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Abstract—This paper presents a reliability model of a Static 

Var Compensator (SVC) using an innovative algorithm based 

on sequential Monte Carlo simulation and Markov chains. The 

method employs the equivalent circuit of a SVC and takes the 

failure rate and repair time of each component as input in order 

to compute the failure rate and repair time of the whole SVC 

system. The specific contribution of this investigation is that it 

presents a mathematical pathway to model operating conditions 

of a SVC subject to individual operating states of its 

components, resulting in a comprehensive reliability model. 

Keywords— failure rate; Markov Chain; Monte Carlo 

simulation; reliability model; repair time; static var compensator 

I.  INTRODUCTION 

The Static Var Compensators (SVCs) are employed very 
often in power systems, due to its versatile and dynamic 
responses at the need of reactive power demand. Several 
studies related to its optimal operation and control have been 
proposed [1-3]. Nevertheless, its reliability is in fact not so far 
explored. Hence, there is a need to develop a model that 
characterizes its operational states. 

The power systems possess different components and each 
of these are susceptible to failures. Some are more severe than 
others, for instance, lines have higher probabilities of failure 
than transformers as presented in the IEEE gold book [4]. This 
is defined by the component’s failure rate (𝜆) and repair time 
(𝑟). 

The determination of the 𝜆 and 𝑟 values for a system is not 
an easy task, since they required periodic operational records. 
These operational data can be transformed into statistical 
analysis in order to estimate 𝜆 and 𝑟 values. Reference [5] 
presents an approach to evaluate the failure rate of a power 
transformer based on inspections. Reference [6] propose a 
methodology to calculate wind dependent failure rates for 
overhead transmission lines using reanalysis data records and 
a Bayesian updating scheme. Reference [7] employs a grey 
linear regression model with recorded operational data in 
order determine and predict the value of the failure rate of 
substation equipment. In the published literature, there is no 
comprehensive information related to 𝜆 and 𝑟 values of a 
SVC, however, there are operational records of its 
components. 

 

 This paper proposes a new sequential Monte Carlo (MC) 
simulation that in combination with the Markov Chain, allows 
estimating the operational and failure states of a SVC. The 
paper has been organized as follows. Section II presents an 
extensive literature review related to the failure rates and 
repair hours of each component of the main circuit of a SVC. 
In section III, the theory related to the reliability models is 
presented. Section IV introduces the Markov chain as a 
pathway to develop a reliability model. Section V presents an 
advanced algorithm for a MC simulation applied to repairable 
components. In Section VI, the theories manifested in section 
III, IV and V are applied to develop the SVC main circuit 
reliability model. Finally, Section VII brings the conclusion 
based on the obtained results and the applied approach. 

II. OPERATIONAL RECORDS OF THE COMPONENTS OF A 

STATIC VAR COMPENSATOR 

 The SVC has several functions such as control gain 
change, phase angle regulator, voltage support, power factor 
correction, loss reduction and more [8]. A SVC primarily has 
three systems: 1) Main circuit. 2) Auxiliary power supply; 3) 
Control and protection. This research focuses on the Main 
circuit which consists of thyristor controlled (TCR) and 
thyristor switched branches (TSC/TSR) together with filter 
branches for harmonic current absorption, medium voltage 
switchgear and the step down transformer. Fig. 1 shows a 
schematic diagram of the main circuit of a SVC. 

 In a reliability context, the more elements involved in a 
system the less reliability may get. Hence, applying this 
criterion to the SVC main circuit due to the number of 
components involved, the contribution of forced outages may 
be high. Nevertheless, these have lower failure rates. 
Moreover, the auxiliary power supply and the control and 
protection system contributes to failures more than the SVC 
main circuit, as presented in [9]. 

 With a view to increasing the reliability in the system, the 
design for an SVC is presented in [10]. Furthermore, in [11] 
the authors state that a value for failure and repair rate of a 
SVC. Nevertheless, the reliability is limited to the TCR and 
TSC avoiding other elements that composite the main circuit 
of the SVC such as the harmonic filters, medium voltage 
switchgear and the step down transformer. A detailed 
description of the SVC main circuit is given below. 



 
Fig. 1 Main Circuit SVC. 

A. Thyristor Controlled Reactor 

The composition of a TCR is basically, reactors with 
thyristor valves connected in series, as shown in Fig. 1. The 
failure rate for a reactor depends on their operating voltage. 
For instance, [12] reports a failure rate (failure/year) of 2 ×
10−6, for low voltage level. The TCR can operate with a 
medium voltage and for the case of forced outages with a 
reactor of this feature, [13] reports 0.0344 failures per year and 
repair time of 627.8 hours.  For the thyristor valves, the 
authors in [14] reported between 0.00283 and 0.07299 failures 
per year. On the other hand, a repair time of 6.10 hours was 
reported in [15]. 

