 31 (1); 230 

dopamine [SL, ALT], 41 (3) to 32 (2) mmHg. P<0.001) and SpO2 (saline [SL, ALT], 97 (1) to 92 231 

(2); dopamine [SL, ALT], 97 (1) to 89 (2) %. P<0.001) and increased VE (by ≈2.5 L·min-1, 232 

P<0.002. Figure 1.) With dopamine, PETO2 was slightly lower (P=0.023) and PETCO2 slightly 233 

higher (P=0.003) compared to saline, but no altitude x infusion interaction was observed. SpO2 234 

was not different with dopamine at SL (P=0.789), whereas it was lower with dopamine at ALT 235 

(P=0.028). VE was not different with dopamine (P=0.186), and no altitude x infusion interaction 236 

was noted for any respiratory variable (Figure 1). 237 

ALT increased MSNA burst frequency (by ≈80 %, P=0.019), MAP (by ≈12 %, P=0.002) 238 

and HR, while MSNA burst incidence (saline [SL, ALT], 25±16) to 38±11); dopamine [SL, 239 

ALT], 26 (21) to 40 (12) bursts·100 heartbeats-1. P=0.088) tended to increase (Figures 1 and 2). 240 

However, CO (P<0.646), SV and TPR (P<0.100), were not different at ALT (Figure 3). 241 

Dopamine infusion increased HR (P=0.001) and CO (P<0.001), decreased TPR (P=0.035), but 242 

had no effect on MSNA burst frequency (P=0.289), MSNA burst incidence (P=0.555), MAP 243 

(P=0.837) and SV (P=0.119). No altitude x infusion interaction was noted for any MSNA or 244 

cardiorespiratory variable. 245 

 246 

Acute incremental hypoxia at SL and ALT: ventilation and MSNA. 247 

During the acute incremental hypoxia test, PETO2 and SpO2 were decreased (P<0.001) in 248 

the same stepwise manner under all conditions (Table 1, 2 and 3). At SL, PETCO2 remained 249 
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stable throughout the incremental hypoxia test (P=0.177) and there were no differences between 250 

the saline and dopamine conditions (P=0.523). PETCO2 was ≈3 mmHg lower (P<0.001) at ALT 251 

than at SL during the test, and although no differences were observed between the saline and 252 

dopamine conditions (P=0.177), PETCO2 fell during stages 3 and 4 (P<0.05 vs. stage 1).  253 

VE, TV, and Rf increased (P<0.001) with acute incremental hypoxia at both SL and ALT, 254 

but the magnitude of this increase was greater at altitude (P<0.001. Figure 4, Tables 2 and 3). At 255 

SL, dopamine did not affect the increase in VE (P=0.298), TV (P=0.120), and Rf (0.922) with 256 

incremental hypoxia, however at ALT VE (P=0.023), TV (P=0.047), and Rf (P=0.050) were lower 257 

with dopamine. For VE, TV, and Rf, no interactions were noted between infusion and incremental 258 

hypoxia test stage for either the SL or ALT conditions.  259 

MSNA burst frequency increased similarly during the acute incremental hypoxia test at 260 

SL (P=0.028) and ALT (P=0.023) (Figures 5 and 6, Tables 2 and 3). MSNA burst frequency was 261 

higher during the incremental hypoxia test with dopamine at both SL (P=0.051) and ALT 262 

(P=0.015). MAP and CO increased progressively during the incremental hypoxia test at both SL 263 

and ALT (P<0.01), but the magnitude of this increase was greater at altitude (P<0.001). 264 

Dopamine did not affect MAP at either SL (P=0.590) or ALT (P=0.308), but it did increase CO 265 

at SL (P=0.041). TPR was progressively decreased (P<0.001) with acute incremental hypoxia 266 

both at SL and ALT. For MSNA burst frequency, MAP, CO and TPR no interactions were noted 267 

between infusion and incremental hypoxia test stage for either the SL or ALT conditions. 268 

