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ABSTRACT 51 

 52 

Background: Oral bacteria are the main trigger for the development of periodontitis 53 

and some species are known to modulate neutrophil function. This study aimed to 54 

explore the release of neutrophil extracellular traps (NETs), associated antimicrobial 55 

proteins and reactive oxygen species (ROS) in response to periodontal bacteria, as 56 

well as the underlying pathways.  57 

Methods: Isolated peripheral blood neutrophils were stimulated with 19 periodontal 58 

bacteria. NET and ROS release as well as the expression of NET-bound 59 

antimicrobial proteins, elastase, myeloperoxidase and cathepsin G, in response to 60 

these species were measured using fluorescence-based assays. NET and ROS 61 

release were monitored after the addition of nicotinamide adenine dinucleotide 62 

phosphate (NADPH)-oxidase pathway modulators and inhibitors of Toll-like 63 

receptors (TLRs). Moreover, bacterial entrapment by NETs was visualised 64 

microscopically and bacterial killing was assessed by bacterial culture. 65 

Results: Certain microorganisms, e.g. Veillonella parvula and Streptococcus 66 

gordonii, stimulated higher ROS and NET release than others. NETs were found to 67 

entrap, but not kill, all periodontal bacteria tested. NADPH-oxidase pathway 68 

modulators decreased ROS but not NET production in response to the bacteria. 69 

Interestingly, TLR inhibitors did not impact on ROS and NET release.    70 

Conclusions: These data suggest that the variability in neutrophil response towards 71 

different bacteria may contribute to the pathogenesis of periodontal diseases by 72 

mechanisms such as bacterial avoidance of host responses and activation of 73 

neutrophils. Moreover, our results indicate that bacteria-stimulated NET release may 74 
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in part arise via NADPH oxidase-independent mechanisms. The role of TLR 75 

signalling in bacteria-induced ROS and NET release needs to be further elucidated.  76 

 77 
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INTRODUCTION 100 

 101 

Periodontitis is initiated by the accumulation of microbial biofilms at and below the 102 

gingival margin. Indeed it has been estimated that ~700 oral bacterial species and 103 

~1,200 predominant phylotypes exist (1-3). Of these bacterial species, 5 major 104 

bacterial complexes (red, orange, yellow, green and purple) have been identified by 105 

Socransky et al. using DNA probes (4). The clustering and ordination analysis 106 

allowed them to assign microbial species to a colour complex dependent upon the 107 

strength of association with each other and the clinical staging of periodontitis. The 108 

biofilms, which develop during disease, are orchestrated to maximise their 109 

adherence, communication and survival. The accumulation of bacterial species 110 

within the biofilm enables its development and perseverance, and certain bacteria, 111 

such as Fusobacterium nucleatum (F. nucleatum), are key orchestrators of biofilm 112 

formation and maturation (5). 113 

  114 

In susceptible individuals, dysbiosis and an aberrant host-microbial equilibrium can 115 

result in the onset of disease (6), where the microbial biofilm thrives by exploiting the 116 

host inflammatory response. This process fuels a vicious cycle of bacterial 117 

accumulation, inflammation and subsequent tissue destruction. The acute 118 

inflammatory reaction is predominantly mediated by neutrophils and is initially 119 

protective, via activation of innate neutrophil-derived defence mechanisms and also 120 

the activation of the acquired cellular and humoral immune system. In periodontitis, 121 

however, the aberrant neutrophil response is reputed to contribute to collateral tissue 122 

damage and formation of disease-associated molecular patterns, which perpetuate 123 

the inflammation leading to chronicity (7). Furthermore, the inflammatory state itself 124 



 
 

6 

supplies nutrients to pathogenic bacteria such as Porphyromonas gingivalis (P. 125 

gingivalis), e.g. iron from heme, supporting its survival and proliferation (8). 126 

  127 

An exaggerated immune activity is also observed in peripheral blood neutrophils 128 

from both chronic and aggressive periodontitis patients. These neutrophils are 129 

reportedly hyper-reactive in response to a microbial challenge in terms of their 130 

release of reactive oxygen species (ROS), but also hyperactive in the absence of an 131 

exogenous stimulus (9-11). In addition, excessive neutrophil-driven proteolytic 132 

activity and pro-inflammatory cytokine production have been observed in 133 

periodontitis and associate with pathogenicity (7). One of the mechanisms by which 134 

neutrophils combat microorganisms through the production of neutrophil extracellular 135 

traps (NETs), whereby decondensed DNA is released into the extracellular 136 

environment to immobilise and potentially kill invading bacteria. NET release is 137 

reported to be dependent on the production of ROS, such as hydrogen peroxide 138 

(H2O2), via superoxide generation by the enzyme NADPH oxidase (12). 139 

   140 

Little is known about the differential interactions between oral bacteria and 141 

neutrophils, however there is evidence that certain species and strains can evoke 142 

different neutrophil responses (13-16). This study aimed to elucidate the ability of 143 

bacterial species and strains frequently isolated from the oral cavity of healthy and 144 

diseased individuals to activate ROS and NET responses in neutrophils. The ability 145 

of NETs to entrap and kill bacteria, along with the expression of the antimicrobial and 146 

