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Highlights 

 

• The fluid mechanics of incompressible turbulent boundary layers air flow over a flat plate 

is investigated. 

• Thin-Oil-film technique is used to determine skin friction of the plate. 

• Reynolds averaged Navier-Stokes equations are normalized by appropriate similarity 

transformations. 

• Variational Iteration Method (VIM) was applied for finding the analytical solution. 

• New correlations for skin friction coefficient and boundary layer thickness of turbulent 

flow over flat plate are proposed. 
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Abstract 

The fluid mechanics of incompressible turbulent boundary layers air flow over a flat plate is 

investigated using an open-ended suction wind tunnel.  The wall shear stress is measured by a 

distinct method using Thin-Oil-film technique in order to determine skin friction of the plate. On 

theoretical side, the governing partial differential equations are transformed to an ordinary 

differential equation with inconsistent coefficients using similarity variables and they are solved 

by variational iteration method. The distribution of the velocity, friction coefficient and thickness 

of the boundary layer are obtained analytically and experimentally, and compared with the 

previously reported results, where good agreements are observed. New correlations for skin 

friction coefficient and boundary layer thickness of turbulent flow over flat plate are proposed. 

Keywords: Turbulent flow; Boundary layer; Skin friction; Wind tunnel; Thin-oil-film technique; 

Variational Iteration Method (VIM) 

 

1. Introduction 

In spite of the many endeavours and experimental works undertaken in the past several years, the 

effect of turbulent boundary layers flow on the aerodynamics forces is still not fully understood. 

The air flow on turbulent boundary layers is highly important for various engineering 

applications such as aerodynamics and design of building and structures, and also concerned 
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with the dispersion of natural ventilation and heat transfer between the ground surface and the 

atmosphere. There are some improved relations for certain situations and mathematical models, 

for example implemented in computational methods in literature. However, there is not as much 

research done on the manipulation of the boundary layer since the 'discovery' of the boundary 

layer. This can be of interest for studies on efficiency or drag of wings of aircrafts or blades of 

wind turbines. 

In the past few years, different experiments have been carried out by many researchers for 

measuring skin friction and drag force in wind tunnels to grasp the various aerodynamic effects 

in real environment. Maruyama [1] used a floating element in the water bath. The floating 

element used in his experiment was not connected to the floor of the wind tunnel. Latter, 

Mochizuki et al [2] installed a floating element to a mechanical device in the wind tunnel to 

direct measurement of the wall shear stress. Gillies et al [3] measured drag force on individual 

obstacles on a load cell. They used the shear stress partitioning model for predicting the amount 

of surface shear stress, given knowledge of the stated input parameters for the patches of 

roughness in their experiment. Cheng et al [4] conducted the experiment using an oil bath with a 

raft. They found surface shear stress about 25% greater than the measured Reynolds shear stress 

in the inertial sub-layer over the surfaces. They concluded that no constant stress region and 

extrapolation of the shear stress profiles in the inertial sub-layer to the zero-plane displacement 

provided a much better estimate of the surface shear stress. Buccolieri et al [5] measured drag 

force in the wind tunnels with a standard load cell. Fernholz et al [6] introduced a new 

developments and applications of skin-friction measuring techniques based on the oil-film 

interferometry. The oil-film interferometry technique could be applied to assess the shear stress 

and skin friction, and it has been proved scientifically and technically.  

The configuration of turbulent boundary layer flow is very complicated, irregular and random. 

The boundary layer over a flat plate can also be considered as inner and outer layers with their 

own specific scaling and scaling between Wind Tunnels [7, 8]. In fact, the boundary layer 

velocity profile of turbulent flow over a flat plate (zero pressure gradients) has a larger velocity 

gradient at the wall since it is much fuller than the one in the laminar flow. This leads to have 

greater skin friction along the surface in the turbulent flow. In addition, a turbulent boundary 

layer on a flat plate with 
  

  
   is used broadly for the intention of turbulence research as an 
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important approximation for many problems in engineering. For instance, the boundary layer on 

an airplane fuselage in cruise conditions is very similar to the flat plate boundary layer. 

Turbulent boundary layer flow over a flat plate is also one of the most prevalent phenomena 

which befall in the blades of turbomachinery, rotary compressors and computing the friction 

force on lifting fuselage and surfaces. 