  269 
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DISCUSSION 270 

We sought to ascertain whether the sympathoexcitation and hyperventilation associated 271 

with hypoxia are lowered at high altitude by the intravenous infusion of low-dose dopamine to 272 

attenuate carotid chemoreceptor responsiveness. The major novel finding of the present study 273 

are; 1) the elevations in MSNA and ventilation observed after 15-17 days of high altitude 274 

hypoxia (3,454 m) were not reduced by intravenous dopamine infusion when participants were 275 

breathing ambient air, 2) the magnitude of the increase in MSNA during an acute incremental 276 

hypoxia test performed at sea level and high altitude was not affected by dopamine, and 3) 277 

ventilation was elevated during acute incremental hypoxia at high altitude compared to sea level, 278 

but was lower at high altitude with dopamine. In the following paragraphs a context will be 279 

provided to these findings in light of the relevant literature and several important methodological 280 

considerations relating to our experimental design will be discussed. 281 

 282 

MSNA, hypoxia and dopamine 283 

The carotid chemoreceptors are classically recognized for their oxygen sensing function 284 

and consummate reflex increase in ventilation upon activation, however they also possess 285 

important autonomic cardiovascular effects with relevance for health and disease (Guyenet, 286 

2000; Kumar & Prabhakar, 2012). Acute hypoxia increases the afferent discharge of the carotid 287 

chemoreceptors causing an increase sympathetic nerve activity to several regions (Guyenet, 288 

2000; Kumar & Prabhakar, 2012). However, the contribution of the carotid chemoreceptors to 289 

the sympathoexcitatory effects of chronic hypoxia is more controversial. Indeed, in the present 290 

study sojourn to 3,454 m for 15-17 days markedly increased steady-state MSNA, however this 291 

was not attenuated with dopamine administration. This supports the findings of Hansen and 292 
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Sander (2003) who observed that 100% oxygen breathing after 4 weeks at 5,260 m only 293 

minimally reduced MSNA (from 48 to 41 bursts·min-1). What is more, we observed MSNA 294 

responses to acute incremental hypoxia at altitude were also unaltered with intravenous 295 

dopamine infusion. At present the mechanisms underlying such high altitude sympathetic 296 

hyperactivity remain obscure and no satisfactory explanation exists. Hansen and Sander (2003) 297 

furthermore demonstrated that cardiopulmonary baroreceptor loading at altitude only has a minor 298 

effect on MSNA. Remaining possibilities include central changes in the long-term potentiation 299 

of sympathetic outflow (Xie et al., 2001), attenuated central sympathoinhibitory pathways such 300 

as nitric oxide (Ogawa et al., 1995) and alterations in other reflex control mechanisms.  301 

 302 

Ventilation, hypoxia and dopamine 303 

D2-receptor blockade in rats and cats increases carotid chemoreceptor afferent activity 304 

and ventilation (Tatsumi et al., 1995; Huey et al., 2003). Moreover, in the same species, 24-48 h 305 

of chronic hypoxia decreased carotid body dopaminergic inhibition (Tatsumi et al., 1995; Huey 306 

et al., 2003). Domperidone infusion to block D2-receptors similarly augmented the hypoxic 307 

ventilatory response before and after 4 h of isocapnic hypoxia in goats (Janssen et al., 1998) and 308 

8 h of isocapnic hypoxia in humans (Pedersen et al., 1999), suggesting that dopaminergic 309 

inhibitory mechanisms are preserved. It has been suggested that the magnitude of the reduction 310 

in chemosensitivity with dopamine is reflective of the baseline chemosensitivity, and thus the 311 

endogenous dopamine concentration (Ward, 1984). As such, our finding that ventilation was 312 

lower with dopamine compared to saline administration during an acute hypoxia test following 313 

15-17 days at high altitude could suggest that endogenous dopamine levels at the carotid 314 

chemoreceptor are decreased at altitude in humans. However, as we did not administer a D2-315 
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receptor blockade (e.g., domperidone) we cannot provide a definitive insight into this issue. Our 316 

findings are however compatible with the view that dopamine is an important inhibitory 317 

neurotransmitter in the human carotid body and the inhibitory effects of its endogenous provision 318 

evoke a more pronounced effect on ventilation during an acute hypoxia test following 15-17 days 319 

of high altitude exposure compared to that observed at sea level. The differential effects of 320 

dopamine on the ventilatory and MSNA responses described may be attributable to the actions of 321 

distinct populations of glomus cells (Paton et al., 2013). 322 

 323 

Experimental considerations 324 

The results and conclusions of the present study must be viewed in light of several 325 

experimental considerations. Contrary to previous reports (Welsh et al., 1978; Pedersen et al., 326 