NET-associated proteins neutrophil elastase (NE), myeloperoxidase (MPO) and 147 

cathepsin G (CG) were also analysed. 148 

 149 
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 150 

RESULTS 151 

 152 

Neutrophil ROS release in response to periodontal bacteria  153 

The production of total ROS, extracellular ROS and superoxide in response to 19 154 

periodontal bacteria and S. aureus (Table 1) were determined. Certain bacteria 155 

elicited higher total ROS production in neutrophils, which was measured by luminol 156 

chemiluminescence. This was statistically significant for P. acnes, S. anginosus and 157 

C. rectus as well as the positive control opsonised S. aureus (Figure 1A). Consistent 158 

with the data expressed as total peak ROS production, time-course ROS production 159 

expressed as “area under the curve” demonstrated that ROS production was highest 160 

in response to opsonised S. aureus followed by S. anginosus. Notably, the increase 161 

in total ROS in response to opsonised S. aureus was more rapid than following direct 162 

stimulation with periodontal bacteria, as illustrated by the sharp elevation of the 163 

curve immediately following stimulation. Neutrophil extracellular ROS production was 164 

subsequently analysed by isoluminol chemiluminescence. Phorbol 12-myristate 13-165 

acetate (PMA; positive control) and S. gordonii induced significantly higher 166 

extracellular ROS than PBS treatment (negative control) (Figure 1B). The steep 167 

time-course curve in response to PMA indicates a rapid neutrophil response. 168 

Neutrophil extracellular superoxide production was measured using lucigenin. PMA 169 

and opsonised S. aureus did not induce significantly higher superoxide production 170 

relative to the PBS control. However, some periodontal bacteria increased 171 

extracellular superoxide production in neutrophils, which was statistically significant 172 

for S. anginosus, C. suptigena, and F. nucleatum subsp. nucleatum (Figure 1C).  173 

 174 
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Quantification of NET production in response to periodontal bacteria 175 

NET release in response to the bacterial challenge was quantified. Some bacteria 176 

led to an enhanced NET-DNA production, which was statistically significant for P. 177 

acnes, V. parvula, and S. gordonii compared with the PBS control (Figure 2A). NET-178 

bound NE, MPO and CG were quantified colorimetrically and data demonstrated that 179 

certain periodontal bacteria elicited an increased production of NET-bound proteins 180 

relative to PBS (Figure 2B-D). Similarly, stimulation with PMA and opsonised 181 

S. aureus (positive controls) induced statistically significant elevations in MPO and 182 

CG expression (Figures 2C and D).  183 

 184 

NET entrapment of bacteria does not associate with Socransky complexes or 185 

with bacterial cell death 186 

For clinical relevance, data are presented by grouping periodontal bacteria according 187 

to the Socransky complexes (4) (Figure 3A). Non-Socransky complex: l. noxia and 188 

V. parvula were found to be entrapped within NET structures in higher numbers 189 

compared to the negative controls (unstimulated neutrophils or degraded NETs) 190 

However, neither A. actinomycetemcomitans (serotype b) nor P. acnes or A. 191 

viscosus were significantly associated with NET entrapment. Yellow complex: S. 192 

anginosus and S. gordonii were significantly entrapped within NETs. However, the 193 

other yellow complex bacteria assayed, S. sanguinis, S. oralis and S. intermedius, 194 

were not found within NET structures. Green complex: none of the green complex 195 

bacteria assayed appeared within NETs at a significant level. Orange complex: C. 196 

rectus, C. showae and F. nucleatum subsp. polymorphum were significantly 197 

entrapped within NETs relative to the negative controls, whereas S. constellatus and 198 

F. nucleatum subsp. nucleatum were not. Red complex: P. gingivalis was 199 
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significantly associated with NET structures compared with bacteria incubated with 200 

unstimulated neutrophils or degraded NET structures. SEM images of unstimulated 201 

neutrophils demonstrated spherical cells with no NET structures evident, whereas 202 

neutrophils incubated with A. actinomycetemcomitans serotype a, V. parvula and A. 203 

viscosus revealed the release of NET structures (Figure 3B). The strand-like 204 

filaments between the neutrophils appeared to associate with bacteria, for example, 205 

A. actinomycetemcomitans (serotype a) clustered along NET structures. The 206 

bacterial killing assays employed to detect the microbicidal properties of NETs 207 

revealed that the viablitiy of the 6 periodontal bacteria tested was unaffected by NET 208 

trapping (Figure 3C). 209 

 210 

Effect of NADPH-oxidase pathway modulating agents on ROS and NET 211 

production  212 

Components of the NADPH-oxidase signalling pathway were targeted in order to 213 

assess whether NADPH-oxidase is essential for neutrophil ROS and NET production 214 

in response to periodontal bacteria. The data show that diphenyleneiodonium (DPI; 215 

