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ABSTRACT 

This paper describes a fourth-order 3-D printed combline filter with a Chebyshev response, 

operating at central frequency 3 GHz and having a 3% fractional bandwidth. The filter is designed 

using the coupling matrix theory, fabricated, and experimental results are presented. Comparison 

between simulations and measurements shows good agreement. 
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INTRODUCTION 

Recently 3-D printing or additive manufacturing has become of interest in the fabrication of 

microwave filters and other passive components (e.g. [1-4]). This is because very complex 

structures can be easily made in the lightweight materials. It is possible for a 3-D printing process 

to manufacture the whole circuit as a unique single piece; examples can be seen in [1, 2]. Many 

types of 3-D printing processes are available, and the most popular are fused deposition modelling 

(FDM), stereolithography apparatus (SLA) and selective laser sintering (SLS). Among them, SLA 

offers the best surface integrity as well as the highest resolution [3], and hence is popular in the 

production of microwave filters. 

 

Here we propose a combline filter made using SLA-based 3-D printing. The filter has a centre 

frequency of 3 GHz and is designed based on four coupled square coaxial resonators. To the best of 

authors’ knowledge, this is the first ever demonstrated 3-D printed combline filter and also the first 

3-D printed filter to be reported for such a low frequency of operation. Conventionally such low 

frequency filters have been designed in microstrip or solid metal coaxial waveguide technology, 

and are largely useful in modern communication systems because of their small size [5]. In 

microstrip, the final design cannot be tuned easily to adjust the frequency response. This is easier 

with coaxial waveguide and 3-D printing, by adding tuning screws. In addition, the coaxial 

resonators present a higher unloaded quality factor because of the low loss compared with a 

microstrip. When high Q, narrow band, low insertion loss filters are required, microstrip cannot 

always provide the Q required. Often combline or coaxial filters are used when rectangular 

waveguide would be too cumbersome.  

 

Different types of materials can be used in 3-D printing, including metal, polymers and ceramics. 

In this case we are using polymer 3-D printing with plating of copper. Alternatives are all metal 

printing, but this method to date has a higher surface roughness (~6 µm, [4]) and is much heavier. 



One advantage of using 3-D printing in this case is the very light weight, which makes it suitable 

for satellite applications. In addition, very complex shapes can be made; with this filter the 

resonator lengths are different as are the gaps. Holes for connectors are explicitly included. This is 

straightforward for the 3-D printing technology and the complexity could be much greater. In 

addition because of the flexibility of the manufacturing, high current points can be fully connected 

which is sometimes difficult if the filter is made in individual parts. In this case, the base of the 

quarter wavelength resonator is fully connected and has no gap between it and the base. The 3-D 

printing used here is very accurate and therefore no tuning screws are required. 

 

DESIGN 

 The filter design follows the coupling theory, as described in [6]. With a Chebyshev response, it 

was designed to operate at a central frequency of 3 GHz, with 3% of fractional bandwidth (FBW), 

and 20 dB of return loss in the passband. These specifications result in the following values of 

coupling coefficient and external quality factor: M12 = M34 = 0.0273, M23 = 0.021; and Qe1 = Qe2 = 

31.0467. Fig. 1 illustrates the final filter design, showing the inside of the filter, where the four 

coupled rectangular resonators can be seen. In addition, the input coupling is formed from 

extension of the centre conductor of the SMA connector [7]. The resonators are about one quarter 

wavelength long and the spacing between them, d12 = d34 and d23 with LR2 = LR3 (by symmetry), is 

set by the couplings M12, M34, M23 respectively. The spacing between the input connector and the 

first resonator, or the output connector and the fourth resonator (dCR1 = dCR4), as well as the 

resonators lengths (LR1 = LR4), is mainly set by the external Q values. The distances between the 

resonators are estimated by looking at couplings between only two resonators (for coupling 

coefficients). The distance from the input feed and the first (and last) resonator is obtained by 

looking at a single resonator which is weakly coupled to two input feed lines in order to get the 

required Qe [6]. These initial values are then optimised in CST [8] to get the final required 

frequency response. Comparison between the initial and the optimized dimensions are shown in 

Table 1. In Fig. 2, the frequency response obtained by the coupling matrix calculation is shown 



with the CST simulated filter results for comparison. There is a good agreement; both of the 

responses show four accurately positioned reflection zeros. 

 

EXPERIMENTAL RESULTS 

The filter structure is a 3-D printed polymer subsequently coated with 25 µm copper. It is 

fabricated using a stereolithographic printing technique (SLA) at Swissto12 [9], whose fabrication 

process can be found with more details in [10]. A photo of the filter is shown in Fig. 3, and its 

experimental results are shown in Fig. 4. The weight of the filter without connectors and screws for 

the lid is 57 g which is only 13% of the weight of an equivalent copper filter (423 g). 

 

The results show an excellent agreement between simulated and measured frequency responses. 

There has been no tuning of the filter. The expanded view of S21 parameter shown in Fig. 4(a) 

exhibits a maximum insertion loss of about 0.23 dB for the simulation, and about 0.31 dB for the 

experimental results. This corresponds to resonator Q values of 2873 and 2131, respectively. The 

degradation of Q is due to the additional insertion loss of the connectors and the non-perfect 

copper. It can also be seen in the frequency responses presented in Fig. 4(a) and Fig. 4(b), that there 

is a small frequency shift. It is about 12 MHz and can be accounted for by the differences between 

the designed filter dimensions and the fabricated filter ones. Comparison between the dimensions 

can be found in Table 1.  

 

CONCLUSION  

This paper has demonstrated the first 3-D printed filter in the low GHz frequency range. The 3% 

bandwidth filter centered at 3 GHz shows an excellent S-parameter response with no tuning. The 

filter is made using specialised stereolithographic printing resulting in a very high dimensional 

accuracy structure. The advantages of making the filter by 3-D printing are clear, with the 

lightweight being particularly striking. However, the advantages of producing a complex structure 

quickly and with continuous metallization in high current areas are also of importance. Such filters 



can be relevant not only for prototyping but also in satellite applications where weight is important. 

Clearly integration of more complex structures in such applications is of great interest. 



Figure 1: The filter design showing the inner part, where the four resonators can be seen together 

with the inner conductor of the SMA connectors. The distance between the internal wall and inner 

conductor is dCB1 = dCB2 = 6.35, and the box dimensions in the design are LB = 81.86, WB = 37.5, HB 

= 20 and tB = 5. Unit: millimetre. 

 

Figure 2: Simulated results of the filter, in comparison with the ideal responses plotted from the 

coupling matrix. 

 

Figure 3: Photograph of the fourth-order 3-D printed combline bandpass filter together with the 

pair of SMA connectors. 

 

Figure 4: Measurement (solid lines) and simulation (dashed lines) results of the 3-D printed 

combline filter. 

(a) Magnitude responses of S21. The inserts show the responses over a wide frequency range (from 

1 to 5 GHz) as well as over the passband. Conductivity of copper is used in the simulations. 

(b) Magnitude responses of S11. 

 

Table 1: Comparison between the internal dimensions of the designed filter (before and after CST 

optimization) and the manufactured filter. 
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Table 1: 

Filter 

Dimensions 

Designed (mm) 
Measured 

(mm) 
Before 

optimization 

After 

optimization 

LR1 = LR4 19.57 20.58 20.64 

LR2 = LR3 20.62 21.54 21.44 

d12 = d34 11.09 9.67 9.72 

d23 11.46 10.9 11 

dCR1 = dCR4 4.09 3.15 3 

 