A turbulent flow is called self-similar when all or some of its statistical properties are dependent 

to the particular combination of independent variables [9]. Therefore, self-similar flow depends 

on smaller number of variables. It is evident that dealing with this type of flows is much easier. 

Self-similar boundary layer is a worthwhile phenomenon that simplifies the solution and helps to 

better understanding of the boundary layer and experimental results. Townsend [10] introduced 

the self-similarity solution in turbulent flow as the symbol of a dynamic equilibrium. Wolfshtein 

[11] carried out a practicability study on the existence of self-similar solution for the 2-D 

incompressible turbulent boundary layer. Mellor and Gibson [12] demonstrated that self-

similarity may be attained when free stream velocity is expressed as a function of longitude 

coordinates.  Clauser [13] investigated experimentally on a desirable pressure gradient which 

generates a self-similarity turbulent boundary layer. In his study, a constant dimensionless 

pressure gradient was introduced as a condition for self-similarity of boundary layer.  

Blasius [14] introduced a technique called ―similarity solution‖ to reduce the partial differential 

equations (PDEs) to ordinary differential equations (ODEs) in boundary layer problems. This 

primitive study of Blasius became a basis for simplifying complex turbulent equations. Since 

turbulence is a sophisticated phenomenon and its analysis and precise identification is not 

routine, many researchers have tried to discover a similarity solution to simplify the solution 

process [15-17]. 

In recent decades, numerical approaches have been developed significantly. However, owing to 

some limitations [18], many researchers [19-22] have been fascinated by analytical solutions as 

alternative ways. Perturbation methods are one of the most recognized techniques which have 

been widely used by scientists in different areas of science and engineering [23]. However, these 

methods are suffering from the lack of dependency upon small and large physical variables. 

Hence, they are not capable to apply to some of strongly nonlinear problems. Consequently, non-

perturbation methods such as VIM [24-27] exposed to remove the dependency to small and large 
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parameters. The VIM can be used in a direct way without using linearization, perturbation or 

restrictive assumptions. 

The work presented in this paper is on experimental and analytical investigation of turbulent 

boundary layer air flow over a flat plate. A wind tunnel is used to beget turbulent air flow on the 

flat plate. Thin-Oil-film technique is used to measure the wall shear stress in order to calculate 

the skin friction on the plate. On the analytical side, the similarity variables of turbulent 

boundary layer flow over a flat plate are applied to collapse the partial differential equations 

(PDEs) into an ordinary differential equations (ODEs) one. Turbulence viscosity appears in the 

equations using Reynolds decomposition. Finally, the obtained equations are solved analytically 

by VIM. The main advantage of this method is its independency from upstream and downstream 

characteristics of air flow. Moreover, two novel expressions for the boundary layer thickness and 

friction coefficient are reported which were in good agreements with current experimental data. 

2. Experimental Method 

2.1. Test facility  

A schematic of the test facility used for the experiment is shown in figure 1. The test setup 

consists of a wind tunnel, a camera, a beam-splitter, a lamp, a diffuser, optical glass (SF11) as a 

flat plate, a flow loop and data acquisition system. The experiments were conducted in a wind 

tunnel having a flow cross-section of 560 mm × 320 mm near the testing area. Flow in the tunnel 

is induced by a 10 HP centrifugal blower resulting in an air velocity up to 52 m/s. Flow 

straighteners are used at the inlet of the wind tunnel for uniform flow distribution. The velocity 

in the wind tunnel is measured using a pitot tube installed in the unobstructed flow area. Also 

measured are the air temperature and static pressure before the test section.  Air density is 

calculated using the measured air temperature and pressure. The test is carried out at four 

different Reynolds numbers (0.1, 0.5, 1 and 5 million) and low Mach numbers (below 0.2). 
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Fig. 1. Schematic of the test facility with different components. 

2.2.Thin-Oil-film techniques  

 

The oil-film interferometry method is based on the comportment of an oil film (normally less 

than 10 μm) when shear stress function on it. Applying the thin film interference to determine the 

oil film thickness for the first time was introduced by Tanner and Blows [28]. Skin friction 

would be gained by determining the wall shear stress in the wind tunnel. This means Thin- Oil-

film technique is an indirect method for measuring skin friction or drag force. Therefore, it is 

necessary to have the correlation between the wall shear stress and the thickness of oil film on 

the wall. Once the oil on the smooth plate is exposed in the air flow inside the wind tunnel, a 

wedge shape film would be formed (figure 2). 

