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networks ∗
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August 4, 2017

Abstract

We study typical distances in a geometric random graph on the hy-

perbolic plane. Introduced by Krioukov et al. [Krioukov et al., 2010]

as a model for complex networks, N vertices are drawn randomly

within a bounded subset of the hyperbolic plane and any two of them

are joined if they are within a threshold hyperbolic distance. With

appropriately chosen parameters, the random graph is sparse and ex-

hibits power law degree distribution as well as local clustering. In

this paper we show a further property: the distance between two uni-

formly chosen vertices that belong to the same component is doubly

logarithmic in N , i.e., the graph is an ultra-small world. More pre-

cisely, we show that the distance rescaled by log logN converges in

probability to a certain constant that depends on the exponent of the

power law. The same constant emerges in an analogous setting with

the well-known Chung-Lu model for which the degree distribution has

a power law tail.
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1 Introduction

The small-world problem was first stated by Stanley Milgram in his 1967

paper [Milgram, 1967] through which he gave strong evidence of the so-

called small-world effect. The simplest formulation of the small-world prob-

lem [Milgram, 1967] is: “Starting with any two people in the world, what

is the probability that they will know each other?”. A more sophisticated

formulation of the problem asks whether any two people, if they do not

directly know of each other, have common acquaintances. Milgram’s exper-

iment indicated that this is indeed the case within a relatively small random

sample of the population of the United States. In particular, it turned out

the at least half of the sample was within six degrees of separation from the

“target” individual. In graph theoretic terms, in the graph of acquaintances

the nodes that represent these individuals are within distance 6 from the

node that was representing the target individual.

The small-world phenomenon is ubiquitous in natural and technological

networks such as neural networks, the Internet, the World-Wide-Web or the

power grid – see the book of Chung and Lu [Chung and Lu, 2006] as well

as the book of Dorogovtsev [Dorogovtsev, 2010] for experimental evidence

regarding such networks. For example, it was announced relatively recently

that between any two active users of Facebook there are 3.74 degrees of

separation on average [BBC, 2011].

There have been numerous attempts to explain this phenomenon through

the theory of complex networks. Among the initial attempts was the “small-

world” model of Watts and Strogatz which is defined through random re-

wiring of the edges of a cyclic lattice. This model exhibits small average dis-

tance, but lacks a basic feature of such large self-organizing networks which

is the scale freeness. Experimental evidence [Albert and Barabási, 2002]

suggests that these networks have a distribution of degrees whose tail de-

cays like a power law with exponent usually between 2 and 3.

Of course the term “small-world” itself is somewhat vague. Loosely

speaking, the term refers to average distances that are slowly growing func-

tions of the number of vertices of the network. A possible candidate is

the logarithmic function. Thus, the classical Erdős-Rényi random graph

may be thought of as a small-world graph as it has logarithmic diameter –

see [Bollobás, 2001]. However, it lacks the scale freeness as well and, further-

more, it represents a very homogeneous network. This is a very unrealistic
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feature as most large scale networks contain vertices that have very different

properties from each other. Sub-logarithmic bounds on the diameter were

established for the preferential attachment model [Barabási and Albert, 1999]

by Bollobás and Riordan [Bollobás and Riordan, 2004]. As it was shown by

Bollobás et al. [Bollobás et al., 2001], this is scale-free with exponent equal

to 3.

Recent research that focused on models for complex networks that are

scale free with power law exponent between 2 and 3 identified cases of such

networks that are ultrasmall. This term is associated with models in which

the distance between two randomly chosen connected vertices grows doubly

logarithmically in the number of vertices of the random graph. With N de-

noting the number of vertices, the function log logN is a very slowly growing

function. Presumably this is closer to empirical evidence which comes from

networks that have millions of vertices but whose average distance between

two randomly chosen vertices is very small.

An analytical relation between the two was first established by Co-

hen and Havlin [Cohen and Havlin, 2003] and by Dorogovtsev, Mendes and

Samukhin [Dorogovtsev et al., 2003]. It was shown rigorously for a vari-

ety of random graph models which exhibit power law degree distribution

such as the Chung-Lu model [Chung and Lu, 2002a], the Norros-Reittu

model [Norros and Reittu, 2006], the configuration model [Hofstad and Hooghiemstra, 2008]

as well as variations of the preferential attachment model [Dommers et al., 2010] [Dereich et al., 2012].

1.1 A geometric framework for complex networks

Recently, Krioukov et al. [Krioukov et al., 2010] introduced a geometric

framework in order to describe the inherent inhomogeneity of a complex

network. Their basic assumption is that the intrinsic hierarchies that are

present in a complex network induce a tree-like structure. This suggests

that the geometry of a complex network is hyperbolic.

There are several representations of the hyperbolic plane. In this paper,

we shall use the Poincaré unit disk representation, which is simply the open

disk of radius one, that is, {(u, v) ∈ R2 : 1−u2−v2 > 0}, which is equipped

with the hyperbolic metric: 4 du2+dv2

(1−u2−v2)2
. This is the standard formulation

of the hyperbolic plane.

In particular, a suitable integration of the metric shows that the length of

a circle of radius r (centered at the origin) is 2π sinh(r), whereas the area of
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this circle (centered at the origin) is 2π(cosh(r)− 1). Hence, a fundamental

difference with the Euclidean plane is that volumes grow exponentially.

We are now ready to give the definition of the basic model introduced

in [Krioukov et al., 2010]. Consider the Poincaré disk representation of the

hyperbolic plane H2
−1. Let N be the number of vertices of the random

graph, and we assume that N → ∞. Consider also some fixed constant

ν > 0 and let R > 0 satisfy N = νeR/2. It turns out that the parameter ν

determines the average degree of the random graph. Consider the disk DR
of hyperbolic radius R centered at the origin of the Poincaré disk (that is,

the set of points of the Poincaré disk at hyperbolic distance at most R from

its origin).

Let VN := {v1, . . . , vN} be a binomial point process on DR. This is

a random set of points of size N that are the outcomes of the i.i.d. ran-

dom variables v1, . . . , vN taking values on DR. (We will be referring to

the random variables vi as vertices, meaning their outcomes on DR.) More

specifically, assume that v1 has polar coordinates (r, θ). The angle θ is uni-

formly distributed in (0, 2π] and the probability density function of r, which

we denote by ρN (r), is determined by a parameter α > 0 and is equal to

ρ(r) = ρN (r) =

{
α sinhαr

cosh(αR)−1 , if 0 ≤ r ≤ R
0, otherwise

. (1.1)

The aforementioned formulae for the area and the length of a circle of a

given radius imply that if we set α = 1, the distribution described in (1.1)

is the uniform distribution on DR (under the hyperbolic metric). For general

α > 0 Krioukov et al. [Krioukov et al., 2010] called this the quasi-uniform

distribution on DR. Let us remark that in fact this is the uniform distri-

bution on a disc of hyperbolic radius R within H2
−α2 (the hyperbolic plane

that has curvature −α2).

Given the point process VN on DR ⊂ H2
−1 and the fixed parameters α

and ν we define the random graph G(N ;α, ν) on the point-set of VN , where

two distinct points form an edge if and only if they are within (hyperbolic)

distance R from each other. Figure 1 shows the disc of radius R around a

point p ∈ DR. Thus, any point that falls inside this disc becomes connected

to p.

Figure 2 depicts results of a simulation of the G(N ;α, ν) model, for

N = 1000, ν = 3 and α = 1.8, 1 and 0.7, respectively. Observe now the
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Figure 1: The disc of radius R around point p.

change in the structure of the random graph as α crosses 1. We will comment

on this in Section 1.1.1.

Notation

We now introduce some notation which we use throughout out proofs. Let

aN , bN be two sequences of positive real numbers. We write aN ≈ bN to

indicate that aN = Θ(bN ), that is, there are real numbers c, C > 0 such

that cbN ≤ aN ≤ CbN , for all natural numbers N . We also write aN ∼ bN
to denote that aN/bN →∞, as N →∞.

If EN is an event on the probability space (ΩN ,PN ,FN ), for each N ∈ N,

we say that EN occurs asymptotically almost surely (a.a.s.) if P(EN )→ 1 as

N → ∞. In our context, we mainly use the sequence of probability spaces

that is induced by G(N ;α, ν). However, later we introduce a variant of this

model which is its Poissonisation. We will be using the term a.a.s. for that

model as well.

1.1.1 Some facts about G(N ;α, ν)

We argue that the above model can be thought of as a geometrization of the

random graph model that was introduced by F. Chung and L. Lu [Chung and Lu, 2002a,

Chung and Lu, 2002b] and is a special case of an inhomogeneous random

graph. The notion of inhomogeneous random graphs was introduced by

Söderberg [Söderberg, 2002], but was defined more generally and studied
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Figure 2: Instances for the G(N ;α, ν) for N = 1000, ν = 3 and α = 1.8, 1
and 0.7.

in great detail by Bollobás, Janson and Riordan in [Bollobás et al., 2007].