NADPH-oxidase inhibitor), N-acetyl-cysteine (NAC; H2O2 scavenger) and taurine 216 

(HOCl scavenger) treatment resulted in a reduction in total ROS release in response 217 

to all stimuli. This was statistically significant for PMA, opsonised S. aureus, S. 218 

gordonii, C. rectus, F. nucleatum subsp. polymorphum and S. noxia (Figure 4A). 219 

NET production was, with the exception of PMA, not significantly affected by these 220 

inhibitors, however, a moderate reduction of NET release was visible in all samples 221 

(Figure 4B). 222 

 223 

Effect of Toll-like receptor (TLR) inhibition on ROS and NET production  224 
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The role of TLR signalling in neutrophil ROS and NET responses to periodontal 225 

bacteria was investigated by using specific inhibitors. Chloroquine (TLR3, 7 and 9 226 

inhibitor) and oxidised 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine 227 

(OxPAPC; (TLR2 and 4 inhibitor) treatment as well as treatment with both 228 

components did not reduce ROS production by neutrophils. However, a significant 229 

increase in ROS release from neutrophils treated with OxPAPC and opsonised S. 230 

aureus was seen (Figure 5A). Similarly, NET release in response to bacterial 231 

stimulation was not affected by the TLR inhibitors (Figure 5B). 232 

 233 

 234 

DISCUSSION 235 

 236 

Neutrophil ROS production is a vital component of the innate immune response, 237 

which enables killing and clearance of pathogens. Neutrophils are the predominant 238 

immune cell in periodontitis (17), and the results presented here support that their 239 

stimulation with periodontal bacteria promotes extracellular, intracellular and 240 

superoxide ROS release; however data indicate that this may be species specific. 241 

Indeed, some species consistently elicited higher neutrophil ROS production while 242 

other bacteria, such as P. gingivalis or S. sanguinis, were not found to significantly 243 

promote ROS release. Bacteria like P. gingivalis, F. nucleatum and oral streptococci 244 

can scavenge neutrophil-derived ROS production, which is attributed to a range of 245 

oxidative stress response genes encoding proteins like rubrerythrin, glutathione 246 

peroxidase, glutaredoxin, NADH oxidase and superoxide dismutase (18-22). It is 247 

possible that these bacterial defence mechanisms may function to afford protection 248 

to other biofilm organisms that are less resistant to ROS.  249 
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 250 

Periodontitis is known to arise from an exaggerated inflammatory response to 251 

microbial plaque (6). Whilst it is recognised that ROS facilitate microbial killing, ROS 252 

do not discriminate between pathogens and host tissues, and therefore tissue injury 253 

can arise from excess plaque-induced extracellular ROS release. ROS are reported 254 

to contribute to periodontitis progression by direct and indirect mechanisms, 255 

including tissue damage (23, 24), lipid peroxidation (25), DNA strand breakage (26), 256 

increased osteoclast differentiation (27) and initiation of a self-perpetuating cycle that 257 

activates chronic immune cell-derived ROS production (28). Notably, Matthews et al. 258 

showed an increased ROS production by peripheral blood neutrophils in chronic 259 

periodontitis (9, 10). In patients susceptible to the deleterious effects of ROS, a 260 

discordance between oxidant and antioxidant levels may also play a role. This is 261 

supported by Chapple et al., who demonstrated that total antioxidant activity is lower 262 

in the saliva of periodontitis patients (29). It has also been reported that neutrophil 263 

chemotaxis is compromised in chronic periodontitis, and that these patients’ 264 

neutrophils produce the chemoattractant interleukin-8 in excess when stimulated, 265 

potentially creating distracted chemotaxis (30). Such processes may increase 266 

neutrophil tissue transit times and thereby potentially exacerbating ROS-mediated 267 

collateral tissue damage (17). 268 

 269 

Quantification of NET-DNA and NET-bound antimicrobial proteins demonstrated 270 

differential NET production in response to the periodontal bacteria tested. DNA is 271 

released during other forms of neutrophil cell death, such as necrosis, and the 272 

quantification of NET-bound components (NE, MPO and CG) therefore provides a 273 

DNA-independent measure of NETs. It is noteworthy that differences between 274 
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individuals have been reported, such as neutrophil responsiveness to stimuli, which 275 

can also affect NET quantification results regardless of the analytical method 276 

employed (31, 32). Significant NET production in response to individual periodontal 277 

bacteria, however, indicates these events likely occur in vivo. Notably, NETs have 278 

previously been shown to exist in purulent exudate from periodontal pockets, where 279 

they are postulated to entrap invading microbes and prevent their dissemination (33, 280 

34). Recently, many periodontal bacterial species have been shown to release 281 

DNAses, which in addition to regulating biofilm formation (35), can potentially 282 

disassemble NET structures to enable NET evasion (36). Thus, bacterial DNAse 283 

expression may explain why some periodontal species showed less entrapment, 284 

such as S. constellatus, which reportedly releases large quantities of DNAse (36).  285 