1999), low-dose dopamine was not found to suppress the ventilation under conditions of 327 

normoxia and acute hypoxia at SL (P=0.186), however PETCO2 was increased and PETO2 was 328 

decreased with dopamine, consistent with a mild ventilatory suppression (Welsh et al., 1978). 329 

The differences between studies may be attributable to the marked inter-individual differences in 330 

the ventilatory response to dopamine per se (Limberg et al., 2016). In a recent report, 30% of 331 

individuals were shown to have an increase rather than a decrease in the ventilatory response to 332 

acute hypoxia with dopamine infusion at 3 µg·kg−1·min−1 (Limberg et al., 2016). Differences in 333 

the administration of hypoxia and the analytical approaches used to assess the physiological 334 

effects of hypoxia, also makes it challenging to directly compare studies employing low-dose 335 

dopamine to inhibit the chemoreflex. We utilized an acute incremental hypoxia test that was 336 

administered in the form of sequential stepwise reductions in the target PETO2, following a 337 

modification of the methods of Mou et al. (1995). An alternative approach would have been to 338 
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employ short discrete discontinuous bouts of hypoxia, either in a repeated or stepwise manner. 339 

This would have perhaps better circumvented issues associated with potential carry-over effects 340 

between the stages of hypoxia and any hypoxic ventilatory depression (Teppema & Dahan, 341 

2010). It is also acknowledged that the hypoxic ventilatory response in humans can be expressed 342 

relative to SpO2, but due to technical issues this data was not acquired in all participants. 343 

Nevertheless, the approach we employed enabled to consistently control the stepwise reductions 344 

to the target PETO2 under all conditions.  345 

High doses of dopamine (i.e., >3 µg·kg−1·min−1) may activate a- and b-adrenoreceptors 346 

with well-defined cardiovascular actions and can result in hypertension (Stickland et al., 2011). 347 

At a low-dose (<3 µg·kg−1·min−1), dopamine infusion can however cause vasodilatation and 348 

increased blood flow through several regions by activation of postsynaptic D1-receptors in 349 

coronary, renal, mesenteric and cerebral circulations and presynaptic D2-receptors in the 350 

peripheral and kidney vasculature (Clark & Menninger, 1980). As mentioned above, the 351 

peripheral chemoreceptors also exert effects on reflex cardiovascular control (Guyenet, 2000; 352 

Kumar & Prabhakar, 2012). In agreement with other studies (Eugene, 2016; Limberg et al., 353 

2016), low-dose dopamine infusion decreased TPR in the present study. Such vasodilatory 354 

actions of dopamine likely contributed to the elevation of HR and CO under steady-state 355 

conditions and during the acute incremental hypoxia test, and the elevated MSNA burst 356 

frequency during the acute incremental hypoxia test. This likely occurred via baroreflex 357 

mechanism in order to preserve MAP, which was largely unchanged. It is acknowledged that the 358 

occurrence of such secondary compensatory hemodynamic adjustments arguably constrains the 359 

interpretation of the data generated. In addition, dopamine has been shown to have direct cardiac 360 

effects (Holmes & Fowler, 1962), which may have contributed to the elevated HR and CO 361 
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observed with dopamine infusion. The systemic administration of low-dose dopamine (i.e., 3 362 

µg·kg−1·min−1) was undertaken in accordance with several previous studies in humans (Boetger 363 

& Ward, 1986; Dahan et al., 1996; Limberg et al., 2016). However, it is important to note that 364 

despite a change in the prevailing MSNA with dopamine, the responses to the acute incremental 365 

hypoxia test were unchanged (i.e., no infusion x stage interaction, noted either at SL or ALT). 366 

An alternative approach would have been to administer dopamine directly into the carotid artery 367 

and/or record carotid chemoreceptor afferent nerve discharge to verify carotid body inhibition, as 368 

has been performed in dogs (Bisgard et al., 1979; Stickland et al., 2007), but this extremely 369 

invasive technique was unfeasible. The hypoxic pressor response was augmented at altitude, but 370 

rather than occurring via a sympathetic vasoconstrictor effect, appeared to occur secondary to an 371 

augmented increase in CO. Whether this relates to a difference in autonomic cardiac control 372 

relating to chemoreflex activation per se warrants further investigation.  373 

We attempted to control PETCO2 such that it remained at SL isocapnic conditions 374 

throughout the acute incremental hypoxia test, however it was lower (≈3 mmHg) at altitude. 375 

