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The dynamics of encapsulated microbubbles (EMBs) subject to an ultrasound wave
have wide and important medical applications, including sonography, drug delivery,
and sonoporation. The nonspherical shape oscillation of an EMB, termed as shape
modes, is one of the core mechanisms of these applications and therefore its natural
frequency is a fundamentally important parameter. Based on the linear stability
theory, we show that shape modes of an EMB in a viscous Newtonian liquid are
stable. We derive an explicit expression for the natural frequency of shape modes,
in terms of the equilibrium radius of an EMB, and the parameters of the external
liquid, coating, and internal gases. The expression is validated by comparing to the
numerical results obtained from the dynamic equations of shape modes of an EMB.
The natural frequency of shape modes shifts appreciably due to the viscosity of the
liquid, and this trend increases with the mode number. The significant viscous effects
are due to the no-slip condition for the liquid flow at the surface of an EMB. Our
results show that when subject to an acoustic wave, the shape instability for an EMB
is prone to appear if 2ωk/ωd = n, where ωk is the natural frequency of shape modes,
ωd is the driving frequency of the acoustic wave, and n is a natural number. The
effects of viscosity on the natural frequency is thus critical in setting the driving
frequency of ultrasound to avoid or activate shape modes of EMBs, which should be
considered in the applications of medical ultrasound. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4952583]

I. INTRODUCTION

Dynamics of encapsulated microbubbles (EMBs) subject to ultrasound are associated with
important applications in biomedicine, including sonography, drug/gene delivery, and sonopora-
tion. Nonspherical stable shape oscillation of EMBs, termed as shape modes, is one of the core
mechanisms of these medical applications. Microbubbles, used to enhance ultrasound contrast, were
first reported by Gramiak and Shah.1 Air bubbles introduced without a stabilizing shell were very
short lived, and therefore a thin coating is used to stabilize the gas-liquid interface. After injection,
EMBs can travel to all organs of the body within blood vessels. EMBs’ high compressibility rela-
tive to blood/tissues leads to strong scattering of ultrasound waves, thereby enhancing blood-tissue
contrast to improve the quality of image of blood vessels in sonography. Today, EMBs are used to
enhance the reflectivity of perfused tissues in applications spanning cardiology and radiology.2–4

For sonography, nonspherical shape modes give rise to frequency components—subharmonics,
harmonics, and ultraharmonics—that are not at the incident ultrasound frequency, as can the spher-
ical mode if driven to a nonlinear response.5–8 These additional frequency components contribute
to the signal scattered by EMBs and are important for distinguishing the microbubbles from the
surrounding tissue, thus enhancing blood-tissue contrast.6

EMBs have been demonstrated as a new promising vehicle for targeted drug delivery to tu-
mours or blood clots.9–13 EMBs arrive at the site of tumours or blood clots in a few seconds
after injection, and their lifetime is approximately 5 min.14 When EMBs pass the focal region of
ultrasound, they are activated by the ultrasound, leading to violent collapse and hence drugs/genes
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release. The lack of tumour response to chemotherapy is well documented in many cancer types
and is a major and life-limiting obstacle in cancer treatment. Collapsing MBs are believed to
help to increase the permeability of cell membranes of nearby endothelial cells, facilitating tar-
geted drug/gene delivery to the tumour neovasculature, a phenomenon known as sonoporation.15–18

Nonspherical shape mode is one of the possible mechanisms for the breaking of the coating of
EMBs for drug delivery, as well as sonoporation.19,20 Therefore, it is important to determine the
natural frequency of shape modes for an EMB, which is a critical parameter to avoid or to activate
the nonspherical shape modes. Accordingly, this becomes the objective we endeavor to achieve in
this work.

The natural frequency of shape modes for a gas bubble in an inviscid fluid is well known as
given follows:21

ω
gas
k
=


(k − 1)(k + 1)(k + 2) γ

ρR3
0

, (1.1)

where k is the order of shape mode, γ the surface tension, ρ the liquid density, and R0 the
equilibrium bubble radius. The inviscid model was improved by Prosperetti22 by adding damping
caused by a viscous vorticity field near the bubble wall. This was later simplified by assuming that
the vorticity field occurs within a thin boundary layer near the bubble surface.23–25 Alternatively,
Shaw26 modelled viscous damping effects for microbubble dynamics subject to ultrasound, using
the Rayleigh dissipation function. The natural frequency of radial mode for a gas bubble in a
viscoelastic medium was formulated by Gaudron et al.27

The existence of a thin coating for an EMB changes the natural frequency of radial oscillation
and the intensity of the acoustic radiation.28–30 The searching for the natural frequency of shape
modes for an EMB is a current research topic. Tsiglifis and Pelekasis31 obtained a square root
dependence of the natural frequency of an EMB in terms of the bending stiffness of its coating.
Their analysis is based on an inviscid flow model, where the tangential balance on the membrane is
not satisfied. Liu et al.32 derived the natural frequency of shape modes for an EMB in an inviscid
liquid as follows:

ω̄2
k = (k − 1)(k + 1)(k + 2) γ

ρR3
0

+ 2(k − 1)(k + 1)(k + 2) Gs

ρR3
0

(2k2 + 2k − 3)(k2 + k − 1 + υ)Gb + 6GsR2
0

(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

,

(1.2)

where Gs is the elastic modulus, Gb bending modulus, and υ Poisson ratio of the coating of the
EMB.

In this paper, we will consider the shape stability and natural frequency ωk of shape modes
for an EMB in a viscous liquid, based on the following considerations. The viscous effects of the
liquid and membrane detune the natural frequency significantly, which has been demonstrated for
the spherical mode.33 Liu et al.32 showed that the dynamic equation of an EMB follows the structure
of Mathieu’s equation, like a gas bubble. This suggests that when subject to an acoustic wave, an
EMB is most prone to be unstable under the following condition:34

2ωk/ωd = n, (1.3)

where ωk is the natural frequency of shape mode k, ωd is the driving frequency of ultrasound, and
n is a natural number. When n = 1, the condition of instability is ωd = 2ωk. However, the computa-
tional phase diagrams in Ref. 32 showed that the instability for an EMB subject to an acoustic wave
is prone to appear when ωd ≈ 1.5 ω̄k. This inconsistency implies that ω̄k calculated by the inviscid
model (1.2) is significantly over-predicted.

The classical bubble dynamics are mainly inertial dominant, where the gas-liquid interface
is assumed being shear-free.35,36 But the liquid flow bears a no-slip condition on the membrane
of an EMB, where the liquid moves with the deforming membrane, generating vorticity near the
interface. We model the effects of viscosity of the surrounding liquid to an EMB following the
work of Prosperetti,22 by solving the toroidal component of the vorticity field coupled with the basic
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potential flow field. Loughran et al.37 carried out numerical analysis for the shape modes of an EMB
in a viscous liquid, using Prosperetti’s theory.22 Our developments versus theirs are that we perform
analytical stability analysis for the phenomenon and obtain analytical expression for the natural
frequency of shape modes.