In its most general setting, there is an underlying compact metric space

S equipped with a measure µ on its Borel σ-algebra. This is the space of

types of the vertices (defined below). A kernel κ is a bounded real-valued,

non-negative function on S × S, which is symmetric and measurable. The

vertices of the random graph can be understood as points in S. If x, y ∈ S,

then the corresponding vertices are joined with probability κ(x,y)
N ∧ 1, inde-

pendently of every other pair (N is the total number of vertices). The points

that are the vertices of the graph are approximately distributed according

to µ. More specifically, the empirical distribution function on the N points

converges weakly to µ as N →∞.

Of particular interest is the case where the kernel function can be fac-

torized and can be written κ(x, y) = t(x)t(y); this is called a kernel of rank

1. Intuitively, the function t(x) can be thought of as the weight or the

type of vertex x. It is approximately its expected degree. In the special

case where t(x) follows a distribution that has a power law tail, the model

becomes the so-called Chung-Lu model that was introduced in a series of pa-
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pers [Chung and Lu, 2002a, Chung and Lu, 2002b] (see also [Hofstad, 2017]).

We argue that in the random graph G(N ;α, ν), the probability that

two vertices are adjacent has this form. The proof of this fact relies on

Lemma 2.4, which we will state later and is proved in [Bode et al., 2015]. It

provides an approximate characterization of what it means for two points

u, v to have hyperbolic distance at most R in terms of their relative angle,

which we denote by θu,v. This is defined as min{ ˆuOv, 2π − ˆuOv}. Note

that θu,v ≤ π. For this lemma, we need the notion of the type of a vertex.

For a vertex v ∈ VN , if rv is the distance of v from the origin, that is,

the radius of v, then we set tv = R − rv – we call this quantity the type

of vertex v. As we shall shortly see, the type of a vertex is approximately

exponentially distributed. If we substitute R−t for r in (1.1), then assuming

that t is fixed that expression becomes asymptotically (as N → ∞) equal

to αe−αt. Roughly speaking, Lemma 2.4 states that two vertices u and v

of types tu and tv are within distance R (essentially) if and only if θu,v <

2νetu/2etv/2/N . Hence, conditional on their types the probability that u

and v are adjacent is proportional to etu/2etv/2/N . If we set t(u) = etu/2,

then P(t(u) ≥ x) = P(tu ≥ 2 lnx) ≈ e−2α lnx = 1/x2α. In other words,

the distribution of t(u) has a power-law tail with parameter 2α. Thus, the

random graph G(N ;α, ν) is a dependent version of the Chung-Lu model that

emerges naturally from the hyperbolic geometry of the underlying space.

The fact that this is a random geometric graph gives rise to local clustering,

which is missing in the Chung-Lu model. There, most vertices have tree-like

neighborhoods.

In fact, it can be shown that the degree of a vertex u in G(N ;α, ν) that

has type tu is approximately distributed as a Poisson random variable with

parameter proportional to etu/2.

Gugelmann, Panagiotou and Peter [Gugelmann et al., 2012] showed that

the degree of a vertex has a power law with exponent 2α + 1. If α > 1/2,

then the exponent of the power law may take any value greater than 2.

When 1 > α > 1/2, this exponent is between 2 and 3. They also showed

that the average degree is a constant that depends on α and ν, and that

the clustering coefficient (the probability of two vertices with a common

neighbor to be joined by an edge) of G(N ;α, ν) is asymptotically bounded

away from 0 with probability 1− o(1) as N →∞.

Furthermore, the last two authors together with Müller [Bode et al., 2015]

showed that G(N ;α, ν) with high probability has a giant component, that
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is, a connected component containing a linear number of vertices if 1/2 <

α < 1. When α > 1, the size of the largest component is bounded by a

function that is sublinear in N . This transition is also indicated in Figure 2.

When α = 1, the existence of a giant component depends on the value of ν.

There is a critical value for ν around which a giant component emerges.

1.2 Results

In this contribution, we give an almost sure bound on the (graph) distance

between two randomly chosen vertices that belong to the same connected

component. We show that G(N ;α, ν) is ultrasmall when 1
2 < α < 1, that is,

when the degree distribution has a power law tail with exponent between

2 and 3. More specifically, we show that a.a.s. the graph distance between

two randomly chosen vertices that belong to the same component is of order

log logN . However, the diameter of G(N ;α, ν) grows at least logarithmically

in N . This is a recent result of Kiwi and Mitsche [Kiwi and Mitsche, 2015],

where they show that there is a connected component of diameter propor-

tional to logN . They also derive an upper bound on the diameter showing

that the diameter is at most proportional to R1+C a.a.s., for some positive

constant C that depends on the parameters of the model. More recently,

Friedrich and Krohmer [Friedrich and Krohmer, 2015] improved the con-

stant showing that the exponent is at most 1/(2(1 − α)). They also show

that if ν is small enough, then the exponent is equal to 1. Note that the

Chung-Lu model exhibits logarithmic diameter [Chung and Lu, 2002a].

For α > 1, we show that a.a.s. G(N ;α, ν) is almost ultrasmall: the

graph distance between two randomly chosen vertices that belong to the

same component is a.a.s. bounded by some polynomial of log logN . This

range of α yields a power law degree distribution with exponent greater than

3. For this range, Chung and Lu [Chung and Lu, 2002a] proved that the

Chung-Lu model exhibits average distances of order logN asymptotically

with high probability.

Let dG(u, v) denote the graph distance between two vertices u, v ∈ VN .

Theorem 1.1. Assume that 1/2 < α < 1 and let τ be such that τ−1 =

log
(

1
2α−1

)
. Let u, v ∈ VN be a pair of distinct vertices chosen uniformly at

random. For any ζ > 0, the following holds a.a.s.: either dG(u, v) = ∞ or∣∣∣dG(u,v)
logR − 2τ

∣∣∣ < ζ.
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In this regime, G(N ;α, ν) does have a giant component and therefore

for any two distinct vertices u, v we have dG(u, v) < ∞ with probability

that is asymptotically bounded away from 0. Moreover, Kiwi and Mitsche

[Kiwi and Mitsche, 2015] showed that the second largest component a.a.s.

contains o(N) vertices. Hence, if we considert two distinct vertices u and v

from VN , a.a.s. either they belong to different components or they belong

to the largest component. These facts together with the above theorem

imply that if the vertices u and v are selected uniformly at random from

the largest component, then for any ζ > 0, a.a.s.
∣∣∣dG(u,v)

logR − 2τ
∣∣∣ < ζ.

The upper bound (which is probably the most important) in the above

result was also derived by Chung and Lu [Chung and Lu, 2002a] for the

Chung-Lu model with power law exponent between 2 and 3. That was

under the assumption that the average degree is greater than 1. However,

in our case a giant component is formed independently of what the average

degree is, as long as 1/2 < α < 1. The full result for the Chung-Lu model

can be found in [Hofstad, 2017]. The analogous result but in a stronger

form which involves convergence in distribution was obtained by van der

Hofstad et al. [Hofstad and Hooghiemstra, 2008] .

Our second result provides an upper bound on the typical distance be-

tween two connected vertices when α > 1. In this case there is no giant

component a.a.s. However, the largest component contains polynomially1

(in N) many vertices, as there exist vertices of degree that scales polyno-

mially in N (and, of course, the neighbours of a vertex all belong to the

same component). However, these components form also (almost) ultra-

small worlds.

Theorem 1.2. Let α > 1, ε > 0. A.a.s. there is a subset V ′ of vertices of

G(N ;α, ν) of size (1 − o(1))N so that if u, v ∈ V ′ and dG(u, v) < ∞, then

dG(u, v) ≤ log1+ε logN .

We believe that the above theorem can be strengthened in the following

sense. A.a.s. there is a “representative” set V ′ (in the sense of the above

theorem) such that for any u, v ∈ V ′ we have dG(u, v) ≤ C log logN , for

some constant C > 0, that depends on the parameters of the model. More

specifically, we believe that a typical vertex in a connected component has

1Note that by “polynomial” we mean a function of the form f(x) = xc where c > 0 is
a constant.
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an ultra-short path to a “hub” vertex of the component, that is, a vertex of

polynomially growing degree.

In the next section, we introduce the Poissonisation of G(N ;α, ν) which

is convenient for our calculations. Thereafter, we will state and prove some

basic geometric facts regarding the hyperbolic plane, which allow us to

express distances on the hyperbolic plane in terms of polar coordinates on

DR. Subsequently, we proceed with the proof of Theorems 1.1 and 1.2.

The main idea behind the proof of Theorem 1.1 makes use of the ex-

istence of a very dense core that is formed by those vertices that have

type at least R/2. We show that if two vertices are connected, then most

likely they have short paths to the core which itself is a complete graph.

These paths, which we call exploding, emerge also in the Chung-Lu model

[Chung and Lu, 2002a, Hofstad, 2017].

2 Preliminary results

2.1 Poissonisation

Recall that DR is the disk of hyperbolic radius R around the origin O within

the Poincaré disk representation of the hyperbolic plane with curvature −1.

It will be significantly easier to work in a setting where, instead of having

exactly N random points, the vertex set is the point-set of a Poisson point

process on DR with intensity

N
1

2π
ρN (r)drdθ.