B. Thyristor Switched Capacitor 

Unlike the TCR, the TSC includes capacitor banks as 
shown in Fig. 1 the failure rate for capacitors as the reactors 
depends on their operating voltage. In [16] states that 
distribution capacitor bank (medium voltage) has 0.17443 
failures per year and a repair time of 2.30 hours. However, the 
values reported in [4, 13] for a shunt capacitor bank that works 
up to 109 kV is 0.0037 failures per year and 251.2 repair 
hours. 

C. Harmonics Filters 

They are generally divided into two parallel banks in Y-Y 
connection with ungrounded neutrals tied together with 
internal fuses that protect the capacitor units and for the 
cooling system, it uses fans [17]. The data recorded in [12, 18] 
is 0.0438 failures per year and a repair time of 0.25 hours [18] 
for damages related to the capacitor and fans. There is no 
comprehensive information about the repair time for forced 
outages, nevertheless repair time can be varied from three to 
seven hours, based on the experiences reported by personal of 
PSEG [19]. 

D. Medium Voltage Switchgear 

Their reliability depends on their location (indoor or 
outdoor); voltage level; and equipment sub-class, which can 
be insulated or bare. When switchgear is connected to a SVC, 
it is insulated due to the high voltage level of the switchgear 
and it is commonly placed indoor. IEEE gold book [4] and the 
Power Systems Reliability Subcommittee [20] reported that 
these switch gears have a  0.0017 failures per year and a 26.8 
hours of repair time. 

E. Step-down Transformer 

From a data collection between 1960 and 1980, of 32 

utilities from Germany, Austria, Swiss, France, United 

Kingdom, Spain, Denmark and Netherlands, it was reported 

that an average of 0.005 failure per years for transformer up 

to 500 kV [21] with a repair time between 173.2 and 308.9 

hours [13, 22].  

All the other components of a SVC follow an exponential 

distribution [4, 13]. However, the distribution of the 

transformer is different because it follows a two-parameter 

Weibull distribution [23]. Hence, the parameters needed to 

develop the reliability model are the shape parameter 𝛽 and 

the scale parameter 𝜂. The authors in [24] presents a study, 

which shows the distribution function and from there the 

values can be calculated using 𝛽 = 2.8076 and 𝜂 = 55.14 for 

sub-transmission transformers (63/20 kV). On the other hand, 

a detailed reliability model for power transformers was 

proposed in [25, 26] and reported the values of 𝛽 = 5 and 

50 ≤ 𝜂 ≤ 80. Reference [26] states that changing the value 𝜂 

does not affect the shape of the function of the instantaneous 

failure rate versus age, hence 𝛽 is the predominant parameter 

in the distribution function. 

III. RELIABILITY MODEL 

The reliability model is based on operational records. This 
means, that when a failure occurs, all data related with it is 
recorded and then some analyses are done in order to get: 1. 
reliability index; 2. probabilistic models. Based on these, 
some preventive measure can be taken into account. Even a 
past behavior of a component can be gotten from a 
probabilistic model. In addition, a historical evaluation can be 
done with a reliability index. Hence, operational records allow 
performing reliability analysis with a view to finding the 
operational state for components in the past or future. An 
illustrative explanation is given in Fig. 2. 

 Most of the probabilistic models focus on determining the 
reliability, maintainability and availability function of a 
system. The reliability 𝑅(𝑡) is the probability of a system 
performing its intended function under stated conditions 
without failure for a given period of time. If the time to failure 
is defined by 𝑇, then the reliability can be mathematically 
expressed as [27]:  

𝑅(𝑡) = 𝑃(𝑡 > 𝑇);   𝑡 ≥ 0 (1) 

 

 

Fig. 2 Reliability models based on time 𝒕. 