The membrane of an EMB is usually composed of albumin, galactose, lipid, or polymers,38

which can be studied based on continuum mechanics.39–46 In order to bypass the complexity of
multiscale coupling, we adopt a viscoelastic model to describe the mechanics of the membrane.
The fluid flow and membrane deformation are coupled by assuming that the velocity and stress are
continuous both normally and tangentially on the membrane.

The remaining paper is organized as follows. In Sec. II, dynamic equations for shape modes
of an EMB is briefed, the stability of the shape mode is studied, and the natural frequency of
the shape mode is obtained analytically. The ranges of parameters for EMBs applied in medical
ultrasound are discussed in Sec. III A. The natural frequency obtained is validated by comparing
with the numerical results in Sec. III B. Our computations in Sec. III C show that an EMB resonates
when the driving frequency ωd of an acoustic wave is twice of the natural frequencies ωk of shape
modes considering viscous effects, i.e., ωd = 2ωk. The variations of the natural frequency of an
EMB are analyzed in terms of the membrane parameters and liquid viscosity in Sec. III D. Viscous
effects are analyzed in terms of the toroidal distribution of vorticity in Sec. III E. The summary and
conclusions are given in Sec. IV.

II. PROBLEM FORMULATION

A. Dynamic equations for shape modes of an EMB

Consider a gas-filled microbubble encapsulated in a membrane, suspended in an unbounded
incompressible Newtonian liquid, and subject to an acoustic wave, as shown in Fig. 1. A Cartesian
coordinate system O-x y z and a spherical coordinate system (r , θ, φ) are adopted with the origin at
the centre of the initial spherical encapsulated microbubble (EMB) and the z-axis along the wave
direction. The acoustic pressure at the location of the bubble is characterized by dimensionless
amplitude ε and a driving frequency ωd,

p∞ = p0 [1 + ε sin(ωdt)] , (2.1)

where p0 is the ambient pressure. Here we assume that the wavelength of the acoustic wave is large
compared to the bubble size. The physical and mathematical formulations for the dynamics of an
EMB are following the work of Liu et al.,32 which are briefly described as follows for completeness.

FIG. 1. The configuration and coordinate systems for a gas-filled microbubble encapsulated in a membrane, suspended in an
unbounded incompressible Newtonian liquid, and subject to an acoustic wave.
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The system consists of the external liquid, membrane, and internal gases of the EMB. The gov-
erning equations for the external flow to the EMB are the continuity equation and the Navier-Stokes
equation,

∇ · u = 0, (2.2a)

ρ
∂u
∂t
+ ρ(u · ∇)u = −∇p + µl∇ · (∇u + ∇uT), (2.2b)

where u denotes the velocity of the liquid flow, and p, ρ, and µl are the pressure, density, and
viscosity of the liquid. The liquid velocity satisfies the no-slip condition on the membrane of an
EMB.

It is assumed that the pressure of the gases within an EMB is uniform and the shear stress on the
membrane of an EMB due to the interior gases is negligible, since the density and viscosity of the
internal gases are small compared to those of the external liquid. The expansion and contraction of
the internal gases are assumed to be adiabatic, with the internal pressure pg being given as follows:

pg = pg0

(
V0

V

)Γ
, (2.3)

where V0 and V are the initial and transient volume of the EMB, pg0 is the initial pressure, and Γ is
the polytropic index of the interior gases.

The membrane is subject to the liquid stress n ·
�
−pI + 2µl

�
∇u + ∇uT�� and the gas pressure

load pgn, where n is the unit normal vector on the surface pointing to the liquid and I is the unit
tensor. The dynamic equation of the membrane thus states

n ·
�
−pI + 2µl

�
∇u + ∇uT�� + pgn − (γ∇ · n)n = F, (2.4)

where γ is surface tension, and the term containing γ is kept to make this model suitable for a gas
bubble too by setting F = 0. For an EMB, the surface tension becomes zero because the membrane
separates the liquid-gas interface. The hydrodynamic traction across the membrane is balanced by
the stress F exerted on the membrane by itself, which is given by the surface divergence of the
elastic tension tensor,47

F = −(P · ∇) · (τ + qn), (2.5)

where P = I − nn is the tangential projection operator, τ the in-plane stress, and q the transverse
shear tension, which is expressed in terms of bending moment m as q = [(P · ∇) ·m] · P. We
employ the neo-Hookean law48 for the in-plane stress, the linear law for the membrane viscosity,
and the Love law49 for the bending moment. The expression of the membrane stress is referred to
Ref. 32.

The surface perturbation to a spherical EMB can be expanded in terms of the spherical har-
monics,50–52 in the spherical coordinate (r , θ, φ). Since the deformation of an EMB in the azimuthal
direction φ is at the higher order,53 we restrict our attention to an axisymmetric system, not consid-
ering the azimuthal mode. The axisymmetric deformation of the membrane in the radial and zenith
directions, (rs, Θs), is thus given as follows in terms of the Legendre polynomials Pk(cos θ) and
P1
k
(cos θ) = dPk(cos θ)/dθ, respectively:

rs(θ, t) = R(t) +
∞
k=2

ak(t)Pk(cos θ), (2.6a)

Θs(θ, t) = θ +
1

R(t)
∞
k=2

bk(t)P1
k(cos θ), (2.6b)

assuming ak, bk ≪ R(t). The summation of order of shape modes is for k ≥ 2, since k = 1 is
associated with the translation of an EMB without deformation, which is not considered in this
work.

To investigate the viscous effects of the liquid, we decompose the velocity into a potential part
up and a viscous correction uv, following the work of Prosperetti.22 The potential part is solved
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using Laplace’s equation and the normal velocity distribution on the EMB surface,54 while the
viscous correction is solved using the vorticity form of the linearized Navier-Stokes equation.22 The
vorticity of the flow is further decomposed into the poloidal P(r, t) and toroidal T(r, t) components
as follows:

∇ × uv =

∞
k=2

[∇ × ∇ × (P(r, t)Pk(cos θ)er) + ∇ × T(r, t)Pk(cos θ)er] . (2.7)

Due to axisymmetry, the poloidal component P(r, t) does not change in the azimuth direction, and
only the toroidal component T(r, t) contributes to the vorticity dissipation, which satisfies22

ρ
∂T
∂t
+ ρ

∂

∂r
�
Ṙ(R/r)2T� − µl

∂2T
∂r2 + µlk(k + 1) T

r2 = 0. (2.8)

The dynamic equations for an EMB are then obtained by Liu et al.,32 by expanding (2.4) in
terms of perturbation series, and making use of the orthogonality of the Legendre polynomials.
Their model consists of the radial oscillation equation and the dynamic equations for shape modes
in the normal and tangential directions as follows.