Two vertices/points are declared adjacent exactly as in G(N ;α, ν). We

denote the resulting graph by P(N ;α, ν). More specifically, the vertex set

consists of the points of the above Poisson point process inDR (see [Kingman, 1993]).

In every measurable set U ⊆ DR, the number of points in U follows the Pois-

son distribution with parameter equal to Nµα(U) where we define

µα(U) :=
1

2π

∫
U
ρN (r)drdθ. (2.1)

Moreover, the numbers of points in any finite collection of pairwise dis-

joint measurable subsets of DR are independent Poisson-distributed random

variables.
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Furthermore, several of our results concern the G(N ;α, ν) distribution

conditional on a certain subset of points being equal to X. Of course, such

an event has probability equal to 0, and thus, to make sense of this one

defines the Palm distribution. This was first defined by Palm [Palm, 1943]

in the context of stationary point processes on the real line - see the article

of Jagers [Jagers, 1973] and the references therein for a rigorous exposition

of this concept. Let us begin with the P(N ;α, ν) model. For a certain

measurable subset U ⊂ DR such that DR\U has positive Lebesgue measure,

the vertex set of the random graph PX,U (N ;α, ν) consists of X ⊂ DR \ U
together with set of points of a Poisson process on DR \ U with intensity

(N − |X|) ρN (r)

µα(DR \ U)
drdθ.

(Here and later we assume that N > |X|.) Hence, this process “produces”

N − |X| points on average and, therefore, the random graph has N vertices

in total, on average.

Similarly, for the G(N ;α, ν) model, its corresponding Palm distribution

is defined through the GX,U (N ;α, ν) model. The vertex set of this random

graph is the set X ⊂ DR \ U together with the set of points that are the

outcomes of the random variables v|X|+1, . . . , vN of the set VN , conditional

on not being in the set U . Two points are adjacent as in the G(N ;α, ν)

model. Let us observe that in the particular case where X,U = ∅, the

resulting random graph is distributed as G(N ;α, ν).

Let X be a set of points in DR and let U ⊂ DR be a measurable set

such that X ∩ U = ∅. Let AX be an event in the probability space of the

random graph PX,U (N ;α, ν). We call AX non-decreasing if

PPX,U (N ;α,ν)(AX | Po(N−|X|) = N1) ≤ PPX,U (N ;α,ν)(AX | Po(N−|X|) = N2),

whenever N1 ≤ N2. If the opposite inequality holds, we call the property

non-increasing.

Lemma 2.1. If AX is a non-decreasing event that is associated with a

certain set of vertices X and a measurable U ⊂ DR such that X ∩ U = ∅,
where DR \ U has positive Lebesgue measure.

For any N that is large enough

PPX,U (N ;α,ν)(AX) ≥ 1

4
PGX,U (N ;α,ν)(AX).
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The same holds, if AX is non-increasing and N is large enough with respect

to |X|.

Proof. Suppose first that AX is non-decreasing. We have

PPX,U (N ;α,ν)(AX) =
∞∑

N ′=0

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N ′)P(Po(N) = N ′)

≥
∞∑

N ′=N−|X|

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N ′)P(Po(N) = N ′)

≥
∞∑

N ′=N−|X|

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N − |X|)P(Po(N) = N ′).

Observe that

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N − |X|) = PGf(S,X),U (N ;α,ν)(AX)

Thus,

PPX,U (N ;α,ν)(AX) ≥
∞∑

N ′=N−|X|

PGX,U (N ;α,ν)(AX)P(Po(N) = N ′)

= PGX,U (N ;α,ν)(AX)P(Po(N) ≥ N − |X|)

>
1

4
PGX,U (N ;α,ν)(AX).

where the last line holds N large enough (by an application of, say, the

central limit theorem).

For AX non-increasing, the proof is similar, bounding the sum by taking

12



only the terms where N ′ ≤ N − |X|:

PPX,U (N ;α,ν)(AX) =
∞∑

N ′=0

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N ′)P(Po(N) = N ′)

≥
N−|X|∑
N ′=0

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N ′)P(Po(N) = N ′)

≥
N−|X|∑
N ′=0

PPX,U (N ;α,ν)(AX | Po(N − |X|) = N − |X|)P(Po(N) = N ′)

=

N−|X|∑
N ′=0

PGX,U (N ;α,ν)(AX)P(Po(N) = N ′)

= PGX,U (N ;α,ν)(AX)P(Po(N) ≤ N − |X|)

>
1

4
PGX,U (N ;α,ν)(AX),

if N is large enough with respect to |X|.

LetAn denote a set of graphs on {1, . . . , n} that is closed under automor-

phisms. We call a family A = {An}n∈N of graphs (vertex-) non-decreasing,

if G − v ∈ An−1 for any2 v ∈ V (G) implies G ∈ An. Similarly, we call the

family (vertex-) non-increasing, if G − v /∈ An−1 for any v ∈ V (G) implies

G /∈ An.

We interpret P(N ;α, ν) /∈ A as follows. Let n′ denote the random

variable that is the number of points of the Poisson process. If we label

these by the numbers {1, . . . , |V (P(N ;α, ν))|} and consider the graph with

this vertex set, then this belongs to A|V (P(N ;α,ν))|.

We assume that the points that form vertex set of G(N ;α, ν) inherit the

labeling from the random variables {v1, . . . vN}. That is, the point that is

the outcome of vi is labeled i. Hence, writing G(N ;α, ν) /∈ A means that

the graph obtained by relabeling the vertices of G(N ;α, ν) by {1, . . . , N} as

above belongs to AN .

Let us observe that setting X = ∅ and U = ∅ and applying Lemma 2.1,

we can say for A non-decreasing or non-increasing, P(P(N ;α, ν) /∈ A) =

o(1) implies P(G(N ;α, ν) /∈ A) = o(1). The results above will allow us to

2G− v ∈ An−1 means that G− v is isomorphic to a member of An−1

13



transfer results from the Poisson model into the G(N ;α, ν) model.

Finally, the following useful fact follows directly from the definition of

the process, using the measure defined for the distribution of the points.

Fact 2.2. Let A be a subset of DR \U , for some measurable subset U ⊂ DR,

and X be a set of vertices located in DR, such that X ∩ (U ∪ A) = ∅. Let

NA be the expected number of vertices in A, in GX,U (N ;α, ν), and denote

by EA the event that A is empty. We have

PPX,U (N ;α,ν)(EA) = exp(−NA).

In order to avoid overloading, we will make a convention when passing

to the Poisson model PX,U (N ;α, ν). Whenever we deal with the Palm

distribution of G(N ;α, ν), conditioning on the positions of a finite collection

of vertices {v1, . . . , v`} ⊆ VN , we will be writing P{v1,...,v`},U (N ;α, ν) to

denote the Poisson model consisting of the points of the vertices {v1, . . . , v`}
together with the points of the Poisson process on DR \U with N − ` points

in expectation. In other words, the set X will consist of the outcomes of

the random variables {v1, . . . , v`}.

2.2 Geometric properties of DR
Recall that for any two points/vertices u, v on DR, their relative angle θu,v
is defined as min{ ˆuOv, 2π − ˆuOv}. Recall also that θu,v ≤ π. We state

and prove a simple geometric fact, which we will use several times in the

following sections.

Claim 2.3. Consider three vertices z, y and w, on DR (in the hyperbolic

plane with curvature −1), such that dH(z, w) < R and w is at the anti-

clockwise direction of z whereas y is between z and w. If ty > tw, then

dH(y, z) < R.

Proof. This is the case as the point y′ of type equal to that of y with θy′w = 0

is still at distance less than R from z. If we move this clockwise towards z,

the distance will remain smaller than R, as w will be at the anticlockwise

side of y′.

The following lemma provides a useful (almost) characterization of the

fact that two vertices are within hyperbolic distance R, given their types.

The lemma reduces a statement about hyperbolic distances to a statement

14



about the relative angle between two points. Its proof can be found in

[Fountoulakis, 2015] and [Bode et al., 2015]. For two points p, v, let

θ̂p,v := 2(1 + ε)e
tp+tv−R

2 = 2(1 + ε)
ν

N
e
tp+tv

2 , and

θ̌p,v := 2(1− ε)e
tp+tv−R

2 = 2(1− ε) ν
N
e
tp+tv

2 .

For c0 = c0(ε), that depends on ε as in the following lemma, we call the set

T+
ε (v) :=

{
p ∈ DR : tp + tv −R < −c0, θp,v ≤ θ̂p,v

}
the outer tube of v. Similarly, we call the set

T−ε (v) :=
{
p ∈ DR : tp + tv −R < −c0, θp,v ≤ θ̌p,v

}
the inner tube of v.

Figure 3: The inner and the outer tube around point p.

Lemma 2.4. For any ε > 0 there exists an N0 > 0 and a c0 > 0 such that

15



for any N > N0 and u, v ∈ DR with tu + tv < R− c0 the following hold.

• If u ∈ T−ε (v), then dH(u, v) < R.

• If u 6∈ T+
ε (v), then dH(u, v) > R.

2.3 Properties of G(N ;α, ν)

We state some general results about the graphs, the proofs of which can be

found in [Bode et al., 2015].