Using the probability density function 𝑓(𝑡) (time to 

failure), the reliability can written as [27]: 

𝑅(𝑡) = ∫ 𝑓(𝑡)
∞

𝑇

𝑑𝑡 (2) 

 On the other hand, maintainability 𝑀(𝑡) is the probability 
of performing a successful repair action within a given time 𝜏. 
Mathematically can be expressed as follows: 

𝑀(𝑡) = 𝑃(0 < 𝑡 < 𝜏) (3) 

 The maintainability in terms of the renewal density 
function 𝑔(𝑡) (repair time) can be written as [27]: 

𝑀(𝑡) = ∫ 𝑔(𝑡)
𝜏

0

𝑑𝑡 (4) 

 The combination of high reliability and high 
maintainability lead to high system availability. The term 
availability is typically measured as a factor of reliability. The 
availability is very similar to the reliability function in that it 
gives a probability that a system will function at the given 
time, 𝑡. Unlike reliability, however, the instantaneous 
availability measure incorporates maintainability information. 
At a given time, 𝑡, the system will be operational if one of the 
following conditions is met [28]:     1. The system functioned 
properly from 0 to 𝑡. This means the probability of the event 
happening is 𝑅(𝑡); 2. The system was working properly since 
the last repair at time 𝑢, such that 0 < 𝑢 < 𝜏. The probability 

of this condition is defined as ∫ 𝑅(𝜏 − 𝑢) 𝑔(𝑢) 𝑑𝑢
𝜏

0
. 

Consequently, the availability can be expressed as: 

𝐴(𝑡) = 𝑅(𝑡) + ∫ 𝑅(𝑡 − 𝑢) 𝑔(𝑢) 𝑑𝑢
𝑡

0

 (5) 

IV. MARKOV CHAIN 

 The reliability models of some components are not easy to 
deal with, since the mathematical models may be complex to 
solve. Nevertheless, a simple way to model is by applying 
Markov chain, which is a representation of all possible states 
in a diagram connected between them by variables called 
transition rates given by the failure rate 𝜆(𝑡) and the repair 
rate 𝜇(𝑡)  (the repair rate is defined as the inverse of the repair 
time 𝑟(𝑡)). For instance, Fig. 3 shows a transition state of a 
repairable component with two possible states: operational 
and failure. 

 With a view to representing the model, consider a time 
interval 𝛥𝑡, which is very small in such a way that the 
occurrence probability of more than one fault or repair is very 
small and therefore the occurrence of these events can be 
neglected. Then: 

Probability of a failure in time 𝑡 = probability of a failure in 
time (𝑡 + Δ𝑡) = 𝜆(𝑡)Δ𝑡 

Probability of a repair in time 𝑡 = probability of a repair in 
time (𝑡 + Δ𝑡) = 𝜇(𝑡)Δ𝑡 

The probability of being in the operational state after a 
time interval Δ𝑡 is equal to the probability of being operative 

 

Fig. 3 Operational states. 

 

At time 𝑡 and not having failed in Δ𝑡 plus the probability of 
being failed at time 𝑡 and having been repaired in Δ𝑡: 

𝑃1(𝑡 + Δ𝑡) = 𝑃1(𝑡)[1 − 𝜆(𝑡)Δ𝑡] + 𝑃2[𝜇(𝑡)Δ𝑡] (6) 

On the other hand, the probability of being in the repair 
state (failed) after a time interval Δ𝑡 is equal to the probability 
of being failed in 𝑡 and not having been repaired in Δ𝑡 plus the 
probability of being non-failed in 𝑡 and having failed in Δ𝑡: 

𝑃2(𝑡 + 𝛥𝑡) = 𝑃2(𝑡)[1 − 𝜇(𝑡)𝛥𝑡] + 𝑃1(𝑡)[𝜆(𝑡)𝛥𝑡] (7) 

Solving (6): 

𝑃1(𝑡 + Δ𝑡) = 𝑃1(𝑡) − 𝜆(𝑡)𝑃1(𝑡)Δ𝑡 + 𝜇(𝑡)Δ𝑡  

𝑃1(𝑡 + Δ𝑡) − 𝑃1(𝑡)

Δ𝑡
|

Δ𝑡→0

= −𝜆(𝑡)𝑃1(𝑡) + 𝜇(𝑡)𝑃2(𝑡)  

𝑑𝑃1(𝑡)

𝑑𝑡
= −𝜆(𝑡)𝑃1(𝑡) + 𝜇(𝑡)𝑃2(𝑡) (8) 

Solving (7): 

𝑃2(𝑡 + Δ𝑡) = 𝑃2(𝑡) − 𝜇𝑃2(𝑡)Δ𝑡 + 𝜆𝑃1(𝑡)Δ𝑡  

𝑃2(𝑡 + Δ𝑡) − 𝑃2(𝑡)

Δ𝑡
|

Δ𝑡→0

= 𝜆(𝑡)𝑃1(𝑡) − 𝜇(𝑡)𝑃2(𝑡)  