The radial oscillation equation of an EMB is

RR̈ +
3
2

Ṙ2 +
1
ρ



2γ
R
+ 4µl

Ṙ
R
− pg0

(
R0

R

)3Γ

+ p∞ +
2Gs(R6 − R6

0)
R7 + 4µs

Ṙ
R2


= 0, (2.9)

where R0 is the initial bubble radius when the bubble is assumed being in equilibrium, Gs and µs are
the elastic modulus and viscosity of the membrane, the over dot denotes the derivative with respect
to time t, and p∞ is the acoustic pressure. Linearizing this equation, one can obtain the zeroth-order
(spherical mode) natural frequency for an EMB in a Newtonian fluid,32

ω0 =


3Γp0

ρR2
0

+
(6Γ − 2)γ

ρR3
0

+
12Gs

ρR3
0

, (2.10)

where p0 is the ambient pressure.
The shape oscillation equation for mode k ≥ 2 of an EMB is

ρR
k + 1

äk +


3ρ

k + 1
Ṙ +

2(k + 2)µl
R


ȧk +


− k − 1

k + 1
ρR̈ +

(k + 2)(k − 1)γ
R2 +

4(k − 1)µl Ṙ
R2


ak

+ kµl
T(R, t)

R
+ k ρ

Ṙ
R

 ∞

R



(
R
s

)3

− 1


(
R
s

)k
T(s, t)ds

− 2k(k + 1)µlRk−2
 ∞

R

s−kT(s, t)ds

=
Gs

R8 [2(R6 − 7R6
0)ak + 6k(k + 1)R6

0bk] − Gb

R4 [k(k + 1)(k2 + k − 1 + υ)(ak − bk)]

− 2µs

R3 [−4ak Ṙ + 2Rȧk + k(k + 1)(Ṙbk − Rḃk)], (2.11)

where Gb is the bending modulus of the membrane and υ is the Poisson ration.
The tangential dynamic equation for mode k ≥ 2 of an EMB is

µl


(2k + 4) ȧk

R
− (2k − 2)ak Ṙ

R2 − (k + 1)T(R, t)
R
− 2(k + 1)Rk−2

 ∞

R

s−kT(s, t)ds


=
Gs(k + 1)

R8

�(R6 − 7R6
0)ak +

�
3k(k + 1)R6

0 + (k − 1)(k + 2)R6� bk

�

− Gb

R4 (k + 1)(k2 + k − 1 + υ)(ak − bk)

+
2µs(k + 1)

R3

�
2ak Ṙ − Rȧk + (k2 + k − 1)(Rḃk − Ṙbk)� .

(2.12)
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Eqs. (2.11) and (2.12) describe the dynamics of the kth shape mode of an EMB. The right hand
sides of (2.11) and (2.12) are the membrane stress resulting from deformation. The amplitudes in
the radial and zenith directions ak and bk are coupled, so does the deformation of the membrane
in two directions. The toroidal component of vorticity is embodied in the integral terms in the
equations.

The no-slip condition at the surface of an EMB implies uθ = rs(θ, t) ∂Θs(θ, t)
∂t

. Substituting (2.6)
yields32

ḃk −
Ṙ
R

bk = −
1

k + 1

(
ȧk +

2ak Ṙ
R

)
+ Rk−1

 ∞

R

s−kT(s, t)ds. (2.13)

Equations (2.9), (2.11), and (2.13) are solved numerically for the unknowns functions R(t),
ak(t), and bk(t), by using the fourth-order Runge-Kutta method, in which the integrals in (2.11) and
(2.13) are calculated numerically by using the composite trapezoidal rule. The toroidal field T(r, t)
is updated at every time step, by solving Equation (2.8) using the second-order finite difference
method, with the boundary condition T(R, t) at the surface of an EMB obtained from (2.12) and the
far field condition T → 0 at infinity.

B. Stability analysis and natural frequency of shape mode

In the flow modelling described in Sec. II A, we assumed that the flow is irrotational in a
bulk volume and the viscosity of the flow is only appreciable in a thin boundary layer near an
EMB surface. This assumption is only suitable for the cases with a large Reynolds number Re.
Some of medical applications of EMBs coupled with ultrasound are associated large Reynolds
numbers. In fact, Re = ρR2

0ωM/µl, where ωM is the larger of the natural frequency ω0 of an EMB
and driving wave frequency ωd. The Reynolds number is estimated in the range of Re = 75–1170
for the typical values of the parameters for the phenomenon: p0 = 1 × 105 Pa, ρ = 103 kg m−3,
µl = 1 × 10−3 kg (m s)−1, Γ = 1.4, R0 = 3–20 µm, and Gs = 0.05–5 N m−1.

The thickness of the boundary layer is estimated as O
(
R0/
√

Re
)
= O

(
µl/ (ρωM)) ,22,37,55

which is given as follows with a cutoff:56

χ = min
(

µl
ρωM

,
R0

2k

)
. (2.14)

To perform analytical analyses, the integrals in (2.11)–(2.13) are approximated by the products of
the integrands evaluated at the bubble surface and the thickness of the boundary layer, i.e., ∞

R



(
R
s

)3

− 1


(
R
s

)k
T(s, t)ds ≈ 0, (2.15a)

 ∞

R

s−kT(s, t)ds ≈ R−kT(R, t)χ. (2.15b)

Substituting (2.14) and (2.15) into (2.11) and (2.12), we have the dynamic equations for the kth
order shape mode in the normal and tangential directions, respectively, as follows:

äk + Ca1ȧk + Cb1ḃk + Caak + Cbbk = 0, (2.16a)

Da1ȧk + Db1ḃk + Daak + Dbbk = 0, (2.16b)

where the coefficients are

Ca1 =


−2(k + 2)(k2 − 1) + k(k + 2)R0

χ


µl

ρR2
0

− (k − 1)(k + 1)(k + 2) 2µs

ρR3
0

, (2.17a)

Cb1 = k(k + 1)(k + 2) µl
ρχR0

+ k(k − 1)(k + 1)2(k + 2) 2µs

ρR3
0

, (2.17b)

Ca = (k − 1)(k + 1)(k + 2)γ + Gs

ρR3
0

, (2.17c)
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Cb = 4k(k − 1)(k + 1)2(k + 2) Gs

ρR3
0

, (2.17d)

Da1 =


− 1
χ
+

2(k + 1)
R0


µl +

2(k + 1)
R2

0

µs, (2.17e)

Db1 = −(k + 1)
(

1
χ
+

2
R0

)
µl − (k + 1)(k2 + k − 1)2µs

R2
0

, (2.17f)

Da = 6(k + 1)Gs

R2
0

+ (k + 1)(k2 + k − 1 + υ)Gb

R4
0

, (2.17g)

Db = −(k + 1)(2k2 + 2k − 1)2Gs

R2
0

− (k + 1)(k2 + k − 1 + υ)Gb

R4
0

. (2.17h)

For the purpose of linear analysis, the transient bubble radius R(t) is replaced by R0 in (2.17). Note
that the terms in (2.17) associated with the viscosities of the liquid and membrane were neglected
in the work of Liu et al.,32 i.e., they assumed Ca1 = Cb1 = Da1 = Db1 = 0 in deriving the natural
frequency of shape modes of an EMB. But the viscous effects of the liquid and membrane are
considered in this work. Our computations in Sec. III show clearly that the viscous effects are
essential and not negligible.