Lemma 2.5. Let ρ̄(t) be the probability density function of the types. For

any ε ∈ (0, 1), uniformly for 0 ≤ t < (1− ε)R as N →∞ we have

ρ̄(t) = ρ(R− t) = (1 + o(1))αe−αt. (2.2)

The following fact is an immediate consequence of the above.

Corollary 2.6. Let ω : N→ N be an increasing function such that ω(N)→
∞ as N → ∞. The expected number of vertices of type at least R/(2α) +

ω(N) in G(N ;α, ν) is o(1). Hence, with probability 1 − o(1) all vertices in

VN have type at most 1
2αR+ ω(N).

3 Proof of Theorem 1.1: upper bound

In this section we assume 1/2 < α < 1. Recall that the definition of the

type of a vertex as well as that of its radius use distances on the hyperbolic

plane.

Definition 3.1. For G ∈ P(N ;α, ν) or G ∈ G(N ;α, ν), let Core(G) = {v ∈
V (G) : tv ≥ R/2} be the core of G. Furthermore, we let XCore(G) = {v ∈
V (G) : tv ≥ R/2 − log logR} be the extended core of G. Finally, we call

the set Per(G) := {v ∈ V (G) : tv ≤ log logR} the set of peripheral vertices

of G.

Note that for every pair of vertices u, v ∈ Core(G), by the triangle

inequality the distance between u and v is at most R, so uv ∈ E(G). In

other words, the subgraph that is induced by the vertices in Core(G) is

complete.
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Lemma 3.2. Let ω(N) be such that ω(N) → ∞ as N → ∞ but ω(N) =

o(R). Let x be a vertex such that tx < log logR and U ⊂ DR an open subset

of DR which does not contain any points of type at least log logR and has

µα(U) = o(µα(DR)). Let G ∈ P{x},U (N ;α, ν). A.a.s. there is a vertex u ∈
Core(G) such that uv ∈ E(G) for every vertex v with tv ≥ 2α−1

2α R+ ω(N).

Proof. By the triangle inequality, any such vertex v is adjacent to any vertex

of radius at most R(2α − 1)/(2α) + ω(N), so it is sufficient to show that

a.a.s. the disc Dr of radius r := 2α−1
2α R + ω(N) is non-empty. Note that

r < R/2, for any N large enough, as ω(N) = o(R) and α < 1, so any vertex

in Dr belongs to the core. Let Nr be the number of vertices in Dr.

Note first that 2α−1
2α − 1 = − 1

2α . Thus r − R = − R
2α + ω(N), whereby

α(r −R) = −R/2 + αω(N). As Dr ∩ U = ∅, these identities imply that

E [Nr ] = (N − 1)
µα(Dr)

µα(DR)− µα(U)
= (N − 1)

cosh(αr)− 1

cosh(αR)(1− o(1))

∼ Neα(r−R) = Ne−R/2+ω(N) N=νeR/2
= νeαω(N).

Using this and Fact 2.2 we get

P(Nr 6= 0) = 1− e−(1+o(1))νeαω(N)
= 1− o(1).

In fact, the only component we consider is the one containing the vertices

in the core. We show that most pairs of vertices that are connected have a

short path into the core. These paths naturally give short paths connecting

all the vertices in the component. We are interested in the following paths

in which the type of the vertices increases exponentially along the path.

Definition 3.3. For δ > 0, we call a path P = v1, v2, . . . , vm in G a δ-

exploding path if vm ∈ Core(G) and tvi+1 ≥ (1 + δ)tvi for 1 ≤ i ≤ m− 2.

Note that an exploding path must have length O(log1+δ R). Since R =

O(logN) too, it turns out that such a path is ultra-short, that is, it has

length O(log logN).

Not every vertex in the giant component has an exploding path into the

core. However, the vertices that do not have such a path are more likely to

have a very low type. In particular, we prove that any vertex of type at least

log logR has an exploding path into the core with probability 1− o(1). We
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actually show this lemma for the Poisson model. The result does transfer

to G(N ;α, ν), due to its monotonicity, but we are going to use it later in

this form.

Lemma 3.4. Let δ = 2 1−α
2α−1 and ζ < δ be a positive real number. Assume

that v and x are vertices such that tv ≥ log logR ≥ tx and U ⊂ DR an

open subset which does not contain any points of type at least tv so that U

is contained in a sector of DR that spans a o(1) angle. With probability (in

the space P{v,x},U (N ;α, ν)) 1− e−Θ(log(α− 1
2 )ζ R), there is a (δ − ζ)-exploding

path starting at v.

Proof. Take any ε < 1
4 and assume that N > N0, where N0 is as in

Lemma 2.4.

By Lemma 3.2, if v satisfies tv ≥ 2α−1
2α R + ω(N), then a.a.s. there

is a vertex u ∈ G with tu ≥ R/2 and vu ∈ E(G). In other words, if

tv ≥ 2α−1
2α R+ ω(N), then we are done.

Assume now that tv <
2α−1

2α R + ω(N). As 1 + δ = 1
2α−1 , it follows that

(1 + δ)tv <
1

2αR + ω(N)
2α−1 . Note that by Corollary 2.6, it suffices to consider

only points of type no larger than 1
2αR+ ω(N)

2α−1 .

Let v1 = v. We will construct inductively a series of (random) sets

Ti ⊂ DR, for i ≥ 2, in each of which we find a vertex vi, which will be the

ith vertex in the exploding path.

For two points p, p′, let ϑp,p′ = θp,p′ if p′ is in the anti-clockwise direction

from p, but ϑp,p′ = −θp,p′ , otherwise.

Assume that we have exposed vi. For any point p ∈ DR we let

T̂−ε (p) :=

{
p′ ∈ DR : |tp′ − (1 + δ)tp| < ζtp,

εν

N
e
tp+tp′

2 ≤ ϑp′,p ≤
2(1− ε)ν

N
e
tp′+tp

2

}
.

We take Ti := T̂−ε (vi). Let A be the set of vertices that are located in

T̂−ε (vi). Note that, as the angle covered by U is o(1), we have that µα(U) =

o(µα(DR)). Hence, the area of a set in DR \ U is within a 1 − o(1) factor

from the area in DR (both on the hyperbolic plane of curvature −α2).

So, for any ε ∈ (0, 1/4) and for N large enough we have
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E [ |A| ] ≥ 2(1− 3

2
ε)
N − 2

2π

∫ (1+δ+ζ)tvi

(1+δ−ζ)tvi
e

1
2

(tvi+t−R)(1− o(1))e−αtdt

≥ 2(1− 3

2
ε)(1− o(1))

N

2π

ν

N
e
tvi
2

∫ (1+δ+ζ)tvi

(1+δ−ζ)tvi
e( 1

2
−α)tdt

ε<1/4

≥ ν

2π
e

1
2
tvi

1

2α− 1

(
e( 1

2
−α)(1+δ−ζ)tvi − e( 1

2
−α)(1+δ+ζ)tvi

)
.

But (1 + δ + ζ)tvi − (1 + δ)tvi + ζtvi > 2ζtvi → ∞, whereby the above

becomes:

E [ |A| ] ≥ ν

2π

1

2α− 1
e

1
2
tvi−(α− 1

2
)(1+δ−ζ)tvi (1− o(1)).

Furthermore, (α− 1
2)(1 + δ) = 2α−1

2
1

2α−1 = 1
2 and finally, we have

E [ |A| ] ≥ ν

2π

1

2α− 1
e(α− 1

2
)ζtvi (1− o(1))

2α−1<1
≥ ν

2π
e(α− 1

2
)ζtvi ,

for N large enough. Hence, by Fact 2.2 we have

P(|A| > 0) = 1− P(|A| = 0)

≥ 1− exp
(
− ν

2π
e(α− 1

2
)ζtvi

)
.

As tvi ≥ log logR, we have P(|A| = 0) ≤ exp
(
− ν
π (logR)(α− 1

2
)ζ
)

. If |A| > 0,

then there are vertices that are located inside Ti and we let vi+1 be one of

them – the choice is arbitrary. The following claim guarantees that Ti+1 =

T̂−ε (vi+1) is disjoint from Ti and when we repeat the argument there is no

danger to expose again area which we have already exposed.

Claim 3.5. For all N large enough and for all i ≥ 1 the following holds.

For all p ∈ T̂−ε (vi) we have T+
ε (vi) ∩ T̂−ε (p) = ∅.

Proof of Claim 3.5. Consider a point p ∈ T̂−ε (vi) and let p′ ∈ T̂−ε (p). We

will show that

ϑp′,vi � 2(1 + ε)
ν

N
e
tv+tp′

2 .
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We write ϑp′,vi = ϑp′,p + ϑp,vi . Since p′ ∈ T̂−ε (p) and p ∈ T̂−ε (vi) we have

ϑp′,p ≥ ε
ν

N
e
tp′+tp

2 and ϑp,vi ≥ ε
ν

N
e
tp+tvi

2 .

Hence

ϑp′,p + ϑp,vi ≥ ε
ν

N

(
e
tp′+tp

2 + e
tp+tvi

2

)
= ε

ν

N
e
tp′+tvi

2

(
e
tp−tvi

2 + e
tp−tp′

2

)
> ε

ν

N
e
tp′+tvi

2 e
tp−tvi

2

≥ ε ν
N
e
tp′+tvi

2 e(δ−ζ)tvi
(δ−ζ)tvi→∞� 2(1 + ε)

ν

N
e
tp′+tvi

2 .