Therefore, it is possible that the sympathoexcitatory and hyperventilatory responses to the test 376 

were underestimated at ALT compared to SL. However, no differences in PETCO2were noted 377 

between the saline and dopamine conditions. Ventilation was higher at high altitude when 378 

participants were breathing air with PETCO2 and PETO2 maintained at sea level values (Figure 379 

4A) compared to when they were breathing the ambient air (i.e., poikilocapnic hypoxia). A 380 

potential explanation for this is that the supplemental CO2 provided to the inspired air to return it 381 

to sea level values stimulated the chemoreceptors at high-altitude (e.g., due to central acid-base 382 

balance alterations) (Ainslie et al., 2013). We observed subtle differences in the MSNA 383 

responses to altitude and acute incremental hypoxia, when expressed as burst frequency 384 
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(bursts·min-1) or burst incidence (bursts·100 heartbeats-1). For example, steady-state MSNA 385 

frequency and burst incidence were both robustly elevated at altitude, but likely due to a 386 

concomitantly elevated (P=0.088) HR. When interpreting sympathetic effects of altitude and 387 

dopamine in the present study we have principally relied upon burst frequency data (bursts per 388 

unit time). SV and CO were monitored using finger photoplethysmography, and although this 389 

approach can reliably track changes in these parameters during laboratory-based manoeuvres 390 

(Bogert et al., 2010), the indirect nature of this method is a potential limitation. Finally, the small 391 

sample size is a potential limitation of our study. Although the number of participants is similar 392 

to earlier work employing a within subject design to examine the influence of high altitude on 393 

MSNA (Hansen & Sander, 2003), we acknowledge the potential for a type II error to have 394 

occurred. 395 

In this study, we examined the effects of intravenous low-dose dopamine on neural 396 

cardiovascular control following chronic hypobaric hypoxia (15-17 days at 3,454 m). 397 

Intravenous dopamine infusion did not lower the increases in MSNA at high altitude when 398 

ambient air was breathed, furthermore the MSNA response to an acute incremental hypoxia test 399 

was not affected by dopamine infusion either at sea level and high altitude. These findings 400 

support the view that intravenous low-dose dopamine to attenuate the responsiveness of the 401 

carotid chemoreceptors does not diminish the sympathoexcitation of high altitude, but should be 402 

viewed in light of the methodological considerations relating to our experimental design that are 403 

discussed above.  404 
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Table 1. Selected cardiorespiratory responses to the acute incremental hypoxia test at Zurich (SL, 408 m) and Jungfraujoch research 

station (ALT, 3,454 m) during infusion of saline or dopamine. 

 Stage of incremental hypoxia test 

  1 2 3 4 5 6 7 8 

PETO2 (mmHg)                 

SL saline 96.7 (2.5) 74.5 (1.4) 69.9 (1.5) 64.8 (0.7) 59.0 (1.4) 55.0 (0.9) 49.8 (0.7) 45.0 (1.3) 

SL dopamine 95.4 (4.4) 73.6 (1.0) 70.9 (1.8) 64.9 (1.6) 60.0 (1.4) 54.9 (0.8) 49.9 (1.5) 45.5 (1.0) 

ALT saline 98.7 (12.7) 79.2 (10.8) 70.1 (0.9) 63.9 (1.7) 59.7 (0.6) 54.6 (2.2) 50.1 (0.8) 44.7 (0.6) 

ALT dopamine 95.5 (4.6) 75.7 (1.5) 69.1 (1.2) 64.7 (1.8) 59.5 (1.0) 55.1 (0.7) 50.0 (1.2) 44.7 (0.6) 

PETCO2 (mmHg)                 

SL saline 41.5 (2.1) 41.7 (2.1) 41.7 (2.0) 41.5 (2.0) 41.7 (2.3) 41.7 (2.2) 41.6 (2.2) 41.6 (2.2) 

SL dopamine 42.9 (2.9) 42.9 (2.6) 43.1 (2.8) 43.2 (3.0) 43.3 (3.0) 43.1 (3.1) 43.0 (2.9) 43.0 (3.1) 

ALT saline 39.5 (1.8) 37.8 (2.8) 35.3 (2.7) 35.3 (2.1) 38.8 (1.9) 39.9 (1.8) 40.2 (1.6) 39.9 (1.1) 