The dimensionless form of (2.16) can be written as follows:

¨̄ak + c̄a1 ˙̄ak + c̄b1
˙̄bk + c̄aāk + c̄bb̄k = 0, (2.18a)

da1 ˙̄ak + db1
˙̄bk + daak + dbbk = 0, (2.18b)

where

t̄ = ωkt, āk = ak/R0, b̄k = bk/R0,

c̄a1 =
Ca1

ωk
, c̄b1 =

Ca1

ωk
, c̄a =

Ca

ω2
k

, c̄b =
Cb

ω2
k

,

da1 =
Da1

ωk
, db1 =

Da1

ωk
, da =

Da

ω2
k

, db =
Db

ω2
k

.

(2.19)

To simplify (2.18a) and (2.18b), we perform the following order analysis using (2.14), (2.17),
and (2.19):

O (c̄a1) = O (c̄b1) = 1
ρR0ωk

O *
,

√
ρω0µl,

µs

R2
0

+
-
, (2.20a)

O (c̄a) = O (c̄b) = 1
ρR0ω

2
k

Gs

R2
0

, (2.20b)

O
(
da1

)
= O

(
db1

)
=

1
ωk

O *
,

√
ρω0µl,

µs

R2
0

+
-
, (2.20c)

O
(
da

)
= O

(
db

)
=

1
ω2

k

O *
,

Gs

R2
0

,
Gb

R4
0

+
-
. (2.20d)

For medical ultrasonic applications of EMBs, the ranges of the parameter to be discussed in
Sec. III A are R0 = O(1) µm, µl = O(10−3) kg (m s)−1, Gs ≤ O(1) N m−1, Gb ≤ O(10−12) N m, µs ≤
O(10−8) kg s−1, and O(ω0) = O(ωk) = O(106) s−1. The following estimations can be made using (2.20)

and the range of parameters: O
(
c̄a1
c̄a

)
= O

(
c̄b1
c̄b

)
≤ O

�
10−2� and O

(
da1
da

)
= O

(
db1
db

)
= O

�
10−2�.

We express (c̄a1, c̄b1) = δ
(
Ca1,Cb1

)
and

(
da1,db1

)
= δ

(
Da1,Db1

)
, where 0 < δ = O(10−2) ≪ 1,

Ca1,Cb1 are comparable with c̄a, c̄b, and Da1,Db1 are comparable with da,db. We thus have

¨̄ak + δ
(
Ca1 ˙̄ak + Cb1

˙̄bk

)
+ c̄aāk + c̄bb̄k = 0, (2.21a)

δ
(
Da1 ˙̄ak + Db1

˙̄bk

)
+ daāk + dbb̄k = 0. (2.21b)
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Using (2.21b), we have

bk = −
da

db

ak −
δ

db

(
Da1 ˙̄ak + Db1

˙̄bk

)
. (2.22a)

Therefore, we have b̄k = − d̄a
d̄b

āk +O (δ) and ˙̄bk = − da

db
˙̄ak +O (δ). Substituting this into Eq. (2.22a),

we have

b̄k = −
da

db

āk −
δ

db

*
,
Da1 ˙̄ak + Db1 *

,
−da

db

˙̄ak +O (δ)+
-
+
-

= −da

db

āk −
δ

db

*
,
Da1 − Db1

da

db

+
-

˙̄ak +O
�
δ2� . (2.22b)

We then substitute (2.22b) into (2.21a), keeping the first two orders in δ, and obtain

¨̄ak + *
,
c̄a1 − c̄b1

da

db

− 1

db

*
,
da1 − db1

da

db

+
-
+
-

˙̄ak + *
,
c̄a − c̄b

da

db

+
-

āk +O
�
δ2� = 0. (2.23)

Using (2.20), we make the following estimation for the ranges of the parameter considered:

O
(

1
db

(
da1 − db1

da

db

))
O

(
ca1 − c̄b1

da

db

) =

O
(
da1
db

)
O (ca1) = O *

,

da1

dbca1

+
-
= O

(
ρR0

db

)
= O

�
10−3� . (2.24)

Thus O
(
c̄a1 − c̄b1

da

db

)
≫ O

(
1
db

(
da1 − db1

da

db

))
. Equation (2.24) further becomes

¨̄ak + *
,
c̄a1 − c̄b1

da

db

+
-

˙̄ak + *
,
c̄a − c̄b

da

db

+
-

āk +O
�
δ2� = 0. (2.25)

In the dimensional form, (2.25) becomes

äk +

(
Ca1 − Cb1

Da

Db

)
ȧk +

(
Da − Db

Da

Db

)
ak = 0. (2.26a)

Substituting (2.17) into (2.26a) yields

äk +Ψ ȧk +Φak = 0, (2.26b)

where

Ψ = 2(k + 2)
(

kR0

2χ
− k2 + 1

)
µl

ρR2
0

− 2(k − 1)(k + 1)(k + 2) µs

ρR3
0

+ k(k + 1)(k + 2)
�(k2 + k − 1 + υ)Gb + 6GsR2

0

� �
R2

0µl + 2(k2 − 1)χµs

�

ρR3
0 χ

�(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

� ,

(2.27a)

Φ = (k − 1)(k + 1)(k + 2) 1
ρR3

0


γ + 2Gs

(2k2 + 2k − 3)(k2 + k − 1 + υ)Gb + 6GsR2
0

(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0


. (2.27b)

Supposing that ak has the form of ak ∼ eσk t, the characteristic equation of (2.26) is

σ2
k +Ψσk +Φ = 0. (2.28)

Its solutions are

σk = −
Ψ

2
±
√
∆

2
, where ∆ =Ψ 2 − 4Φ. (2.29)

The damping coefficient Ψ is always non-negative (as shown in the Appendix). Ψ is equal
to zero as µl = µs = 0 and Ψ > 0 as µl and/or µs are non-zero. We thus obtain the instability
criterion of the phenomenon as follows. If ∆ ≥ 0, we have σk < 0, and hence ak and bk decrease
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monotonically. If ∆ < 0, ak and bk are oscillating functions with amplitudes decaying exponentially
with time, e−Ψt/2. As such, shape modes of an EMB in a viscous liquid are always stable subject
to small disturbance. As the viscosities of liquid and shell approach zero, the damping coefficient
Ψ → 0, the oscillation repeats for long time.