In fact, (δ − ζ)tvi ≥ (δ − ζ) log logR, and therefore the inequality holds

uniformly for all N that are large enough.

If we start at type at least log logR, it takes O(logR) steps to reach type
2α−1

2α R+ω(N); at that point we can complete the exploding path using the

vertex whose existence is guaranteed by Lemma 3.2. Thus for any given

vertex v with tv > log logR we have

P(∃ sequence of vertices v2, . . .) =
(

1− exp
(
−ν
π

(logR)(α− 1
2

)ζ
))O(logR)

= 1−O(logR) exp
(
−ν
π

(logR)(α− 1
2

)ζ
)

= 1− exp
(
−Θ

(
log(α− 1

2
)ζ R

))
,

as xe−ax
b

= o(1) for 0 < a, b and x→∞.

Remark 3.6. In fact, if the type of v is O(1), that is, v is a typical ver-

tex, then the probability that there is a (δ − ζ)-exploding path starting at v

is bounded away from 0. With slightly more work, one can show that two

vertices u and v have both an exploding path with probability that is asymp-

totically bounded away from 0. Thus, dG(u, v) < ∞ with probability that

is asymptotically bounded away from 0. Alternatively, this follows from the

main theorem in [Bode et al., 2015], according to which G(N ;α, ν) has giant

component a.a.s. if 1/2 < α < 1.

Given two vertices u and v that do not belong to Core(G), if there are
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(δ − ζ)-exploding paths starting at u and v, respectively, then d(G)(u, v) <(
2

log(1+δ−ζ) logR
)

+ 1. In particular, with δ = 2 1−α
2α−1 (as in the above

lemma), we have 1 + δ = 1
2α−1 and thereby 2

log(1+δ) = 2τ . Hence, to deduce

the upper bound in Theorem 1.1, it suffices to show that the probability

that u and v belong to the same connected component, but either u or v do

not belong to a (δ−ζ)-exploding path is o(1). We are now ready to proceed

with the details.

Proof of Theorem 1.1: upper bound. Let u, v be two arbitrary distinct ver-

tices in VN . We will show that the event dG(u, v) < ∞ but dG(u, v) ≥
(2τ+ζ) logR occurs with probability o(1). Note that this is in the G(N ;α, ν)

space. We denote this event by EN (τ, ζ). Also, for some fixed ε ∈ (0, 1),

let AN denote the event that the relative angle between u and v is greater

than ν 2ζε logR
N , where ζε := ζ2(1 − ε). Since the angles of the points u and

v are independent and uniformly distributed, the probability of AN is o(1)

and therefore it suffices to prove that P [ EN (τ, ζ) ∩ AN ] = o(1).

If EN (τ, ζ) is realised, then there must be a minimal path between ver-

tices u and v. In this context, a minimal path is meant to be an induced

path. Let Pmin denote such a path. Assume, in addition, that AN is si-

multaneously realised, that is, θu,v > ν 2ζε logR
N . With this assumption, let

Pmin(u) denote the sub-path of Pmin starting at u and ending at the first

vertex whose relative angle with u exceeds ν ζε logR
N . Similarly, let Pmin(v)

denote the sub-path of Pmin starting at v and ending at the first vertex

whose relative angle with v exceeds ν ζε logR
N . Clearly, as AN is realized, the

two paths may overlap, but they have at most one edge in common.

Assume without loss of generality that v is at angle θu,v ≤ π in the

anti-clockwise direction from u. Consider the sectors consisting of points of

relative angle at most ν ζε logR
N from a point x:

S+
h (x) :=

{
p ∈ DR : tp > log logR, 0 < ϑx,p < ν

ζε logR

N

}
and

S−h (x) :=

{
p ∈ DR : tp > log logR, −ν ζε logR

N
< ϑx,p < 0

}
.

There are two cases:
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1. either each one of S+
h (u), S−h (u), S+

h (v), S−h (v) contains a vertex that

is the starting vertex of a (δ − ζ2)-exploding path,

2. or at least one of them is either empty or none of its vertices is the

endpoint of a (δ − ζ2)-exploding path.

Let S denote the former and let S denote the latter.

Figure 4: Creating a short path into the core under S.

We will show that P(S) = o(1). First consider, without loss of generality,

the set S+
h (u). The probability that this set is empty is o(1). Indeed, let

NS+
h (u) be the number of vertices that appear into this sector. Then

E
[
NS+

h (u)

]
= N

cosh(α(R− log logR))− 1

cosh(αR)− 1

1

2π
ν
ζε logR

N
≈ log1−αR→∞.

The distribution of NS+
h (u) is binomial and the application of a standard

Chernoff bound implies that P
[
NS+

h (u) = 0
]

= o(1).

If S+
h (u) is not empty and none of its vertices is the beginning of a

(δ − ζ2)- exploding path, then the vertex with lowest type in S+
h (u) does

not have a (δ− ζ2)-exploding path starting at it as well. We call this vertex

the first vertex in S+
h (u).

Claim 3.7. The probability that the first vertex in S+
h (u) does not have a

(δ − ζ2)-exploding path starting at it is o(1).
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Proof of Claim 3.7. Conditional on having at least one vertex in S+
h (u), let

u′ be the first vertex (with probability 1 there will be exactly one such

vertex) which we expose and assume that the area in S+
h (u) that consists

of points with type greater than tu′ has not been exposed. Let us switch

temporarily to PX,U (N ;α, ν), where X = {u, u′} and U the subset of S+
h (u)

below u′. Then taking ζ to be ζ2 in Lemma 3.4, we deduce that there is a

(δ − ζ2)-exploding path starting at u′ with probability 1 − o(1) uniformly

over tu′ ≥ log logR. This lemma can be applied as the area above u′ has

not been exposed in the corresponding Poisson process and the proof of

Lemma 3.4 deals only only with that area. The result transfers to G(N ;α, ν)

(conditional on U being empty and on the realisations of u and u′), through

Lemma 2.1, due to the fact that this property is non-decreasing.

Then, since the probability that S+
h (u) is empty is o(1), the union bound

implies that P
[
S
]

= o(1).

We will show that P [ EN (τ, ζ) ∩ AN ∩ S ] = 0. Observe that any vertex

which belongs to S+
h (u)∪ S−h (u) (or to S+

h (v)∪ S−h (v), respectively) will be

adjacent to a vertex in Pmin(u) (Pmin(v), resp.). Indeed, if Pmin(u) contains

a vertex in S+
h (u) ∪ S−h (u), then this must be adjacent to any other vertex

in S+
h (u) ∪ S−h (u). This is the case as S+

h (u) ∪ S−h (u) ⊆ T−ε (u′) for any

u′ ∈ S+
h (u) ∪ S−h (u), provided that ζ < 1. To see this, note that any two

points in S+
h (u) ∪ S−h (u) have relative angle at most 2ζε

ν
N . However, for

any point in S+
h (u) ∪ S−h (u), its inner tube consists of all points of relative

angle at most 2(1− ε)νelog logR

N from it. Thus, if ζε < 1− ε (that is, ζ < 1),

then the containment follows. In this case, some vertex of Pmin(u) will be

connected to the first vertex in S+
h (u) ∪ S−h (u).

Suppose now that all vertices of Pmin(u) do not belong to S+
h (u)∪S−h (u).

Let u+, u− be vertices in S+
h (u) and S−h (u) respectively, which are the start-

ing vertices of (δ − ζ2)-exploding paths Pu+ and Pu− . There are two con-

secutive vertices in Pmin(u) say u′, u′′ such that either ϑu′′,u+ > 0 > ϑu′,u+

or ϑu′′,u− > 0 > ϑu′,u− . Thus, either u+ or u− has type larger than tu′ or

tu′′ and therefore by Fact 2.3 either u+ or u− is adjacent to at least one of

u′ or u′′. The length of any exploding path is at most logR/ log(1 + δ− ζ2).

Thus, |Pu+ |, |Pu− | ≤ logR/ log(1+δ−ζ2). The following bounds the length

of Pmin(u), Pmin(v):

Claim 3.8. Both Pmin(u) and Pmin(v) have length at most ζ2 logR.
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Proof of Claim 3.8. Consider Pmin(u) (the proof for Pmin(v) is identical).

Since Pmin(u) is part of a minimal path, it follows that if we take the set

of vertices of Pmin that are at even distance from u, then there cannot be

an edge between any two of them, for this would contradict the minimality

of Pmin. Let P emin(u) be this set of vertices. For any vertex u′ ∈ P emin(u)

consider the sector T (u′) := {p ∈ DR : θu′,p < (1− ε) νN }. There cannot be

distinct u′, u′′ ∈ P emin(u) such that T (u′) ∩ T (u′′) 6= ∅. If this were the case,

then their relative angle would be at most 2(1−ε) νN and by Lemma 2.4 they

would be adjacent. But there are at most ν ζε logR
N /

(
2(1− ε) νN

)
= ζ2

2 logR

such sectors inside the sector of angle ν ζε logR
N in the anti-clockwise direction

from u. Thus |P emin(u)| ≤ ζ2

2 logR, whereby the length of Pmin is at most

ζ2 logR.