 286 

Following bacterial entrapment, the high local concentration of antimicrobial proteins 287 

associated with NETs is thought to disable and kill pathogens (37). In the present 288 

study, the incubation of NETs with periodontal bacteria did not impede bacterial 289 

growth or survival, being in accordance with data reported by Menegazzi et al. (38). 290 

Cytochalasin B was applied in our study to exclude the possibility of bacterial killing 291 

through phagocytosis and this inhibition occurs via blocking of actin polymerization 292 

(39). As functional actin filaments may play a role in NET formation (40), it is 293 

possible that cytochalasin B interfered with NET and antimicrobial protein release in 294 

our study and thus prevented bacterial killing. However, other known inhibitors of 295 

phagocytosis and endocytosis such as Latrunculin A or CK666 also exert their 296 

effects by disturbing actin polymerisation (41, 42). Future experiments may be 297 

directed at investigating differences among such inhibitors regarding their 298 

interference with NET release. 299 
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 300 

Treatment of neutrophils with the NADPH-oxidase inhibitor DPI, glutathione 301 

peroxidase precursor substrate NAC and the HOCl scavenger taurine abrogated 302 

total ROS release, being in accordance with data previously reported (43-45). NET 303 

release was only inhibited marginally in response to the bacterial challenge. At the 304 

same time, NET production was significantly affected by the inhibitors in neutrophils 305 

stimulated with PMA. This may be explained by the fact that PMA induces NETs via 306 

protein kinase C, which then activates the NADPH oxidase, and thus can elicit NETs 307 

only via the generation of ROS (43). These findings indicate that NADPH-oxidase-308 

independent NET formation may play a role in host defence against periodontal 309 

bacteria (46, 47).  310 

 311 

Further experiments aimed to establish the role of TLR activation in NET production. 312 

Pre-treatment of neutrophils with the intracellular TLR3, 7, 8 and 9 inhibitor 313 

chloroquine and with the TLR2 and 4 inhibitor OxPAPC separately or combined, did 314 

not lead to significant reductions in ROS or NET release. Previous findings have 315 

suggested that ROS release is both TLR2 and 4 dependent (48), however, Gould et 316 

al. recently demonstrated that blocking TLR2 and 4 did not abolish NET release (49), 317 

being in line with the findings of this study. Notably, neutrophils are not responsive to 318 

TLR3 ligands (50), therefore, the involvement of TLR7, 8 and 9 was investigated by 319 

using chloroquine. Similarly, to our results, Salmon et al. found that chloroquine had 320 

no effect on the oxidative metaboslism in neutrophils (51). Thus, a lack of inhibition 321 

of ROS and NET generation by chloroquine and OxPAPC indicates that other 322 

signalling pathways may have played a role in this study. For example, C-type lectin 323 

receptors and NOD-like receptors can be activated by bacterial triggers, and both 324 
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have been reported to induce immune activation in neutrophils, including the release 325 

of ROS (52, 53). Moreover, signalling via TLR co-receptors may have bypassed the 326 

inhibited pathways (54). Importantly, although widely used as a TLR inhibitor, 327 

chloroquine is thought to directly interfere with multiple physiological cell functions 328 

 including chemotaxis, phagocytosis and ROS release, by alkalising lysosomes and 329 

phagolysosomes (55, 56). Our results do not support an inhibitory effect of 330 

chloroquine on these functions in the concentrations applied in the present study, as 331 

no significant differences were seen between neutrophils treated with chloroquine 332 

and negative controls. However, results from functional cell assays using 333 

chloroquine as an inhibitor should be interpreted with care.  334 

 335 

Future experiments should target these receptors to further elucidate their specific 336 

role in ROS and NET release. Interestingly, in OxPAPC-treated neutrophils 337 

stimulated with opsonised S. aureus, a significant increase in ROS was seen. 338 

Previous studies reported that OxPAPC has the potential to increase ROS release in 339 

endothelial cells via activating the NADPH oxidase (57, 58). Moreover, Fc gamma 340 

receptor (FcγR) signalling is known to trigger ROS release (59). It is therefore 341 

possible that OxPAPC may act as a co-trigger of FcγR-mediated ROS release in 342 

neutrophils challenged with opsonised bacteria, however, further experiments are 343 

required to confirm this hypothesis. 344 

 345 

As a limitation of this study, planktonic single-species preparations were used to 346 

stimulate neutrophils. In vivo, however, neutrophils are challenged by multi-species 347 

biofilms. These biofilms produce metabolites and extracellular matrix components 348 

that may lead to a different response pattern compared to that observed under our 349 
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experimental conditions. Variability in these extracellular products generated by 350 

naturally or artificially grown biofilms is high and reproducibility of experiments 351 

involving such biofilms is difficult (13, 60). Moreover, natural dental biofilms are 352 

highly variable in their composition, and it is difficult to attribute their activation of 353 

neutrophils to certain species or biofilm components. Therefore, little is know about 354 

the interactions between host cells and mixed species biofilms. Further efforts aimed 355 

at creating a reproducible neutrophil-biofilm interaction model in vitro are currently 356 

being carried out by our group. Nevertheless, in order to understand the interaction 357 

of neutrophils with oral bacterial species, such microorganisms playing key roles in 358 

neutrophil activation need to be identified and investigated separately. Insights from 359 

these experiments may subsequently allow for better understanding of neutrophil 360 

responses to oral biofilms.  361 

 362 

As a further limitation, heat-killed microorganisms were employed in our study. 363 