The imaginary part of σk is related to the natural frequency of an EMB in a viscous liquid:
ωk = Im(σk) =

√
−∆/2 for ∆ ≤ 0, thus

ω2
k = (k − 1)(k + 1)(k + 2) γ

ρR3
0

+ 2(k − 1)(k + 1)(k + 2) Gs

ρR3
0

(2k2 + 2k − 3)(k2 + k − 1 + υ)Gb + 6GsR2
0

(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

−

(k + 2)

(
kR0

2χ
− k2 + 1

)
µl

ρR2
0

− (k − 1)(k + 1)(k + 2) µs

ρR3
0

+ k(k + 1)(k + 2)
�(k2 + k − 1 + υ)Gb + 6GsR2

0

� �
R2

0µl + 2(k2 − 1)χµs

�

2ρR3
0 χ

�(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

�


2

.

(2.30)

If the viscous effects are negligible, µl = µs = 0, ωk is reduced to ω̄k given by (1.2), the undamped
natural frequency of an EMB in an inviscid liquid. The term in (2.30) related to the viscosities of the
liquid and membrane is always negative; therefore, the damped natural frequency ωk with viscous
effects predicted by (2.30) is always smaller than the undamped natural frequency ω̄k of (1.2). This
is understandable since the viscosity inhibits the flow near the interface and the oscillation of the
bubble, prolonging the oscillation period.

III. NUMERICAL ANALYSES

A. The ranges of the parameters

The bubble size is preferably large to increase efficacy in sonography,60 but should be smaller
than the blood capillary diameter for safety.61 A lipid coated bubble is usually smaller than 5 µm in
radius.62 Most of polymer or albumin coated bubbles are smaller than 10 µm in radius.31,58,63

The viscosity of plasma is about 1.2 times that of water,57 while the apparent viscosity of blood
varies with the shear rate of velocity and hematocrits.64 The apparent viscosity increases under low
shear rate, e.g., in the center of a blood vessel, and decreases under high shear rate, e.g., near vessel
walls. Besides, the apparent viscosity of blood increases with hematocrits, which depends on health
conditions. The range of liquid viscosity is thus chosen as 0.5 × 10−3–0.5 × 10−2 kg (m s)−1.

A polymer bubble exhibits excellent stability because of its hard shell with Gs = 0.5–5 N m−1.59

Considering that a coating consisting of monolayer molecules is softer than that of polymer,65 we
choose the elastic modulus lower to 0.05 N m−1. The bending modulus and membrane viscosity of
EMBs have broad ranges 1 × 10−17–1 × 10−12 N m66 and 1 × 10−19–1 × 10−8 kg s−1,59 respectively.
The effects of very small bending modulus and membrane viscosity are negligible, so that we
choose the range of upper limits for these two parameters.

Accordingly, we choose the parameter ranges as shown in Table I.

TABLE I. The typical parameter ranges of the initial radius R0, liquid
viscosity µl, elastic modulus Gs, bending modulus Gb, and membrane
viscosity µs of EMBs used in medical ultrasonics.

Parameters Ranges of parameters

R0 3–20 µm
µl 0.5×10−3–0.5×10−2 kg (m s)−1

Gs 0.05–5 N m−1

Gb 1×10−14–1×10−12 N m
µs 1×10−10–1×10−8 kg s−1



062102-10 Y. Liu and Q. Wang Phys. Fluids 28, 062102 (2016)

FIG. 2. Time history of shape mode 2 of an EMB for (a) ρ = 103 kg m−3, R0= 10 µm, µl = 1×10−3 kg (m s)−1, Gs =

0.5 N m−1, Gb = 1×10−13 N m, and µs = 1×10−8 kg s−1, and (b) µl = µs = 0, with the remaining parameters unchanged.

B. Evaluation of the analytical natural frequency of shape modes

If slightly disturbed and without any external driving force, an EMB undergoes shape mode
oscillation at its natural frequency. The parameters for the first case are chosen as follows: ρ =
103 kg m−3, R0 = 10 µm, µl = 1 × 10−3 kg (m s)−1, Gs = 0.5 N m−1, Gb = 1 × 10−13 N m, and
µs = 1 × 10−8 kg s−1. We set initial disturbance as a2(0)/R0 = 0.1 for shape mode 2. The time
history of a2, obtained from (2.8) and (2.11)–(2.13) numerically, is shown in Fig. 2. For comparison,
we also consider the case for µl = µs = 0, with the remaining parameters unchanged.

The bubble oscillates at constant amplitude without viscous effects but its amplitude is damped
significantly with viscous effects. The time difference between two troughs of the oscillating curve
provides the oscillation period and thus the corresponding natural frequency ωnum

k
of the EMB. The

oscillation period with viscous effects is larger than that without viscous effects, as shown in Fig. 2.
This is consistent with the early observation to (2.30).

We then compare the natural frequencies of shape modes of EMBs of the analytical results
ωk obtained from (2.30) with numerical results ωnum

k
from (2.8) and (2.11)–(2.13). Six cases are

considered, and the parameters for case (a) are the same as in Fig. 2. For the rest five cases,
only one parameter is changed with the remaining parameters being the same as the case (a):
(b) R0 = 8 µm, (c) µl = 5 × 10−3 kg (m s)−1, (d) Gs = 1.0 N m−1, (e) Gb = 1 × 10−12 N m, and
(f) µs = 1 × 10−9 kg s−1. The results for µl = µs = 0 are also displayed for every case, with the
remaining parameters unchanged.

Table II shows the natural frequencies of shape modes k = 2, 3, 4 of EMBs for the cases
((a)–(f)). The undamped analytical natural frequency agrees well with that of the numerical results.
The damped analytical natural frequency, in general, agrees with that of the numerical results. The
small discrepancy for the latter should be due to the approximation associated with the boundary
layer used in deriving expression (2.30). The natural frequency for the cases with viscous effects is
obviously smaller than that without viscous effects and this trend increases with the mode number.
In the case of spherical EMBs, viscosity only enters the analysis through the normal stress on the
surface of the bubble but plays no role in the fluid body.8,17 When an EMB undergoes nonspherical
shape modes, the liquid material points at the coating move with it due to the no-slip boundary
condition. A shear flow within a thin boundary layer nearby is thus generated by the tangential
motion of the coating, whose variation amplitude increases with the shape mode.

For comparison, the corresponding results for a gas bubble at the same initial radius as case
(a) are shown in the table, for which surface tension is chosen as γ = 0.0729 N m−1. The natural
frequency of shape modes for a gas bubble does not change significantly with the viscosity of liquid
as an EMB does. This is attributed to the free-slip condition on the gas bubble surface.