𝑑𝑃2(𝑡)

𝑑𝑡
= 𝜆(𝑡)𝑃1(𝑡) − 𝜇(𝑡)𝑃2(𝑡) (9) 

Expressing (8) and (9) in matrix form: 

(

𝑑𝑃1(𝑡)

𝑑𝑡
𝑑𝑃2(𝑡)

𝑑𝑡

) = (
−𝜆(𝑡) 𝜇(𝑡)

𝜆(𝑡) −𝜇(𝑡)
) (

𝑃1(𝑡)

𝑃2(𝑡)
) (10) 

where 𝑃(𝑡)̇  is the time derivatives vector of the probabilities 

of each of the states, 𝑃(𝑡)̅̅ ̅̅ ̅̅  the probabilities vector of each of 
the states and 𝐻 the stochastic matrix of transition states. 
Then, (10) can be written as: 

𝑃(𝑡)̇ = 𝐻 𝑃(𝑡)̅̅ ̅̅ ̅̅  (11) 

 Applying Laplace transform: 

𝑠𝑃(𝑠)̅̅ ̅̅ ̅̅ − 𝑃(0)̅̅ ̅̅ ̅̅ = 𝐻 𝑃(𝑠)̅̅ ̅̅ ̅̅  (12) 

𝑃(𝑠)̅̅ ̅̅ ̅̅ =
𝑃(0)̅̅ ̅̅ ̅̅

𝑠 − 𝐻
 

(13) 

 Applying inverse Laplace transform: 

𝑃(𝑡)̅̅ ̅̅ ̅̅ = 𝑃(0)̅̅ ̅̅ ̅̅ 𝑒𝐻𝑡 (14) 



 The solution for the system still being complicated due the 
exponential matrix involved. To simplify the solution, the 
Putzer’s spectral formula is applied [29], in which  the term 
𝑒−𝐻𝑡 can be expressed as a function of the eigenvalues 𝜐𝑖 and 
eigenvectors 𝜐�̅� of the stochastic matrix of transition states 𝐻, 
as follows: 

𝑒𝐻𝑡 = ∑ 𝜐𝑖 ̅̅ ̅𝑒𝜐𝑖𝑡

𝑛

𝑖=1

 (15) 

 Replacing (15) in (14) and knowing that the 𝑃(0)̅̅ ̅̅ ̅̅  will 
bring a constant 𝐶𝑖 for each term of the sum, the general 
solution for the Markov chain is given by: 

𝑃(𝑡)̅̅ ̅̅ ̅̅ = ∑ 𝐶𝑖 𝜐𝑖 ̅̅ ̅𝑒𝜐𝑖𝑡

𝑛

𝑖=1

 (16) 

 Finally, the availability of the system can be calculated as 
the probability of all states that are in the set of operational 
states of the system defined in 𝜑. 

   k

k

A t P t


  (17) 

V. MONTE CARLO SIMULATION 

Monte Carlo method is a broad class of a computational 
algorithm that relies on repeated random sampling to obtain 
numerical results [30, 31].  The method allows to: (1) obtain a 
solution of complicated or impossible mathematical models; 
(2) develop experiments that are not possible to do it directly 
due time involved, which can be very long; (3) get 
observations (data) of a random variable or process.  

Sometimes it is not possible to get the reliability function 
of a system by employing analytical methods. This is due to 
the mathematical complexity involved as presented in section 
III. However, by employing MC simulation, the solution can 
be gotten. 

In order to estimate the failure and repair rate of a system, 
an improved MC simulation architecture is employed. It uses 
the reliability parameters of each component as input data. 
The algorithm is divided into two parts, one to get the 
reliability function and the other to obtain the maintainability 
function of the system. The random number generation is 
done based on the failure rate and repair rate of each 
independent component. When all components are operating, 
the reliability is considered to be one, otherwise is zero. For 
the case of maintainability, it is considered as a success only 
if the generated number (time to repair) of all components, is 
less than the maximum time for restoration. Then, the values 
are saved and the experiment is repeated several times for each 
time slot defined. Finally, the mean value of the reliability and 
maintainability for each hour is gotten. For more details about 
the process, Fig. 4 presents the complete algorithm.  

The developed algorithm has the pathways to scale down 
a complex problem to a manageable level with the aim of 
reducing the processing time and mathematical burden in 
comparison with the conventional MC simulation. 

 

Fig. 4 Advanced Monte Carlo simulation algorithm for reparaible 

components 

 

VI. STATIC VAR COMPENSATOR RELIABILITY MODEL 

 The SVC that is used to incorporate in this study has the 
features shown in TABLE I. 