ALT dopamine 39.7 (2.1) 39.4 (2.1) 36.0 (2.6) 36.1 (2.5) 37.7 (2.2) 40.5 (1.8) 40.5 (1.8) 40.6 (2.1) 

SpO2 (%)         

SL saline 98.0 (0.8) 96.2 (0.9) 95.5 (0.9) 94.6 (1.0) 93.0 (1.2) 91.3 (1.8) 88.0 (2.5) 83.6 (3.7) 
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SL dopamine 97.9 (1.2) 95.8 (1.1) 95.6 (1.2) 94.2 (1.5) 92.9 (2.1) 90.7 (2.5) 87.6 (2.6) 84.1 (3.0) 

ALT saline 98.5 (0.9) 96.7 (1.4) 95.7 (0.8) 94.4 (1.1) 92.8 (1.5) 90.2 (1.9) 87.2 (2.7) 81.7 (3.5) 

ALT dopamine 97.9 (1.0) 95.9 (1.2) 95.1 (1.2) 93.7 (1.2) 92.3 (1.3) 90.0 (1.2) 87.5 (3.7) 81.4 (4.2) 

MSNA incidence (bursts·100 heartbeats-1)       

SL saline 26 (18) 26 (19) 27 (19) 25 (20) 21 (16) 23 (12) 22 (13) 23 (11) 

SL dopamine 29 (20) 32 (20) 33 (20) 30 (16) 27 (14) 27 (16) 35 (14) 31 (12) 

ALT saline 37 (16) 35 (16) 32 (16) 33 (16) 36 (16) 33 (16) 34 (16) 34 (16) 

ALT dopamine 40 (16) 35 (14) 40 (14) 42 (12) 37 (15) 38 (12) 38 (13) 35 (9) 

HR (beats·min-1)         

SL saline 65 (10) 66 (10) 70 (11) 72 (11) 74 (11) 76 (13) 80 (10) 82 (12) 

SL dopamine 69 (10) 71 (10) 73 (11) 75 (12) 76 (13) 78 (12) 83 (11) 87 (10) 

ALT saline 74 (8) 76 (9) 77 (9) 80 (11) 84 (13) 87 (10) 90 (12) 95 (14) 

ALT dopamine 77 (8) 83 (7) 84 (10) 84 (11) 86 (12) 90 (10) 95 (9) 99 (10) 

SV (ml)                 

SL saline 115 (12) 115 (11) 114 (13) 113 (13) 114 (14) 114 (13) 113 (13) 113 (13) 

SL dopamine 120 (11) 121 (10) 120 (10) 120 (11) 118 (9) 120 (10) 118 (12) 118 (13) 
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ALT saline 113 (7) 111 (5) 112 (6) 110 (6) 110 (6) 112 (9) 115 (9) 116 (8) 

ALT dopamine 117 (11) 116 (10) 114 (12) 114 (11) 114 (8) 114 (8) 113 (10) 114 (9) 

 
PETO2, partial pressure of end-tidal oxygen; PETCO2, partial pressure of end-tidal carbon dioxide; MSNA, muscle sympathetic nerve 

activity; HR, heart rate; SV, stroke volume. Data expressed as mean (standard deviation). 

 
  



	

	

24 

Table 2. P values derived from repeated measures ANOVA in which the factors of altitude (SL vs. ALT), infusion (saline vs. 

dopamine) and incremental hypoxia test stage (stages 1-8) were considered, as well as all two- and three-way interactions. 

 Altitude Infusion Stage 
Altitude x 

Infusion 

Altitude x 

Stage 

Infusion 

x Stage 

Altitude x 

Infusion x Stage 

PETO2 0.562 0.461 0.000 0.347 0.291 0.297 0.668 

PETCO2 0.000 0.015 0.000 0.141 0.000 0.479 0.260 

SpO2  0.331 0.626 0.000 0.729 0.243 0.629 0.617 

VE 0.000 0.019 0.000 0.034 0.000 0.085 0.072 

VT  0.000 0.022 0.000 0.184 0.000 0.343 0.236 

Rf  0.001 0.089 0.000 0.061 0.001 0.657 0.035 

MSNA frequency  0.025 0.034 0.002 0.961 0.236 0.065 0.109 

MSNA incidence  0.174 0.081 0.375 0.106 0.353 0.133 0.092 

MAP  0.000 0.372 0.000 0.371 0.000 0.227 0.128 

CO  0.033 0.010 0.000 0.798 0.036 0.205 0.517 

TPR  0.030 0.046 0.000 0.805 0.176 0.279 0.678 

HR  0.002 0.101 0.000 0.840 0.218 0.449 0.712 
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SV  0.286 0.107 0.249 0.323 0.266 0.109 0.026 