C. Shape instability of an EMB subject to an acoustic wave

As noted in the introduction that shape instability for an EMB should be prone to appear,
when the driving frequency of an acoustic wave is twice of the natural frequencies of shape modes,
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TABLE II. Comparison of the natural frequencies of shape modes of EMBs of the analytical results ωk and numerical
results ωnum

k
for (a) R0= 10 µm, µl = 1×10−3 kg (m s)−1, Gs = 0.5 N m−1, Gb = 1×10−13 N m, µs = 1×10−8 kg s−1, (b)

R0= 8 µm, (c) µl = 5×10−3 kg (m s)−1, (d) Gs = 1.0 N m−1, (e) Gb = 1×10−12 N m, (f) µs = 1×10−9 kg s−1, and (g) gas
bubble. For cases ((b)-(f)), only one parameter is changed with the remaining parameters being the same as the case (a). For
the case (g), γ = 0.0729 N m−1 and the membrane parameters are taken as zero. The results for without damping are for
µl = µs = 0, with the remaining parameters unchanged.

Case k

ω̄k/2π (MHz) without
damping

ωnum
k

/2π (MHz) without
damping

ωk/2π (MHz) with
damping

ωnum
k

/2π (MHz) with
damping

a
2 0.29 0.29 0.25 0.24
3 0.38 0.38 0.32 0.32
4 0.47 0.46 0.38 0.39

b
2 0.41 0.41 0.35 0.33
3 0.54 0.54 0.44 0.45
4 0.69 0.69 0.55 0.57

c
2 0.29 0.29 0.16 0.18
3 0.38 0.38 0.27 0.24
4 0.47 0.46 0.21 0.28

d
2 0.41 0.41 0.38 0.35
3 0.52 0.53 0.47 0.45
4 0.63 0.63 0.54 0.54

e
2 0.31 0.31 0.28 0.26
3 0.49 0.49 0.44 0.42
4 0.77 0.77 0.72 0.67

f
2 0.29 0.29 0.26 0.24
3 0.38 0.38 0.34 0.32
4 0.47 0.46 0.42 0.39

g (gas bubble)
2 0.14 0.15 0.15 0.14
3 0.26 0.27 0.27 0.26
4 0.40 0.40 0.41 0.41

i.e., ωd = 2ωk.34 We want to see if it is true with the damped natural frequency obtained in this
paper.

For the cases considered, we choose p0 = 1 × 105 Pa, ε = 1 for k = 2, 3, and ε = 1.5 for k = 4.
The driving frequencies are set being twice of the undamped and damped natural frequencies of
shape modes according to (1.2) or (2.30), respectively. The initial disturbance in shape modes is
given as ak(0)/R0 = 0.1. The remaining parameters are kept the same as in Fig. 2 (for µl , 0,
µs , 0). The developments of ak(t) are solved numerically from (2.8), (2.9), and (2.11)–(2.13).

For mode 2, we set ωd = 2π × 0.58, 2π × 0.5 MHz, which are twice of the undamped and
damped natural frequencies (see Table II, case a), i.e., ωd = 2ω̄k, 2ωk, respectively. Fig. 3(a) con-
trasts different time histories of a2(t) under the same driving amplitude but different frequencies.
As ωd = 2ω̄k = 2π × 0.58 MHz, the initial disturbance in the shape mode damps immediately and
does not cause any instability. However, as ωd = 2ωk = 2π × 0.5 MHz, the initial disturbance in the
shape mode develops rapidly and significantly with time, and the shape mode becomes obviously
unstable.

For modes 3 and 4, we set the driving frequency of the incident wave at ωd/2π = 0.76,
0.64 MHz, and ωd/2π = 0.94, 0.76 MHz, respectively, which are twice of the undamped and
damped natural frequencies (see Table II, case a, k = 3, 4), respectively. Similar features are
observed as those in Fig. 3(a). The applied acoustic wave at the frequency being twice of the
damped natural frequency generates shape instability rapidly and significantly, but that at the
frequency being twice of the undamped natural frequency does not generate any instability (see
Figs. 3(b) and 3(c)). As such, the shift of the natural frequency due to viscous effects is critical in
setting the applied frequency of ultrasound to avoid or activate the shape modes of EMBs.
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FIG. 3. Time developments of shape modes of an EMB subject to an acoustic wave with p0= 1×105 Pa, for (a) k = 2,
ωd/2π= 0.58, 0.5 MHz, ε = 1, (b) k = 3, ωd/2π= 0.76, 0.64 MHz, ε = 1, and (c) k = 4, ωd/2π= 0.94, 0.76 MHz, ε = 1.5.
The remaining parameters are the same as in Fig. 1 for µl , 0, µs , 0.

When subject to an acoustic wave, an EMB undergoes damped oscillation due to viscosity if
the wave amplitude is smaller than a threshold εthr, but becomes unstable if the amplitude is larger
than εthr. Fig. 4 shows the stability diagram in terms of the threshold εthr of the amplitude versus the
frequency ωd/2π of the acoustic wave, for modes 2, 3, and 4 for the case (a) in Table II. We will
analyze the critical driving frequency at which the threshold εthr reaches the minimum values, when
an EMB is most prone to be unstable.

Recall that the natural frequencies for shape modes of the EMB for the case are ωk/2π = 0.25,
0.32, and 0.38 MHz for k = 2, 3, and 4, respectively (see Table II). For mode 2 (solid line),
the minimum of εthr (occurring at the point M21 in the Fig. 4) is at ωd = 2π × 0.48 MHz, being
approximately twice of ω2 = 2π × 0.25 MHz, i.e., ωd ≈ 2ω2. And the secondary minimum M22
is at ωd = 2π × 0.24 MHz, being approximately equal to ω2, i.e., ωd ≈ ω2. For mode 4 (dashed
line), the minimum (M41) and the secondary minimum (M42) occur at the driving frequencies
ωd = 2π × 0.41 MHz and 2π × 0.22 MHz, being approximately equal to ω4 and ω4/2, respectively.
The minimum of the curve for mode 3 (dotted line) is at ωd = 2π × 0.48 MHz, which should be
attributed to the coupling effects between shape mode 3 and the radial resonance, since the natural
frequency of the radial mode is ω0/2π = 0.51 MHz.

The computational results have shown that the damped natural frequency ωk of (2.30) and
the critical driving frequency ωd, at which an EMB is most prone to be unstable, satisfy approxi-
mately the relationship 2ωk/ωd = n, as predicted by Mathieu’s equation.34 The small discrepancy
is expected, since the damped natural frequency ωk is obtained based on the approximate linear
theory. The undamped natural frequency of shape modes (1.2) does not satisfies the relationship
2ωk/ωd = n.