Although heat-killing may lead to the denaturation of surface antigens and pathogen-364 

associated molecular patterns (PAMPs), this is thought to be reversible at 365 

temperatures below 80°C (61). Moreover, previous studies using live bacteria (A. 366 

actinomycetemcomitans serotype b or S. gordonii, F. nucleatum subsp. 367 

polymorphum and V. parvula) showed similar NET formation outcomes regarding 368 

AFU measurements or relative differences in NET production, respectively (14, 62). 369 

Another restriction in our study is the limited number of different bacterial species 370 

used to investigate neutrophil activation. Future studies may need to include further 371 

species, particularly of the red complex, such as Treponema denticola and 372 

Tannerella forsythia.  373 

 374 
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In the present study, neutrophils from periodontally and systemically healthy donors 375 

were used. Overall, these neutrophils were responsive to some health-associated 376 

species and opportunistic pathogens rather than disease-associated species. By 377 

contrast, our previous investigations of periodontally diseased patients have shown 378 

that their neutrophils are hyperactive and hyper-reactive towards F. nucleatum and 379 

P. gingivalis in terms of ROS and cytokine release. On the other hand, NET 380 

production in response to various stimuli was not altered and was similar in 381 

periodontitis patients and non-periodontitis controls. However, these studies did not 382 

compare the effect of health- and disease-associated bacteria on neutrophils (9, 30, 383 

63, 64). It is possible that neutrophils from periodontitis patients may show a higher 384 

reactivity towards periodontal bacteria than those from healthy subjects, as these 385 

neutrophils may be primed in the circulation by bacterial components, such as LPS, 386 

accessing the blood stream through periodontal microlesions (65, 66). Further 387 

studies examining responses of neutrophils from healthy and periodontally diseased 388 

individuals to different oral bacteria may shed light on possible mechanisms of 389 

immune tolerance in health and disease.     390 

 391 

In summary, the data presented here demonstrate variability between periodontal 392 

bacteria in their ability to stimulate neutrophil ROS production and NET responses. 393 

This may contribute to the pathogenesis of periodontitis by mechanisms such as 394 

bacterial avoidance of host defence mechanisms and thus persistence of infection, 395 

or excess ROS release with associated tissue damage. Moreover, our results 396 

indicate that innate immune receptors other than the TLRs investigated here may be 397 

involved in bacteria-triggered ROS and NET release, and that NADPH oxidase-398 

independent NET formation may occur in response to periodontal pathogens. 399 
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Comprehensive studies are required to fully elucidate the role of NETs and ROS in 400 

periodontitis, in particular with regard to the receptors, activation pathways and 401 

intracellular responses triggered by different bacteria. Also, investigating the possible 402 

activation of protective mechanisms, such as glutathione up-regulation, or of anti-403 

inflammatory signalling routes by these bacteria may improve our understanding of 404 

their differential effects seen in this study. 405 

 406 

 407 

MATERIALS AND METHODS 408 

 409 

Neutrophil isolation 410 

Neutrophils were isolated from the peripheral venous blood of periodontally and 411 

systemically healthy volunteers (University of Birmingham Ethics Reference: 412 

ERN_13-0325) using discontinuous Percoll gradients (GE Healthcare, Amersham, 413 

UK) as previously described (67). The medical history was taken from each donor 414 

and periodontal examinations were conducted to ensure periodontal and systemic 415 

health. Cell viability and purity were confirmed by trypan blue exclusion and flow 416 

cytometry, respectively, and this was typically >98%. 417 

 418 

Bacterial culture  419 

A panel of 19 periodontal bacteria and opsonised S. aureus were employed to 420 

stimulate neutrophils. Bacterial stocks were originally obtained from the Forsyth 421 

Institute (Boston, MA, USA) or purchased from the American Type Culture Collection 422 

(ATCC). Blood agar plates (Base no. 2 with 7% horse blood) were purchased from 423 

Oxoid (Basingstoke, UK) and used for growing most bacterial strains. P. gingivalis 424 
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(strain W83) was cultured on anaerobic 20% blood agar plates (Wilkins Chalgren, 425 

Oxoid) and S. aureus was cultured on tryptone soya agar (TSA) plates. Trypticase 426 

soy broth (TSB), brain heart infusion broth (BHI) (both from Oxoid) or fastidious 427 

anaerobe broth (Lab M, Heywood, UK) were used for planktonic growth of the 428 

microorganisms. Bacterial cell suspensions were measured spectrophotometrically 429 

at an optical density of 600 nm to estimate bacterial numbers and bacteria were 430 

heat-killed at 80°C for 30 min. Bacterial cells were washed with PBS, centrifuged and 431 

the pellet resuspended to produce a stock solution, which was stored at -20°C prior 432 

to use. The bacteria used, their growth conditions and assignment to Socransky 433 

complexes are listed in Table 1. 434 

 435 

Opsonisation of S. aureus 436 

S. aureus was grown planktonically in TSB. Following 48h of aerobic growth, 437 

bacteria were washed and pelleted by centrifugation for 15 min at 1800 rcf and 4°C. 438 