PETO2, partial pressure of end-tidal oxygen; PETCO2, partial pressure of end-tidal carbon dioxide; VE, minute ventilation; VT, tidal 

volume; Rf, respiratory frequency; MSNA, muscle sympathetic nerve activity; MAP, mean arterial pressure; CO, cardiac output; TPR, 

total peripheral resistance; HR, heart rate; SV, stroke volume. 
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Table 3. P values derived from repeated measures ANOVA in which the factors of infusion (saline vs. dopamine) and incremental 

hypoxia test stage (stages 1-8) and their two-way interaction were considered separately at SL and ALT.  

 SL  ALT 

 Infusion Stage Infusion x Stage  Infusion Stage Infusion x Stage 

PETO2 0.809 0.000 0.310  0.376 0.000 0.457 

PETCO2 0.025 0.523 0.637  0.177 0.000 0.351 

SpO2 0.743 0.000 0.603  0.417 0.000 0.841 

VE 0.298 0.000 0.517  0.023 0.000 0.073 

VT  0.120 0.001 0.259  0.047 0.000 0.283 

MSNA frequency  0.051 0.028 0.091  0.015 0.023 0.042 

MSNA incidence  0.053 0.332 0.201  0.063 0.313 0.034 

MAP 0.590 0.011 0.565  0.308 0.000 0.133 

CO  0.041 0.000 0.650  0.135 0.000 0.206 

TPR  0.228 0.000 0.113  0.175 0.000 0.473 

HR  0.273 0.000 0.682  0.218 0.000 0.515 
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PETO2, partial pressure of end-tidal oxygen; PETCO2, partial pressure of end-tidal carbon dioxide; VE, minute ventilation; VT, tidal 

volume; Rf, respiratory frequency; MSNA, muscle sympathetic nerve activity; MAP, mean arterial pressure; CO, cardiac output; TPR, 

total peripheral resistance; HR, heart rate; SV, stroke volume. 
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Figure legends 

 

Figure 1. Intravenous infusion of dopamine did not significantly modify steady-state 

respiration at Zurich (SL, 432 m) and the Jungfraujoch research station (ALT, 3,454 m) 

while participants breathed the ambient air. VE, minute ventilation; VT, tidal volume; Rf, 

respiratory frequency. Data expressed as individual values and means with (standard deviation). 

ANOVA P values are displayed. 

 

Figure 2. Original sympathetic neurograms obtained at sea level and high altitude with 

infusion of saline and dopamine. In this individual, a low level of MSNA was present at sea 

level, but the recording site was verified with a pronounced MSNA response to a breath hold. 

Note the minimal response to dopamine, but pronounced sympathoexcitation at altitude.  

 

Figure 3. Cardiovascular variables at Zurich (SL) and the Jungfraujoch research station 

(ALT) during infusion of saline and dopamine with participants breathing ambient air. 

MAP, mean arterial pressure; MSNA, muscle sympathetic nerve activity; TPR, total peripheral 

resistance; HR, heart rate; SV, stroke volume. Data expressed as individual values and means 

with (standard deviation). ANOVA P values are displayed.  

 

Figure 4. Respiratory responses to acute incremental hypoxia at Zurich (SL) and 

Jungfraujoch research station (ALT) during infusion of saline or dopamine. VE, minute 

ventilation; VT, tidal volume; Rf, respiratory frequency. Data expressed as individual values and 

means with (standard deviation). ANOVA P values are displayed. 
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Figure 5. Original sympathetic neurograms obtained during the initial (1) and final (8) 

stages of the acute incremental hypoxia test at sea level and high altitude with infusion of 

saline and dopamine. Note the modest increase in MSNA in response with either acute 

incremental hypoxia or dopamine, and the pronounced sympathoexcitatation at ALT.  

 

Figure 6. Cardiovascular responses to acute incremental hypoxia at Zurich (SL, 432 m) 

and Jungfraujoch research station (ALT) during infusion of saline or dopamine. 

MAP, mean arterial pressure; MSNA, muscle sympathetic nerve activity; TPR, total peripheral 

resistance. Data expressed as individual values and means ± standard error.  
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