While an EMB undergoes shape oscillation of mode k, the maximum deformation and stress
should be associated with either the maximal value or the minimal value (negative) of ak. Figs. 5(a),
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FIG. 4. Stability diagram in terms of the threshold εthr of the amplitude versus the frequency ωd/2π of the acoustic wave,
for modes 2, 3, and 4 for the case in Fig. 3.

5(b), and 5(c) show the shape of an EMB at the maximal and minimal values of ak for shape modes
k = 2, 3, and 4, for 40 cycles of oscillation, and the corresponding stress distribution, respectively.
The driving force is set at the frequencies ωd/2π = 0.5, 0.64, 0.76 MHz, respectively, which are
twice of the damped natural frequencies of the EMB (see Table II). The thick lines represent the
bubble shape and the thin lines the distribution of stress. For the normal stress (left column of the
figure), the inward or outward lines represent the direction of stress; for the tangential stress (right
column), the inward lines represent compression and the outward lines represent extension. The
maximal and minimal values of the normal and tangential stresses are denoted in the figures as well.
The displacement and stress are periodical functions in the zenith angle θ with the periods π, 2π/3,
and π/2 for k = 2, 3, and 4, respectively. It is believed that the number of fragments of an EMB is
determined by the dominant shape mode.67 Correspondingly, we find from Fig. 5 (right column) that
the maximal tangential stress, associated with the maximal extension, occurs at the centre of each
concave part of the membrane, where the local radius of the EMB is at the minimum. At maximum
of ak, θ = π/2, 3π/2 for k = 2, θ = π/3, π, 5π/3 for k = 3, and θ = π/4, 3π/4, 5π/4, 7π/4, for
k = 4, respectively. At minimum of ak, θ = 0, π for k = 2, θ = 0, 2π/3, 4π/3 for k = 3, and θ = 0,
π/2, π, 3π/2, for k = 4, respectively. These locations are weak spots, where the membrane is most
prone to break.

D. Parameter studies of natural frequency of shape modes

We now investigate the damped natural frequency ωk of shape modes of an EMB in terms
of the equilibrium radius R0, viscosity of liquid µl, elastic modulus Gs, bending modulus Gb,
and membrane viscosity µs. Fig. 6 plots the natural frequency versus the above parameters for
shape modes k = 2, 3, and 4, respectively, according to (2.30). In general, the natural frequency
ωk increases with the mode number k. As the equilibrium radius R0 decreases, the natural fre-
quency ωk increases and so does the rate of increase (Fig. 6(a)). Among the membrane properties
(Figs. 6(c)-6(d)), the natural frequency increases with the elastic modulus Gs and the bending
modulus Gb, but decreases with the membrane viscosity µs. The elastic modulus plays a more
important role in the natural frequency than the bending modulus and membrane viscosity. The
effects of the bending modulus Gb become stronger for a higher mode number, which is associated
with higher amplitude of bending of the coating.

The role of liquid viscosity is appreciable and cannot be ignored. The natural frequency ωk

of mode 2 decreases obviously with liquid viscosity µl. The variations of ωk versus µl for higher
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FIG. 5. Shapes of an EMB at maximal and minimal ak , and distributions of normal and tangential stresses at shape modes
for (a) k = 2, (b) k = 3, and (c) k = 4, respectively. The thick lines represent the bubble shape and the thin lines the distribution
of stress. For normal stress (left column), the inward and outward lines embody the direction of stress. For tangential stress
(right column), the inward lines represent compression and the outward lines represent extension.

shape modes k = 3, 4 are nonmonotonic, due to the complicated relationship (2.30) of the natural
frequency in terms of the viscosities of liquid and membrane, and the dependency of the boundary
layer thickness χ on the viscosity of liquid (2.14).

The natural frequencies obtained by the numerical results of the dynamic modelling (2.8) and
(2.11)–(2.13) are also displayed for comparison and validation. The analytical results agree well
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FIG. 6. Natural frequencies for shape modes k = 2, 3, 4 of an EMB versus (a) equilibrium radius R0, (b) liquid viscosity
µl, (c) elastic modulus Gs, (d) bending modulus Gb, and (e) membrane viscosity µs. The parameters are R0= 10 µm,
Gs = 0.5 N m−1, Gb = 1×10−13 N m, µs = 1×10−8 kg s−1, and µl = 1×10−3 kg (m s)−1. The results according to (2.30)
are displayed in solid, dotted, and dashed lines for k = 2, 3, and 4, respectively. The numerical results based on (2.8) and
(2.11)–(2.13) are displayed in symbols of circles, triangles, and squares for k = 2, 3, 4 respectively for validation.

with the numerical results for µl ≤ 1 × 10−3 kg (m s)−1 and the agreements stand for shape mode
2 at larger fluid viscosity (see Fig. 6(b)). The analytical solution predicts reasonably good results
for shape modes 3, 4 for µl ≤ 3 × 10−3 kg (m s)−1, µl ≤ 1 × 10−3 kg (m s)−1, respectively. However,
the discrepancy between them increases with the mode number and fluid viscosity, since high shape
mode and non-small viscosity are associated with non-negligible nonlinear effects.

E. Toroidal component of vorticity

Only the toroidal component T(r, t) contributes to the vorticity dissipation, due to axisymmetry,
as commented in Sec. II A. In this section, we investigate the toroidal component of vorticity near
the bubble surface to analyze viscous effects of liquid, by solving Equation (2.8) for T(r, t). The
liquid viscosity is selected as µl = 0.5 × 10−3, 1 × 10−3, and 0.5 × 10−2 kg (m s)−1, respectively. The
remaining parameters are the same as in Fig. 2 (for µl , 0, µs , 0).
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A radial oscillation is considered for simplicity and illustration purpose,

R = R0 (1 + α sin (ωdt)) , (3.1)

with the oscillatory amplitude α = 0.2 and frequency ωd = ω0, where ω0 is given by (2.10). The
initial disturbance in shape mode is set as ak(0)/R0 = 0.1, and only the second order mode k = 2 is
presented as an example.

Figure 7 shows the distributions of T(r, t) along the normal direction η = [r − R(t)]/R(t) on the
bubble surface, at the times 0.2Td, 0.4Td, 0.6Td, 0.8Td, and 1.0Td (Td = 2π/ωd), respectively. For
comparison, the results for a gas bubble with the same initial size are also displayed, where surface
tension is set as γ = 0.0729 N m−1. Figs. 7(a)-7(c) are for the results for an EMB, and Figs. 7(d)-7(f)
are for the gas bubble.

The magnitudes of the toroidal component at the surfaces of both the gas bubble and encap-
sulated bubble decrease with viscosity. This is because that a large viscosity attenuates the shape
disturbance, and thus restrains the production of vorticity. However, the dissipative length scale of
vorticity increases with viscosity.