Thus

dG(u, v) ≤ |Pmin(u)|+ |Pu+ |+ 1 + |Pu− |+ |Pmin(v)|

≤ 2

(
1

log(1 + δ − ζ2)
+ ζ2 + o(1)

)
logR

Hence, there exists a ζ such that for all N large enough 1
log(1+δ−ζ2)

+ ζ2 +

o(1) < τ + ζ. This implies that EN (τ, ζ) is not realised.

Remark 3.9. If we replace the angles that determine the domains S+
h and

S−h by a quantity that is proportional to R
1

1−α /N and the lower bound on the

type by 1
2(1−α) logR, then the probabilities that appear above become o(N−2).

Thus, the analogous of the above bound on dG(u, v) holds for all pairs of ver-

tices, and implies that the diameter is proportional to R
1

1−α a.a.s. This up-

per bound is worse than the one obtained in [Friedrich and Krohmer, 2015].

4 Proof of Theorem 1.1: lower bound

For given vertices u, v ∈ VN , let Lζ,N (u, v) be the event that dG(u, v) <

(2τ − ζ) logR =: L, for some ζ > 0. Assume that u and v are peripheral

vertices, that is, tu, tv < log logR - by Lemma 2.5 this event occurs with

probability 1 − o(1). Let Tu,v denote this event. By Lemma 2.4, for any

T ≤ R/2− 2 log logR, if u and v are connected through a path of length at

24



most L where the intermediate vertices have type at most T , then

θu,v ≤ 4ν
eT

N
L ≤ 4ν

eR/2

N

L

log2R
= 4

L

log2R
.

Conditional on Tu,v, the probability of this event is O(L/ log2R) = o(1).

Now, if there is a path of length at most L that joins u to v that contains

an intermediate vertex of type at least R/2−2 log logR, then there must be

a path of length at most L/2 either from u or from v to this vertex. Denote

by dG(u,XCore) the graph distance of the vertex u to the extended core,

that is to the set of vertices of type at least R/2− log logR. The following

lemma proves that almost all vertices are, in some sense, far away from

vertices this type, immediately proving the lower bound.

Lemma 4.1. Assume that tu ≤ log logR. For ζ > 0, we have

P(dG(u,XCore) ≤ (τ − ζ1/2) logR) = o(1).

We appeal to Lemma 2.1 for the event {dG(u,XCore) ≤ (τ−ζ1/2) logR}.
Clearly, this is a non-decreasing event in the sense that is used in that

lemma. So, it suffices to prove Lemma 4.1 in the P{u},∅(N ;α, ν) space.

To prove this statement, we keep track of the highest type in the neigh-

bourhood of the vertex u. Let N (0)(u) = {u}, θ(0)
r = θ

(0)
` = 0. For i ≥ 0,

define N (i)(u) as the neighbours of vertices in N (i−1)(u) that are in clock-

wise direction of u and have relative angle greater than θ
(i−1)
` with u or that

are in anticlockwise direction of u and have relative angle with u greater

than θ
(i−1)
r . Define θ

(i)
r as the maximum relative angle between u and any

vertex in N (i)(u) that is in anticlockwise direction of u, setting it to θ
(i−1)
r

if there is no such vertex. Similarly, define θ
(i)
` as the maximum relative

angle between u and any vertex in N (i)(u) that is in clockwise direction of

u, setting it to θ
(i−1)
` if there is no such vertex. This is the simultaneous

breadth exploration process that will be defined in more detail in the next

section.

Note that any vertex in N (i)(u) has graph distance i to u, but not every

vertex of distance i is in N (i)(u). However, we claim that the process cannot

leave a vertex that has type larger than the maximum type of any vertex

in Ni(u) :=
⋃i
j=0N

(j)(u) and is undiscovered within the sectors that have

been exposed. For the sake of contradiction, assume that v is a vertex whose

type is larger than the types of all vertices discovered in Ni(u), but its angle
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with u satisfies θ
(k−1)
r < ϑu,v ≤ θ

(k)
r , for some 1 ≤ k ≤ i. Then there are

two vertices vk−1 ∈ N (k−1)(u) and vk ∈ N (k) such that v is between them;

that is, ϑv,vk−1
< 0 ≤ ϑv,vk . Applying Fact 2.3 with vk−1, v, vk playing the

role of z, y, w implies that v is adjacent to vk−1 and therefore should have

been discovered and become a member of N (k)(u).

The above claim has also the following consequence. Denote by t(i−1)

the maximum type of a vertex in Ni−1(u). As every vertex in N (i−1)(u)

is further in the anticlockwise or in the clockwise direction, in terms of

relative angle from u, than all the vertices in Ni−2(u), all vertices in N (i)(u)

are either within (hyperbolic) distance R and in the clockwise direction of

the point p
(i−1)
` of type t(i−1) and of clockwise relative angle θ

(i−1)
` to u,

or within (hyperbolic) distance R and in the anticlockwise direction of the

point p
(i−1)
r of type t(i−1) and of clockwise relative angle θ

(i−1)
r to u. Thus

the highest type of a vertex in N (i)(u) is stochastically dominated from

above by the highest type among all vertices that have hyperbolic distance

at most R from a certain point of type t(i−1) (namely p
(i−1)
r or p

(i−1)
` ).

Due to this we can bound the distribution function of t(i) from below using

Fact 2.2. Let t̂(i) := (1 + δ + ζ)itu, for any integer i ≥ 0.

Claim 4.2. For i ≥ 1, assuming that t̂(i−1) < R/2−2 log logR
1+δ+ζ , we have

P(t(i) < (1+δ+ζ)t̂(i−1) | t(i−1) < t̂(i−1)) ≥ exp

(
− 2ν

(α− 1/2)π
e−(α−1/2)ζt̂(i−1)

)
.

Proof. By the assumption of the claim, if t(i−1) < t̂(i−1), then t(i−1) <

(1/(1+δ+ζ))(R/2−2 log logR) < (2α−1)R/2. Lemma 2.4 works for types t

such that t+t(i−1) < R−c0 for a given constant c0, so t < R−(1/(1+δ))R/2

will do. Recall that 1/(1 + δ) = 2α− 1, so t < R(3/2−α) is sufficient. But

3/2−α > 1/(2α), and so if we take t̂ = R/(2α)+ω(N), for some sufficiently

slowly growing function ω(N), we are able to use Lemma 2.4 for points of

type at most t̂. The first part of Corollary 2.6 implies that the expected

number of vertices of type at least t̂ in G{u},∅(N ;α, ν) is o(1).

As discussed above, the event where t(i) ≤ (1+δ+ζ)t̂(i−1) has no smaller

probability than the event that a vertex of type t̂(i−1) has no neighbour of

type at least t̂(i). Thus by Fact 2.2 and Lemma 2.4, for ε > 0 small enough
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so that (1 + 2ε)α < 1 we have

P
(
t(i) < (1 + δ + ζ)t̂(i−1) | t(i−1) < t̂(i−1)

)
≥ exp

(
−N

∫ t̂

(1+δ+ζ)t̂(i−1)

4(1 + ε)

2π
e1/2(t+t̂(i−1)−R)αe−αtdt+ o(1)

)

≥ exp

(
−2(1 + 2ε)αν

π
e
t̂(i−1)

2

∫ ∞
(1+δ+ζ)t̂(i−1)

e(1/2−α)tdt

)

≥ exp

(
−2(1 + 2ε)αν

π
e
t̂(i−1)

2
1

α− 1/2
e(1/2−α)(1+δ+ζ)t̂(i−1)

)
≥ exp

(
−2(1 + 2ε)αν

π
e
t̂(i−1)

2
1

α− 1/2
e(−1/2+(1/2−α)ζ)t̂(i−1)

)
≥ exp

(
− 2ν

(α− 1/2)π
e−(α−1/2)ζt̂(i−1)

)
,

as (α− 1/2)(1 + δ) = 1/2.

We repeatedly apply this bound to bound the distance from the core.

Assume that tu = log logR. Denote by U the event that if we explore as

above the neighbours u for every i < (τ − ζ1/2) logR we have t(i) < t̂(i).

Claim 4.3. Assume that tu = log logR. For ζ > 0 small enough (depending

on α), the event U has probability 1−o(1) and after the steps are completed

the maximum type reached is less than R/2− 2 log logR, if N is sufficiently

large.

Proof. On this event, after executing the (τ − ζ1/2) logR steps we have

reached type less than

(1 + δ + ζ)(τ−ζ1/2) logR log logR = elog(1+δ+ζ)(τ−ζ) logR log logR

≤ R(log(1+δ)+ζ)(τ−ζ1/2) log logR

= R(τ−1+ζ)(τ−ζ1/2) log logR

= R1−τ−1ζ1/2+τζ−ζ3/2 log logR = o(R/2− 2 log logR).