 

TABLE I.  DATA FOR SVC RELIABILITY ASSESMENT 

 𝜆 [failure per year] 𝑟 [repair hours] 

Reactor air core 0.0344 628.1 

Thyristor valve 0.0050 6.10 

Capacitor bank 0.0037 251.2 

Harmonic filters 0.0438 7.00 

Switchgear 0.0017 26.8 

Step down transformer 0.0050 200 

   
 𝜂 [year] 𝛽 

Step down transformer 0.0344 5 



A. SVC Reliability parameters 

There is no data recorded about the 𝜆 and 𝜇 values for the 
TCR and TSC, hence they are to be estimated. MC simulation 
is applied by following the algorithm shown in Fig. 4. The 
input data for the simulation are the recorded data of the 
capacitor, reactor and thyristor valve of TABLE I. The results 
are shown in TABLE II.   

TABLE II.  TCR AND TSC RELIABILITY PARAMETERS 

  TCR TSC 

𝜆  
[failure per year] 

0.0599 0.0361 

𝑟 
[hours repair] 

833.33 662.25 

  

 Now, combining all components of the SVC main circuit 
and employing again the developed MC algorithm, the 
reliability parameters of the SVC are gotten. This is presented 
in TABLE III. 

TABLE III.  SVC RELIABILITY PARAMETERS 

 𝜆  
[failure per year] 

𝑟  
[hours repair] 

𝜇  
[repair per year] 

SVC 0.0906 1802 4.861 

 

 Finally, the algorithm allows describing the reliability of 
the SVC as a function of time. This is shown in Fig. 5. 

B. SVC Operational States 

 The results in Fig. 5 reveal that the SVC reliability model 
follows an exponential distribution function, then the failure 
rate (𝜆) and repair rate (𝜇) becomes time-independent 
variables.  

 Now, the stochastic matrix of transition states is as 
follows: 

𝐻 = (
−𝜆 𝜇
𝜆 −𝜇

) (18) 

 Later, the eigenvalues and eigenvectors are as follows 
respectively: 

𝜐1 = 0; 𝜐2 = −𝜆 − 𝜇 (19) 

𝜐1 ̅̅̅̅ = (
𝜇/𝜆

1
) ; 𝜐1 ̅̅̅̅ = (

−1
1

) ;  (20) 

 Knowing that at 𝑡 = 0 the component is in operational 
state (𝑃1|𝑡=0 = 1; 𝑃2|𝑡=0 = 0), then (16) can written as:  

(
1
0

) = 𝐶1 (
𝜇/𝜆

1
) 𝑒(0) (0) + 𝐶2 (

−1
1

) 𝑒(−𝜆−𝜇) (0) (21) 

 Solving for 𝐶1 and 𝐶2: 

𝐶1 =
𝜆

𝜇 + 𝜆
;  𝐶2 = −

𝜆

𝜇 + 𝜆
 (22) 

 Finally, the solution of a Markov chain for a repairable 
component that follows an exponential distribution function 
with two operational states is: 

 

Fig. 5 Relibility function for a SVC 

 

𝑃1(𝑡) =
𝜇

𝜇 + 𝜆
+

𝜆

𝜆 + 𝜇
𝑒−(𝜆+𝜇)𝑡 (23) 

𝑃2(𝑡) =
𝜆

𝜇 + 𝜆
−

𝜆

𝜆 + 𝜇
𝑒−(𝜆+𝜇)𝑡 

(24) 

 Replacing 𝜆 and 𝜇 values given in TABLE III, the 
probabilities of operational and failure state for a SVC is 
respectively: 

𝑃1(𝑡) = 0.9817 + 0.0183𝑒−4.9096𝑡 (25) 

𝑃2(𝑡) = 0.0183 − 0.0183𝑒−4.9096𝑡 (26) 

 

The state “1” defines the availability of the SVC, while 

the state “2” defines its unavailability. 

 

VII. CONCLUSIONS 

 This paper proposes a systematic methodology for 
modelling and quantification of the reliability for a SVC. The 
advanced MC simulation proposed in this paper allows 
determining the reliability parameters of a SVC system based 
on the operational records of components that are integrated 
into the SVC.  

 A general solution for Markov chains is presented and 
employed to describe the availability and unavailability of a 
SVC. The methodology can also be extended to the other 
FACTS devices. 

 The proposed approach presents a technical pathway for 
assessing the reliability performance of a SVC integrated in a 
power grid.  
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