 

 

Fig .2. Schematic of stream wise cross-section of the oil film on the plate. 

 

 

The shear stress would be uniform since the oil flow is considered two dimensional. As a result 

of small film thicknesses, the gravity effect, surface tension and the pressure gradient can be 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

neglected. Thus, the correlation between the wall shear stress and local oil thickness can be 

written as [29]: 

,
th

xoil
w


                    (1) 

where, w is the wall shear stress, x  is the displacement of oil, oil  is the viscosity of oil,  t  is the 

time and h  is the local film thickness. The light source here is a high pressure mercury vapor 

lamp and it orients the light directly on the film with an angle of θ. As stated by the 

interferometry axiom, there are two types of reflected lights. One is reflected off the oil surface 

and the other after penetrating the oil, is reflected off the wall. As a result of interfering two 

reflected beams with each other, dark and bright fringes are formed as shown in figure 3. The 

minute film thickness of oil means the two reflected beams have different path lengths. If the 

beam reflected from the bottom plate undergoes a 180° phase reversal (as beams demonstrated in 

figure 3(a)) where the path difference is an even multiple of λ/2 (λ is the wavelength), the 

reflected waves from both surfaces interfere to cancel each other. If the beam reflected from the 

bottom plate undergoes in phase (as beams displayed in figure 3(b)) where the path difference is 

an odd multiple of λ/2, the two reflected waves reinforce each other. 

 

 

Fig. 3. (a) Destructive interference resulting dark fringe (reflected waves      out of phase),  

(b) Constructive interference resulting bright fringe (reflected waves in phase). 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

According to the interference optics principle, the film thickness can be written as [28]: 

 

,
)(sin4 222 



airoil nn
h


                  (2) 

 

in which  is the phase shift (difference) between the waves in radians oiln  and airn  are the 

refractive indices of oil and air respectively and λ is the wavelength of the incident light. 
 

After defining the wall shear stress, the skin friction can be obtained as follows: 

 

,
)( 2

2
1




U

C w
f




                 (3) 

 

where  is the density and U is the free stream velocity. 

 

 

 

 

 

3. Mathematical Modeling   

 

3.1. Governing equations 

An incompressible turbulent flow over a flat plate with no pressure gradient is considered here. 

Cartesian coordinates x  and y  are aligned parallel and perpendicular to the wall respectively as 

shown in figure 4. Since the flow is turbulent, every velocity and pressure terms are quickly 

altering random functions of time and space due to the fluctuations. The Reynolds averaged 

Navier-Stokes (RANS) equations are considered for a two dimensional turbulence flow to 

determine the flow fields as expressed bellow [9]: 

 

,0



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
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yx

u 
                   (4) 
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


u

y

u

yy

u

x

u
u                 (5) 

 

where u  and   are the components of the velocity in x  and y  direction, respectively,   is the 

kinematic viscosity, and prime ( ' ) indicates the fluctuation terms of the velocities. The boundary 

conditions can be written as: 
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0u     at    ,0y  

Uu     at    .y                  (6) 

 

 

 
Fig. 4. Turbulent boundary layer over a flat plate. 

 

 

In equation (5), Reynolds stress term can be expressed as [30]: 

 

,)(
y

yu t






                  (7) 

 

where )(yt  is the turbulence eddy viscosity. Substituting equation (7) into equation (5) gives: 

 

).(
2

2

y

u

yy

u

y

u

x

u
u t


















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                (8) 

 

By applying Prandtl mixing length [30], the turbulence eddy viscosity can be written in the 

following form: 

,2

y

u
lmt



                   (9) 

 

in which ml  is the Prandtl mixing length. The stream function is described as bellow: 

),()(  fxgU                (10) 

 

where 

 

.
)(xg

y
                 (11) 

 

It is worth mentioning that )(xg and )(f  are exclusive functions of x and  , respectively. 
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Considering the definition of the stream function, the equation (8) can be defined as: 
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By substituting equations (12)-(17) into equation (8) the generally self-similar equations can be 

written as follows: 

 

  .0)(
)(

)()( 22 
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U
ffxgxg

U
f m             (18) 

 

The boundary layer over a flat plate can be considered as two divisions: inner and outer layers 

with their own specific scaling [30]. According to the experimental mixing length curve [31], the 

following correlation is considered: 