Moreover, we are able to apply Claim 4.2 repeatedly for this number of
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steps and deduce that U has probability

P(U) ≥
(τ−ζ1/2) logR∏

i=0

exp

(
− 2ν

(α− 1/2)π
e−(α−1/2)ζ(1+δ+ζ)i log logR

)

≥
(τ−ζ1/2) logR∏

i=0

(
1− 2ν

(α− 1/2)π
e−(α−1/2)ζ(1+δ+ζ)i log logR

)

≥ 1−
(τ−ζ1/2) logR∑

i=0

2ν

(α− 1/2)π
e−(α−1/2)ζ(1+δ+ζ)i log logR

≥ 1− 4ν

(α− 1/2)π
e−(α−1/2)ζ log logR = 1− o(1).

Proof of Lemma 4.1. Fact 2.3 implies that increasing the type of a vertex

will keep all edges intact, so any path will stay a path if we increase the

type of one of its vertices. Thus by a simple coupling argument we have that

P(d(u,XCore) ≤ d|tu) ≤ P(d(u,XCore) ≤ d|t′u) for tu ≤ t′u. We can thus

assume that tu = log logR. By Claim 4.3, a.a.s. executing (τ − ζ1/2) logR

steps yields maximum type that is less than R/2− 2 log logR, so

P(d(u,XCore) ≤ (τ − ζ1/2) logR) = o(1).

5 Proof of Theorem 1.2

Here, we consider the case where α > 1. In this case, the main result

in [Bode et al., 2015] implies that all components contain at most sublinear

number of vertices. More precisely, we show that a.a.s. all components

contain at most N1/α vertices (up to a poly-logarithmic factor). In fact,

there are many components of polynomial size (as there are many vertices

of polynomial degree which do not belong to the same component).

To prove Theorem 1.2, for any given vertex we explore a path that in

a certain sense traverses its component. We show that almost all vertices

are close to such a spanning path, which itself is short. This results in short

distances for most pairs of vertices which belong to the same component.
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Note that since α > 1, a.a.s. there are no vertices inside the disk of radius

R/2, that is, there are no core vertices in the resulting random graph.

Consider also a connected component C of the graph G embedded into

DR: for each pair of vertices which is an edge we connect the corresponding

points by the geodesic segment that joins them. Let I(C) denote the image

of the embedding inside DR equipped with a system of polar coordinates.

Let θ : I(C)→ [0, 2π) be the projection of I(C) on the θ-coordinate. Since

this mapping is continuous and I(C) is a closed set, it follows that θ(I(C))

is a closed interval. If θ(I(C)) ⊂ [0, 2π] (that is, a strict subset of [0, 2π)),

then the pre-images of the two end points must be vertices of C. We denote

them by vf (C) and v`(C) (of course, a.a.s. there are no other points in I(C)

that are mapped to the endpoints of the θ(I(C))).

Definition 5.1. For a connected component C, if the vertices vf (C) and

v`(C) exist, we call a path P = v1, . . . , v` in C a spanning path of C.

An umbrella U with root vertex v is a spanning path P of the component

of v together with a path connecting v to P . The width of the umbrella U

is the maximum among the (graph) distances of v from the two endpoints

of the associated spanning path.

Figure 5: Example of an umbrella.

Note that if v′, v′′ are two consecutive vertices of a spanning path and

a vertex u is contained in the sector of DR defined by the angle v′Ov′′ and,

moreover, tu > min{t′u, tu′′}, then by Fact 2.3 it is connected to one of them.

Also, since there is no restriction on the length of the paths, if v is on some

spanning path P , then P is an umbrella with root v.

The following follows immediately as the vertices of a component that

are to the farthest in clockwise and anticlockwise direction are always in a

spanning path:
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Corollary 5.2. If P and P ′ are spanning paths of the same component,

then P ∩ P ′ 6= ∅.

This fact allows us to do the following: Given any pair of vertices u and

v in the same component, construct a u-v-path by traversing an umbrella

Uu of u until the first vertex z that is on an umbrella Uv of v is reached.

Then uUuzUvv is a path connecting u and v. Thus the following lemma is

key to the proof of Theorem 1.2.

Lemma 5.3. Let ε > 0. For a vertex v of G(N ;α, ν), a.a.s. there is an

umbrella for v in its component that has width at most log1+ε logN .

For the proof of this lemma we define the simultaneous breadth explo-

ration process starting at a vertex v similar to the one that we introduced

in [Bode et al., 2015]. Here, we keep track of two sets of vertices V` and

Vr, which both start out as {v}. Roughly speaking, we update the two

sets adding the neighbours of the current sets that are located in the clock-

wise and anticlockwise direction from the “current” vertices, respectively. If

there are no neighbours that are farther in the clockwise direction of Vr and

no neighbours that are farther in the anticlockwise direction of V`, then the

process stops. We define the process starting at vertex v as the following

steps:

(i) Let V
(0)
` = V

(0)
r = {v} and let i := 1.

(ii) Let V
(i)
` be the set of vertices not in V

(i−1)
` ∪V (i−1)

r that are neighbours

of some vertex in V
(i−1)
` ∪ V (i−1)

r and are in the clockwise direction of

every vertex in
⋃i−1
j=0{V

(j)
` ∪ V (j)

r }. We define similarly the set V
(i)
r as

the set of vertices not in V
(i−1)
` ∪ V (i−1)

r that are neighbours of some

vertex in V
(i−1)
` ∪V (i−1)

r and are in the anticlockwise direction of every

vertex in
⋃i−1
j=0{V

(j)
` ∪ V (j)

r }.

(iii) If V
(i)
` = ∅ = V

(i)
r , then stop. Otherwise, let i := i+ 1 and go to step

(ii).

We call a repetition of steps (ii) and (iii) a round. To prove Lemma 5.3, we

show that this process yields an umbrella and bound the number of steps

needed until completion.

30



Lemma 5.4. If the simultaneous breadth exploration process starting at a

vertex v stops after k rounds, then there is an umbrella for v that has width

at most k.

Proof. Let C(v) denote the connected component that v belongs to. Let

V ′i =
⋃i
j=0{V

(j)
` ∪ V (j)

r }, that is, the set of vertices discovered up to round

i. We denote by v′` the vertex in V ′i with the largest relative angle with v

in the clockwise direction. We let θ
(i)
` be this angle and let t

(i)
` be the type

of this vertex. Similarly, let v′r be the vertex of V ′i that is the farthest in

the anticlockwise direction, and let θ
(i)
r and t

(i)
r denote its angle and type.

Note that there is an edge between some vertex v` in V ′i−1 to the vertex v′`
in V

(i)
` and also an edge between some vertex vr ∈ V ′i−1 and the vertex v′r.

We now claim that if the process stops at round k, then the vertices v̂r
and v̂` that are the farthest to the anticlockwise and clockwise direction of

C(v) belong to V ′k−1. Note that V
(k)
` = V

(k)
r = ∅, so V ′k−1 = V ′k. Assume this

is not the case, so without loss of generality v̂r /∈ V ′k−1. As v and v̂r are in the

same component, there is a path P from v to v̂r. Let w be the first vertex

on P that is outside the range of angles from θ
(k−1)
` to θ

(k−1)
r . Since v̂r is the

vertex that is farthest in the anticlockwise direction and v̂r /∈ V ′k this vertex

must exist. Let u be the predecessor of w on P . We cannot have u ∈ V ′k as

otherwise w, being farther in the clockwise or anticlockwise direction than

any other vertex in V ′k, must also be in V ′k by the choice made in step (ii).

There exists an i < k and two adjacent vertices x and y such that x has

been discovered at round i−1 and y has been discovered at round i and u is

between x and y. Now, if tu ≥ ty, then by Claim ?? (x, u, y playing the role

of w, y, z) it follows that u is adjacent to x as well. If tu < ty, then again

Claim ?? implies that y is adjacent to w. Hence, in either case w would

have been discovered by round i + 1, whereby w ∈ V (i+1)
r ∪ V i+1

` ⊆ V ′k; a

contradiction.

So both v̂` and v̂r are in V ′k. Note that every vertex in V
(i)
` ∪ V (i)

r has

a neighbour in V
(i−1)
` ∪ V (i−1)

r , so we can find a paths P` and Pr of length

at most k from v̂` to v and from v̂r to v, respectively. Together, possibly

deleting redundant subpaths in v`P`vPrvr, we have an umbrella for v of

width at most k.

We are now ready to prove Lemma 5.3

Proof of Lemma 5.3. We aim to bound the number of rounds it takes for
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the simultaneous breadth exploration process started at some vertex v to

stop. By Corollary 2.6, it would be sufficient to consider a variation of

the simultaneous breadth exploration process where we expose only those

vertices that have type at most R/(2α) + ω(N), for some slowly growing

function ω(N) → ∞. We will use the same notation for the parameters of

the process as in the unmodified process.

Let T denote the stopping time of this process. Without loss of gener-

ality, assume that V
(i)
` , V

(i)
r 6= ∅ for i = 1, . . . , T − 1. Define V ′i , θ

(i)
` and

θ
(i)
r as in the previous proof (but for the modified process). Unlike the last

proof, let t
(i)
` and t

(i)
r be the maximum types of vertices in V

(i)
` and V

(i)
r ,

respectively, and they are set to 0, if the corresponding set contains no ver-

tices. Let ti = max{t(i)` , t
(i)
r }. Let p

(i)
` be the point of type ti and angle θ

(i)
`

in the clockwise direction from v. Similarly, let p
(i)
r be the point of type ti

and angle θ
(i)
r in the anticlockwise direction from v.