Bacteria were opsonised with Vigam liquid (5 mg/mL IgG, Bio Products Laboratory, 439 

Borehamwood, UK). This mixture was agitated overnight at room temperature and, 440 

after washing, stored at -20°C until needed. 441 

 442 

Stimuli employed to activate neutrophils  443 

Neutrophils were stimulated using a range of stimuli. PMA targets NET production 444 

via the activation of protein kinase C (PKC). Our previous findings demonstrated that 445 

the concentration of PMA required for NET release is at 50 nM, whereas 25 nM are 446 

sufficient to stimulate ROS production (43). Both Gram-positive and -negative 447 

bacteria were used to activate neutrophils via TLR2 and 4 in ROS and NET assays. 448 

In addition, ROS and NETs were produced in response to stimulation with opsonised 449 
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S. aureus, which activates neutrophils via the FcγR. For some supplementary 450 

assays, a smaller panel of bacteria was employed, where the selection was made 451 

based on variable characteristics of the microorganisms: Gram-positive and Gram-452 

negative, aerobic, anaerobic and microaerophilic bacteria from different complexes 453 

with FcγR and TLR activation properties were chosen, and both health and disease-454 

associated bacteria were represented. Moreover, variable DNase production was a 455 

selection criterion, as DNAses have the ability to disassemble NETs (e.g., F. 456 

nucleatum and S. aureus are known to produce DNase, whereas A. viscosus and V. 457 

parvula produce little or no DNase, respectively) (36). In addition, bacteria reported 458 

to interfere with ROS scavenging were included: F. nucleatum and S. noxia, which 459 

can metabolise the antioxidants glutathione and L-cysteine (68), as well as A. 460 

viscosus, which produces the ROS scavenger catalase (69). 461 

 462 

Quantification of NET production in response to periodontal bacteria 463 

NET release was determined using a NET quantification assay previously described 464 

(70). Neutrophils were stimulated with the positive controls PMA (50 nM) and 465 

opsonised S. aureus as well as with 19 heat-killed periodontal bacteria (multiplicity of 466 

infection [MOI] of 1,000 (71)) after being equilibrated for a 30 min baseline period. 467 

Unstimulated neutrophils (PBS) were employed as negative controls. Neutrophils 468 

from 10 periodontally and systemically healthy donors were used to perform NET 469 

quantification in triplicate wells per donor. 470 

 471 

Chemiluminescence protocol for ROS assay                 472 

ROS production in response to the periodontal bacteria (MOI of 1,000) was 473 

determined using enhanced chemiluminescence. Neutrophils (1x105) from five 474 
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different donors were added to a 96-well plate (using triplicate wells per donor) pre-475 

coated with 1% bovine serum albumin (BSA). ROS release following exposure to 476 

PBS (unstimulated negative control), PMA (25 nM, positive control) and opsonised 477 

S. aureus (MOI of 500, positive control) was quantified. Neutrophils were stimulated 478 

after being equilibrated for a 30 min baseline period and then ROS was measured 479 

over the subsequent 100 min. To measure total ROS, extracellular ROS and 480 

superoxide, luminol (3 mM), isoluminol (3 mM) with 1.5 units of horseradish 481 

peroxidase (HRP), and lucigenin (0.25 mg/mL), respectively, were added to the 482 

samples and the light output was read for 130 min in a luminometer (Berthold 483 

Tristar2, Berthold Technologies, Harpenden, UK). All readings were expressed as 484 

relative light units (RLUs) and read at 37°C (MikroWin2000, Informer Technologies, 485 

Madrid, Spain). All reagents for chemiluminescence were purchased from Sigma 486 

Aldrich (Dorset, UK). 487 

 488 

NET entrapment and quantification of NET-mediated killing of periodontal 489 

bacteria 490 

To assess the ability of NETs to immobilise periodontal bacteria, fluorescein 491 

isothiocyanate (FITC)-stained live bacteria (MOI of 100) were incubated for 1h with 492 

unstimulated neutrophils, intact NETs (produced by prior 0.75 mM HOCl stimulation 493 

with a subsequent washing step (43)) or NET structures degraded with micrococcal 494 

nuclease (MNase, New England Biolabs, Hitchin, UK) in a 96-well plate pre-coated 495 

with 1% BSA, using five different donors and triplicate wells per donor. In vitro NETs 496 

are formed within 2-3h, therefore, a relevant induction of NET release from otherwise 497 

unstimulated neutrophils by bacteria could be excluded. Following multiple wash 498 

steps to remove any unbound bacteria, the amount of bacteria entrapped was 499 
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fluorometrically quantified and normalised to FITC-stained bacteria incubated with 500 