 

,
1
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n
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
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                (19) 

 

in which 
* is the boundary layer thickness and   is a constant. Comparing Equation (19) to the 

experimental mixing length curve [31], gives: 
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According to equation (19) we have: 
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Thus, from equation (20), we can partition the solution domain into two sections: 

 

I) At the vicinity of the surface where ,1n ylyl   ( 41.0 ) and equation (18) can be 

reduced to: 

 

.0)( 22
2





  fng

U
ffgg

U
f






            (22) 

 

We consider the following assumption to make the coefficients independent of x in order to find 

a similarity solution 
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According to Equation (11), we have: 
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where .99.0)( 99  f  Substituting equation (24) into Equation (22) and using the definition 

of ,/Re *  U equation (14) is simplified as: 
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with following boundary conditions: 

 

.0)0(',0)0(  ff                (26) 
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II) Beyond the surface where 
*1.0,5.0  yn  and equation (18) is reduced to: 
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with the boundary condition as: 

 

,1)( f                 (28) 

 

where the value of   can be found based on the work done by Anderson and Kays [31].  

 

It is worth mentioning that the correlation between Re and xRe can be obtained as: 
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Substituting equation (29) into equations (25) and (27) gives the ODE as follows: 
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with the boundary conditions: 
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After solving above equations, the friction coefficient can be represented as: 
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in which  and  are dynamic viscosity and density, respectively. In addition, based on equation 

(24) the boundary layer thickness can be expressed as: 
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3.2. Analytical approach 

According to VIM [24], in order to solve (30a) and (30b) the correction functional can be 

constructed as: 
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in which  is the general Lagrangian multiplier and )(
~

mf is considered as restricted variation, 

i.e. 0)(
~

 mf . To find the optimal value of , we have 


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)()(             (35) 

Making the above correction functional stationary, the following stationary conditions can be 

obtained: 

.0)(,0)(,0)(,0)(1 





         (36) 

Thus, the Lagrange multiplier can be expressed as: 

,)(
2

1 2                 (37) 

as a result, the following variational iteration formula can be obtained 
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Now we should start with arbitrary initial approximations such that they satisfy the boundary 

condition. According to equations (30a) and (30b) and boundary condition of (31), the boundary 

conditions can be divided into two distinct boundary conditions. As a result, equation (31) would 

be expressed as:  

,1.00)
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in which a  and b are dummy variables and can be determined by a continuity of equations (30a) 

and (30b) at the point of .10/99   It is now straight-forward to choose power initial guesses: 

,1.00)(
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where 50C  are constants and can be obtained by defined boundary conditions. We use the 

symbolic software MATHEMATICA to solve the integrality equations, (38a) and (38b), with the 

initial functions of (40a) and (40b), and successively obtain )(1 f . In the same way, we can 

obtain )(2 f , etc. 
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4. Results and Discussion  

In current analytical solution, 99  ought to be characterized beforehand in order to analyze the 

turbulent boundary layer.  

 

 
Fig. 5. Variation of the 99  at different Reynolds numbers. 

 

 

Figure 5 demonstrates the results for the 99  which are gained in a transverse direction from the 

flat plate such that  UU 99.0 . After determining 99 and once the equations (30a) to (30b) 

have been solved, the skin friction coefficient and the boundary layer thickness could be 

calculated from equations (32) and (33), respectively. 

Variation of the skin friction coefficient fC by Reynolds number is shown in Figure 6. The 

results in figure 6 are obtained from current analytical approach at Reynolds numbers in a range 

of 10
5
 to 10

9
. However, the measurements have been taken only at four different Reynolds 

number (0.1, 0.5, 1 and 5 million) based on capacity of the wind tunnel. This range can be 

extended to wider range in the experiment by redesigning the wind tunnel and using new 

facilities. Figure 6 is also illustrating the comparison of the current results and those obtained 
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from the well-established equations published by well-known authors in the literature. These 

include correlations of 
2.0

Re074.0


 xfC  introduced by Prandtl [32] in 1927, 

58.2)](Re[455.0  xf LogC  presented by Prandtl and Schlichting [33] in 1934 and 

584.2)](Re[37.0  xf LogC  suggested by Schultz and Grunov [34] in 1979. It is evident that there 

is good agreement between the results. Figure 6 shows that by increasing Reynolds number, fC

decreases. By applying curve fitting method to the current results, a new formula for fC would 

be offered as: 

 

.Re045.0
16.0

 xfC                 (41) 

 

According to the above equation, it is obvious that variations of local coefficient of friction in 

turbulent flow should be much lower than that of the laminar flow with relation of

5.0
Re664.0


 xfC . 