Claim 5.5. We have V
(i+1)
` ⊂ T+

ε (p
(i)
` ) and V

(i+1)
r ⊂ T+

ε (p
(i)
r ).

Proof of Claim 5.5. Let p be a point that is within hyperbolic distance R

from u ∈ V (i)
` ∪V

(i)
r and satisfies ϑp,v > θ

(i)
` . Let u′ be the point of type t

(i)
` ,

which has θu,u′ = 0.

Note that ϑ
p,p

(i)
`

≤ ϑp,u. Since p ∈ T+
ε (u), we have ϑp,u ≤ 2(1 +

ε) νN e
tp+tu

2 . As tu ≤ tu′ = t
(i)
` , it follows that ϑp,u ≤ 2(1 + ε) νN e

tp+t
(i)
`

2 .

In other words, p ∈ T+
ε (p

(i)
` ). Thereby, V

(i+1)
` ⊂ T+

ε (p
(i)
` ).

The proof that V
(i+1)
r ⊂ T+

ε (p
(i)
r ) is analogous.

The above claim implies that the highest type of a vertex in V
(i+1)
` ,

which we denoted by t
(i)
` , is stochastically dominated by the highest type

among the vertices in
{
p ∈ T+

ε (p
(i)
` ) : ϑ

p,p
(i)
`

> 0, tp < R/(2α) + ω(N)
}

.

Similarly, the highest type of a vertex in V
(i+1)
r , which we denoted by

t
(i)
r is stochastically dominated by the highest type among the vertices in{
p ∈ T+

ε (p
(i)
r ) : ϑ

p,p
(i)
r
< 0, tp < R/(2α) + ω(N)

}
. Let T`(p

(i)
` ) and Tr(p

(i)
r )

denote these two sets.

Thus, ti+1 is stochastically bounded from above by the largest type in

T`(p
(i)
` ) ∪ Tr(p(i)

r ). In turn, this is stochastically bounded from above by

the maximum type of a vertex in T`(p
(i)) ∪ Tr(p(i)) for a point p(i) of type

ti = max{t(i)` , t
(i)
r }. We shall proceed with the estimation of the cdf of the

latter random variable.
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Observe first that Claim 5.5 implies that for all 0 < i ≤ T we have

V ′i ⊂
⋃i−1
j=0{T+

ε (p
(j)
` )∪T+

ε (p
(j)
r )}, assuming that p

(0)
` , p

(0)
r are both set to the

point of DR where v is located. Let Ni be the set of vertices that belong

to V ′i . For a vertex u ∈ VN \ V ′i , the distribution on DR is uniform (within

the plane of curvature −α2) on the subset of DR that excludes the union of

the balls of radius R around each vertex in V ′i . Recall that µα(·) is defined

in (2.1). By Lemma 2.4 and the above observation, the area of the latter

is at most
∑i−1

j=0 µα(T+
ε (p

(j)
` ) ∪ T+

ε (p
(j)
r )). But for each j, the angle that is

spanned by T+
ε (p

(j)
` ) ∪ T+

ε (p
(j)
r ) is proportional to eR/(2α)−R+ω(N) = o(1).

Thus, if i < R, then we have
∑i−1

j=0 µα(T+
ε (p

(j)
` ) ∪ T+

ε (p
(j)
r )) = o(µα(DR)).

Using this, we conclude that the conditional probability that a vertex

u ∈ VN \ Ni belongs to T+
ε (p(i)) and has type tu that satisfies t ≤ tu <

R/(2α) + ω(N) is at most∫ R
2α

+ω(N)

t

4(1 + ε)

2π
e
ti+t
′−R
2

α sinh(α(R− t′))
cosh(αR)(1− o(1))

dt′

≤ 2α(1 + 2ε)

π
e
ti−R

2

∫ R
2α

+ω(N)

t
et
′/2 eα(R−t′)

2 cosh(αR)(1− o(1))
dt′

≤ 2α(1 + 3ε)

π
e
ti−R

2

∫ R
2α

+ω(N)

t
e(

1
2
−α)t′dt′

=
2αν(1 + 3ε)

π

eti/2

N

∫ R
2α

+ω(N)

t
e(

1
2
−α)t′dt′ <

4αν(1 + 3ε)

π(2α− 1)

eti/2

N
e(

1
2
−α)t,

for N sufficiently large. Therefrom, the conditional probability that none

of the vertices in VN \ Ni satisfies this is at least(
1− 4αν(1 + 3ε)

π(2α− 1)

eti/2

N
e(

1
2
−α)t

)|VN\Ni|
>

(
1− 4αν(1 + 3ε)

π(2α− 1)

eti/2

N
e(

1
2
−α)t

)N
> exp

(
−Dα,ν,εe

ti
2
−(α−1/2)t

)
,

(5.1)

for some Dα,ν,ε > 0 and any N sufficiently large.

Therefore, for i < R the random variable max{t(i+1)
` , t

(i+1)
r } conditional

on the history of the process up to step i is stochastically dominated by a

random variable that follows the Gumbel distribution. The expectation of
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the latter is
ti + 2 ln(2Dα,ν,ε)

2α− 1
+

2γ

2α− 1
,

where γ is Euler’s constant. Therefore, the following inequality holds:

E [ ti+1|Fi ] ≤ ti + 2 ln(2Dα,ν,ε)

2α− 1
+

2γ

2α− 1
,

where Fi denotes the sub-σ-algebra generated by the process up to step i.

There exists a constant Uα,ν,ε > 0 such that when ti > Uα,ν,ε, we have

E [ ti+1|Fi ] ≤ ti + 2 ln(2Dα,ν,ε)

2α− 1
+

2γ

2α− 1
<

α

2α− 1
ti =: λαti < ti. (5.2)

On the other hand, (5.1) implies that if ti ≤ Uα,ν,ε, then

P(ti+1 = 0) ≥ p > 0, (5.3)

for some positive constant p.

With these tools, we can bound the stopping time T of the process.

Let [T
(s)
1 , T

(s)
2 ∧ R] denote the sth interval of indices in which the process

stays above Uα,ν,ε. By (5.2), for T
(s)
1 < i ≤ T

(s)
2 ∧ R the process (ti) is a

supermartingale with decay rate at most λα.

Claim 5.6. For any ε′ > 0

P((T
(s)
2 ∧R)− T (s)

1 ≥ log1+ε′

1/λα
R) = o(1).

Proof of Claim 5.6. Let S := log1+ε′

1/λα
R and let T (s) := T

(s)
2 ∧R. Note that

E
[
ti∧T (s) | F

T
(s)
1

]
≤ λ

i∧T (s)−T (s)
1

α t
T

(s)
1

≤ λ
i∧T (s)−T (s)

1
α R. Let A be the event

{T (s) > S + T
(s)
1 }. If ω ∈ A, then λ

(S+T
(s)
1 (ω))∧T (s)(ω)−T (s)

1
α t

T
(s)
1

(ω) < λSαR =

o(1). By the definition of the conditional expectation, we deduce that

E
[
t
(S+T

(s)
1 )∧T (s)1A

]
= o(1) and since E

[
t
(S+T

(s)
1 )∧T (s)1A

]
> Uα,ν,εP(A),

we finally deduce that P(A) = o(1).

Now, the length of the (discrete) interval (T
(s)
2 , T

(s+1)
1 ∧T ∧R) is stochas-

tically bounded from above by a geometric random variable that has pa-

rameter at least p.

We call the union of these intervals an epoch, that is, we call an epoch
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the interval [T
(s)
1 , T

(s+1)
1 ∧ T ∧ R), for some s > 0. By the above claim, for

any ε′ > 0, with probability 1− o(1), we have (T
(s)
2 ∧R)−T (s)

1 ≤ log1+ε′

1/λα
R.

Additionally, the stochastic upper bound on the interval (T
(s)
2 , T

(s+1)
1 ) im-

plies that this is at most logε
′

1/λα
R with probability 1 − o(1). Hence, with

probability 1 − o(1) an epoch lasts for at most log1+2ε′

1/λα
R steps. Finally,

since every epoch has probability at least p to be the final one, it follows

that the process hits 0 within log1+3ε′

1/λα
R steps with probability 1− o(1). In

other words, a.a.s. we have T ≤ log1+3ε′

1/λα
R.

Using the previous lemmas we prove Theorem 1.2.

Proof of Theorem 1.2. Let 0 < ε′ < ε. Let V ′ be the set of vertices

in G(N ;α, ν) that have an umbrella of width at most log1+ε′ logN . By

Lemma 5.3 we have |V ′| = (1 − o(1))N a.a.s. For any u, v ∈ V ′, if they

are in the same component, by Corollary 5.2 the umbrellas are not disjoint.

Thus there is a u-v-path of length at most |Uu| + |Uv| ≤ 2 log1+ε′ logN <

log1+ε logN for N large enough.
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