PBS (cell-free control). To determine whether NETs are capable of killing entrapped 501 

bacteria, six strains (F. nucleatum subsp. polymorphum, S. intermedius, S. 502 

sanguinis, A. viscosus, V. parvula and C. gingivalis) were incubated at a MOI of 100 503 

with PBS (negative control), unstimulated neutrophils, intact NETs or degraded 504 

NETs from five different donors in triplicate wells per donor. Additionally, samples 505 

containing neutrophils were treated with the phagocytosis inhibitor cytochalasin B 506 

(Sigma Aldrich, Harpenden, UK) at a concentration of 10 μg/mL (72). Following 1h of 507 

incubation bacteria were released from NETs by MNase digestion, diluted and 508 

inoculated onto agar plates and cultured for 24h prior to performing colony counts. 509 

 510 

Effect of NADPH-oxidase pathway modulating agents on ROS and NET 511 

production                      512 

To further understand the importance of NADPH-oxidase and downstream products 513 

in bacteria-induced ROS and NET production, specific components of the NADPH-514 

oxidase signalling pathway were targeted. Isolated neutrophils from three different 515 

donors were incubated with DPI (25 μM), an inhibitor of NADPH-oxidase, NAC 516 

(10 mM), a synthetic glutathione precursor that scavenges H2O2, or taurine 517 

(100 mM), which scavenges HOCl to produce taurine chloramine (duplicate wells per 518 

donor). Neutrophil total ROS and NET production were measured following pre-519 

incubation with the modulating agent for 30 min prior to stimulation with PMA 520 

(50 nM), opsonised S. aureus (MOI of 500) and 8 selected bacteria (MOI of 1000; S. 521 

aureus, V. parvula, F. nucleatum subsp. nulceatum, F. nucleatum subsp. 522 

polymorphum, S. gordonii, C. rectus, A. viscosus and S. noxia). NET-DNA was 523 

quantified with Sytox Green following enzymatic degradation of NET structures with 524 
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MNase. All reagents were purchased from Sigma Aldrich (Dorset, UK). 525 

 526 

Effect of TLR inhibition on ROS and NET production  527 

To better understand the signalling involved in ROS and NET activation, the effect of 528 

TLR inhibitors was investigated. Isolated neutrophils from three different donors were 529 

incubated in duplicate wells per donor with chloroquine (100 μM, Invivogen, 530 

Toulouse, France), an intracellular inhibitor of endosomal TLR 3, 7, 8 and 9, or 531 

OxPAPC (30μg/ml, Invivogen, Toulouse, France), which inhibits intracellular 532 

signalling of activated TLR 2 and 4, or both TLR inhibitors were used simultaneously. 533 

Neutrophil total ROS and NET production were measured following pre-incubation 534 

with the inhibitor for 30 min prior to stimulation with PMA (50 nM), opsonised S. 535 

aureus (MOI of 500) and 8 selected bacteria (MOI of 1000; S. aureus, V. parvula, F. 536 

nucleatum subsp. nulceatum, F. nucleatum subsp. polymorphum, S. gordonii, C. 537 

rectus, A. viscosus and S. noxia).  538 

 539 

Statistical analysis 540 

All statistical analyses were performed in GraphPad Prism 5 software package for 541 

Windows (San Diego, CA, USA). The distribution of data, and thus whether data 542 

were considered parametric or non-parametric, was determined by Kolmogorov-543 

Smirnov tests. Statistical tests employed for the purpose of this study were at a 544 

significance of 0.05. The level of significance is indicated as follows: *, **, *** and **** 545 

denotes <0.05, <0.01, <0.001 and <0.0001, respectively. Kruskal-Wallis and Dunn’s 546 

multiple comparison tests were performed for quantification of ROS and NET 547 

release. One-way ANOVA and Dunnett’s post-hoc tests were employed for NET 548 

entrapment assays. Two-way ANOVA and Bonferroni post-hoc tests were applied to 549 
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calculate significances of pathway modulation and inhibition assays. All quantitative 550 

data are shown as mean values ± standard deviations and all statistical tests were 551 

performed comparing different donors. 552 

 553 
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FIGURE LEGENDS 794 

 795 

Figure 1 796 

Neutrophil ROS production in response to periodontal bacteria. Neutrophil total 797 

reactive oxygen species (ROS) (A), extracellular ROS (B) and superoxide production 798 