 

 
Fig. 6. Comparison of results for coefficient of friction obtained by current analysis with 

previously reported well-known correlations at different Reynolds number. 
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Fig. 7. Comparison of results for 
x


obtained by current analysis with previously reported well-

known correlation at different Reynolds number. 

 

Figure 7 shows the variations of 
x


by Reynolds number. The current results are also compared 

to those obtained by Granville [35]. In 1959, Granville introduced a correlation of 

17.3)(Re

0598.0




xLogx


from velocity similarity laws for determination of the turbulent boundary-

layer thicknesses of flat plate. According to his belief, a prediction of the thickness is a 

fundamental requirement in any studies of boundary layers but it was still surprising to find 

quoted in the literature Von Karman's 1/5-power law for smooth flat plates with turbulent 

boundary layers since this law is derived from 1/7-power velocity profiles and it has application 

to a limited range of Reynolds numbers, and since it is also based on pipe data it has only an 

approximate validity for flat plates. Based on current results, a new correlation can be introduced 

for the thickness of boundary layer using curve fitting method as:  

.Re169.0
14.0

 x
x


               (42) 
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It is clear that, dependency of turbulent boundary layer thickness on the length of flat plate 

should be greater than that of the laminar boundary layer. By increasing the Reynolds number, 

the effects of transition region decreases and the analytical results becomes much closer to 

experimental ones. Deviation of velocity profile at low Reynolds number such 10
-5

 could be 

attributed to the transition region. That is why the overlap of the velocity profiles at the higher 

Reynolds number is much better and the accuracy of the results is high. As a result of figure 7, as 

Reynolds number increases, the thickness of turbulent boundary layer decreases. 

The variation of dimensionless velocity profiles UU / versus  /  is displayed in Figure 8. As 

it can be seen in this figure, by gaining Reynolds number the transferred momentum between the 

core of the flow and the wall is accomplished, and hence the velocity gradient is increased at the 

vicinity of the plate.  

 

 

 
Fig. 8. Dimensionless velocity profile UU / versus  / at different Reynolds number 
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5. Conclusion 

 

A combined experimental and theoretical analysis of the turbulent boundary layers air flow over 

a flat plate was carried out. Thin-Oil-film technique was used as a new method to measure wall 

shear stress in order to determine skin friction of the flat plate in an open-ended suction wind 

tunnel. The test was performed at four different Reynolds numbers (0.1, 0.5, 1 and 5 million) and 

low Mach numbers (below 0.2).The detailed theoretical analysis comprises reduction of the 

Reynolds averaged Navier-Stokes differential equation from partial form to the ordinary form 

using similarity transformation and utilization of VIM for its novel analytical solution. The VIM 

was used in a direct way without using linearization, perturbation or restrictive assumptions. The 

method requires less computational work than existing approaches while supplying 

quantitatively reliable results. Good agreement was observed between current results and 

previously reported well-known ones. Finally, two new correlations for the friction coefficient 

and boundary layer thickness as functions of Reynolds number were suggested. The results 

exposed that the new introduced correlations can be used for wide range of the Reynolds number 

in different engineering applications.  

 

 

Nomenclature 

fC           Skin-friction coefficient 

L             Length of the plate  

ml             Prandtl mixing length 

xRe         Reynolds number based on x 

Re         Reynolds number based on Boundary layer thickness 

t              Time 

u             Component of the velocity in x direction 

             Component of the velocity in y  direction 

U           Free stream velocity 

yx,          Coordinates along and perpendicular to the plate 

Greek Symbols 

*             Boundary layer thickness  
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              Dimensionless variable 

             Phase shift between the waves  

             General Lagrangian multiplier 

             Dynamic viscosity  

              Kinematic viscosity  

t             Turbulent eddy viscosity  

             Density  

w            Wall shear stress (Pa) 

             Free stream condition 

Abbreviations 

ODE        Ordinary Differential Equation 

PDE         Partial Differential Equation 

RANS      Reynolds Averaged Navier-Stokes 

VIM         Variational Iteration Method 
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