The magnitude of toroidal component at the surface of a gas bubble is much smaller than that
of an EMB, although their boundary layer thicknesses are comparable. This explains the appre-
ciable difference in the natural frequencies without and with viscous effects for an EMB, and the
slight difference between them for a gas bubble. For a gas bubble, the vorticity produced by the
shape deformation is relatively small due to the free-slip condition on the bubble interface. For
this reason, dynamics of a gas bubble usually can be approximated by the inviscid flow theory. In
contrast, the vorticity generation on a deformed encapsulated bubble cannot be neglected. That is
why the viscosity of liquid plays an important role in the natural frequency of shape modes for an
EMB.

We calculate the thickness of the viscous boundary layer using (2.14) for the cases in Fig. 7,
with the results listed in Table III. Similar features as displayed in Fig. 7 are observed in the table:
the thickness of the viscous boundary layer for a gas bubble is comparable with or slightly larger
than that for an encapsulated bubble, and the thickness increases with the viscosity for both gas and
encapsulated bubbles.

FIG. 7. Toroidal distribution of vorticity along the normal direction η of the surface of an EMB for (a)-(c) with R0= 10 µm,
Gs = 0.5 N m−1, Gb = 1×10−13 N m, µs = 1×10−8 kg s−1 and a gas bubble (d)-(f) with R0= 10 µm, γ = 0.0729 N m−1.
The liquid viscosity is µl = 0.5×10−3 kg (m s)−1 for (a) and (d), 1×10−3 kg (m s)−1 for (b) and (e), 0.5×10−2 kg (m s)−1 for
(c) and (f).
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TABLE III. Thickness of boundary layer calculated by (2.14) for the cases
in Fig. 7.

µl (kg (m s)−1) 0.5×10−3 1×10−3 0.5×10−2

χ/R0 (EMB) 0.039 0.056 0.13
χ/R0 (gas bubble) 0.048 0.068 0.15

IV. SUMMARY AND CONCLUSIONS

The dynamics of encapsulated microbubbles (EMBs) subject to ultrasound have wide and
important applications in biomedicine. The nonspherical shape mode of an EMB is one of the core
mechanisms of the applications and therefore its natural frequency is a fundamentally important
parameter. Using linear stability analysis, we show that the shape oscillation is stable and damps
with the viscosities of liquid and membrane, but oscillates at constant amplitude when both the
viscosities are zero. We derive an explicit expression for the natural frequency of the shape modes
for an EMB in a viscous Newtonian liquid as follows:

ω2
k = (k − 1)(k + 1)(k + 2) γ

ρR3
0

+ 2(k − 1)(k + 1)(k + 2) Gs

ρR3
0

(2k2 + 2k − 3)(k2 + k − 1 + υ)Gb + 6GsR2
0

(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

−

(k + 2)

(
kR0

2χ
− k2 + 1

)
µl

ρR2
0

− (k − 1)(k + 1)(k + 2) µs

ρR3
0

+ k(k + 1)(k + 2)
�(k2 + k − 1 + υ)Gb + 6GsR2

0

� �
R2

0µl + 2(k2 − 1)χµs

�

2ρR3
0 χ

�(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

�


2

,

(2.30)

in terms of the shape mode k, the equilibrium radius of the bubble R0, the density ρ and vis-
cosity µl of liquid, surface tension γ, the elastic modulus Gs, bending modulus Gb, Poisson

ratio υ, and viscosity µs of the coating. Here χ = min
(

µl
ρωM

,
R0
2k

)
, ωM = max(ωd,ω0), ω0 =

3Γp∞
ρR2

0
+

(6Γ−2)γ
ρR3

0
+

12Gs

ρR3
0

, where Γ is the polytropic index of the bubble gas. The analytical expres-

sion is validated by comparing to the numerical results for an EMB oscillating in shape modes.
We have investigated the natural frequency of shape modes in terms of various parameters and

observed the following features.
The natural frequency of shape modes shifts appreciably due to the viscosity of the liquid.

The significant viscous effects are due to the no-slip condition for the liquid flow at the membrane
interface and the vorticity retarding the flow near the surface.

The natural frequency increases with the mode number, and the elastic modulus and bending
modulus of the membrane, but decreases with the equilibrium bubble radius and membrane viscos-
ity. By comparison, the elastic modulus plays more important roles in the natural frequency for all
modes and the bending modulus does for higher order modes.

Shape instability for an EMB is prone to appear if 2ωk/ωd = n, where ωk is the natural fre-
quency of shape modes, ωd is the driving frequency of the acoustic wave, and n is a natural number.
The weak spots of the membrane of an EMB occur at its concave summits, where the tangential
extension is maximal. The shift of the natural frequency due to viscous effects is thus critical in
setting the applied frequency of ultrasound to avoid or activate the shape modes of EMBs, which
should be considered in the applications of medical ultrasound.
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APPENDIX: THE DAMPING COEFFICIENT GIVEN IN (A1) IS NON-NEGATIVE

For clearness, we re-write Equation (2.27a) as follows:

Ψ = 2(k + 2)
(

kR0

2χ
− k2 + 1

)
µl

ρR2
0

− 2(k − 1)(k + 1)(k + 2) µs

ρR3
0

+ k(k + 1)(k + 2)
�(k2 + k − 1 + υ)Gb + 6GsR2

0

� �
R2

0µl + 2(k2 − 1)χµs

�

ρR3
0 χ

�(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0

� .

(A1)

The first and third terms are positive, and the second term is negative. To show that Ψ is non-
negative, it will be sufficient to show that the magnitude of the second term in (A1) is equal or
smaller than the third term.

As k ≥ 2 and all the other parameters occurred are non-negative, we have

(k2 + k − 1 + υ)Gb < k(k + 1)(k2 + k − 1 + υ)Gb, (A2)

2(2k2 + 2k − 1)GsR2
0 < 6k(k + 1)GsR2

0. (A3)

Adding the above two inequalities yields

(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2
0 < k(k + 1) �(k2 + k − 1 + υ)Gb + 6GsR2

0

�
. (A4)

Using (A4), one can obtain

2(k − 1)µs χ
�(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2

0

�

< k
�(k2 + k − 1 + υ)Gb + 6GsR2

0

� �
R2

0µl + 2(k2 − 1)χµs

�
. (A5)

This can be arranged as

2(k − 1)µs ≤ k

�(k2 + k − 1 + υ)Gb + 6GsR2
0

� �
R2

0µl + 2(k2 − 1)χµs

�

χ
�(k2 + k − 1 + υ)Gb + 2(2k2 + 2k − 1)GsR2

0

� . (A6)

The equal only satisfies when µs = 0. From (A6), we know that the magnitude of the second term in
(A1) is equal or smaller than the third term.
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