(C) were quantified and time-course production assayed over 130 min in response to 799 

periodontal bacteria using luminol, isoluminol and lucigenin enhanced 800 

chemiluminescence, respectively. ROS release in response to PBS (unstimulated 801 

negative control), phorbol 12-myristate 13-acetate (PMA) (25 nM, positive control) 802 

and opsonised S. aureus (positive control) was also quantified. Data are presented 803 

as relative light units (RLU) and represent neutrophils of five different donors 804 

assessed in triplicate wells. 805 

 806 

Figure 2 807 

Quantification of NET production in response to periodontal bacteria. 808 

Neutrophil extracellular trap (NET) production was quantified in response to 809 

periodontal bacteria and to PBS (unstimulated negative control), phorbol 12-810 

myristate 13-acetate (PMA) (50 nM, positive control) and opsonised S. aureus 811 

(positive control). NET-DNA was quantified using Sytox Green assay (A) and NET-812 

bound neutrophil elastase (B), myeloperoxidase (C) and cathepsin G (D) were 813 

quantified colorimetrically. Data are presented as arbitrary fluorescence units (AFU), 814 

U/mL or mU/mL and represent neutrophils of ten different donors assessed in 815 

triplicate wells. 816 

 817 

Figure 3 818 
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NET entrapment of periodontal bacteria. A: Neutrophil extracellular trap (NET) 819 

entrapment of bacteria that were not assigned to a Socransky complex (white, grey, 820 

black), as well as purple, yellow, green, orange, red and blue complex bacteria. 821 

Results are normalised to fluorescein isothiocyanate-stained bacteria in PBS. 822 

Statistical significance of bacterial entrapment in NETs is shown relative to bacteria 823 

entrapped by unstimulated neutrophils and degraded NETs (n.s.=not significant). 824 

Data are presented as arbitrary fluorescence units (AFU) B: Representative images 825 

of bacterial entrapment by NETs. Neutrophils (yellow arrows) incubated with PBS 826 

(control), live A. actinomycetemcomitans serotype a, V. parvula or A. viscosus were 827 

visualised by scanning electron microscopy. Blue arrows indicate NET strand 828 

structures and NET-associated bacteria are indicated with green arrows. 829 

Representative images of three experiments are shown, the scale bar represents 830 

10μm. C: Bacterial survival after exposure to neutrophils, NETs, degraded NETs and 831 

neutrophils with cytochalasin B (n.s.=not significant). All results shown represent 832 

neutrophils of five different donors assessed in triplicate wells. 833 

 834 

Figure 4 835 

Effect of NADPH-oxidase pathway modulating agents on ROS and NET 836 

production. Total reactive oxygen species (ROS) (A) and Neutrophil extracellular 837 

trap (NET) (B) production by neutrophils was quantified in response to selected 838 

periodontal bacteria, as well as to phorbol 12-myristate 13-acetate (PMA) (50 nM) 839 

and opsonised S. aureus (positive controls) following pre-incubation (30 mins) with 840 

diphenyleneiodonium (DPI) (25 μM), N-acetyl-cysteine (NAC) (10 mM) and taurine 841 

(100 mM). Data are presented as relative light units (RLU) and arbitrary fluorescence 842 

units (AFU). Experiments were conducted in duplicate using three different donors.  843 
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 844 

Figure 5 845 

Effect of Toll-like receptor inhibition on ROS and NET production. Total reactive 846 

oxygen species (ROS) (A) and Neutrophil extracellular trap (NET) (B) production by 847 

neutrophils was quantified in response to selected periodontal bacteria, as well as to 848 

phorbol 12-myristate 13-acetate (PMA) (50 nM) and opsonised S. aureus (positive 849 

controls) following pre-incubation (30 mins) with chloroquine (100 μM), oxidised 1-850 

palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) (30 μg/mL) or 851 

chloroquine and OxPAPC. Experiments were conducted in duplicate wells using 852 

three different donors (n.s.=not significant). 853 

 854 
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Table 1 869 

Bacteria used, their assignment to Socransky complexes and growth conditions. 870 

 871 

 872 

Bacterial strain 
ATCC 

number 
Socransky 
complex 

Growth 
conditions 

Actinomyces viscosus  
(naeslundii genospecies 2) 

43146 blue anaerobic 

Aggregatibacter actino-
mycetemcomitans serotype a 

29523 green anaerobic 

Aggregatibacter actino-
mycetemcomitans serotype b 

43718 white anaerobic 

Campylobacter rectus 33238(371) orange anaerobic 

Campylobacter showae 51146 orange anaerobic 

Capnocytophaga gingivalis 33624(27) green anaerobic 

Capnocytophaga sputigena 33612(4) green anaerobic 

Fusobacterium nucleatum  
subsp. nucleatum 

25586 orange anaerobic 

Fusobacterium nucleatum  
subsp. polymorphum 

10953 orange anaerobic 

Porphyromonas gingivalis W83 red anaerobic 

Propionibacterium acnes 11827 white anaerobic 

Selenomonas noxia 43541 white anaerobic 

Staphylococcus aureus 
(opsonised) 

9144 N/A aerobic 

Streptococcus anginosus 33397 yellow 5% CO2 

Streptococcus constellatus 27823(M32b) orange 5% CO2 

Streptococcus gordonii 10558 yellow 5% CO2 

Streptococcus intermedius 27335 yellow 5% CO2 

Streptococcus oralis 35037 yellow 5% CO2 

Streptococcus sanguinis 10556 yellow 5% CO2 

Veillonella parvula 10790 purple anaerobic 
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