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Abstract. The railway sleepers are very important component of railway track structure. The 

sleepers can be manufactured by using timber, concrete, steel or other engineered materials. 

Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed 

concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete 

sleepers. They are expected to withstand high dynamic loads and harsh environments. 

However, durability and long-term performance of prestressed concrete sleepers are largely 

dependent on creep and shrinkage responses. This study investigates the long-term behaviours 

of prestressed concrete sleepers and proposes the shortening and deflection diagrams. 

Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into 

the time-dependent performance of prestressed concrete sleepers. The outcome of this paper 

will improve the rail maintenance and inspection criteria in order to establish appropriate 

sensible remote track condition monitor network in practice. 

1.  Introduction 

The railway transportation system has been developed for decades, which is known as safest and most 

economic transportation system. The railway sleepers (or called ‘railroad ties’ in North America) are 

the main component of railway track structure. The use of materials in sleepers can be timber, concrete, 

steel, or other engineered materials [1]. The five main functions of sleepers are: 

1. Support the rail and maintain the track gauge. 

2. Transfer and distribute loads from rail to substructure 

3. Withstand vertical and longitudinal movement of rails 

 

Prestressed concrete sleepers are very popular used in railway system. They provide stability for heavy 

haul and high speed train [2]. Track components consist of superstructure and substructure. 

Superstructure includes rails, sleepers, fastening systems, sleeper pad, and ballast bed. Substructure 

includes subballast (or called ‘capping layer’), formation and foundation. A number of previous papers 

have investigated durability and long-term behaviours of prestressed concrete in long span bridges, 

stadiums, nuclear power plants and silos. They have proposed various material models to predict creep 

and shrinkage but those were mostly based on general reinforced concrete concept. Due to high initial 

elastic shortening in prestressed concrete, the creep and shrinkage effects should be critically re-



 

 

 

 

 

 

evaluated in flexural members [3]. During the time interval, creep and shrinkage strains develop in the 

prestressed concrete sleepers and relaxation occurs in the tendons. The gradual change of concrete 

strain with time causes changes of stress in the reinforcement. The time-dependent deformation of a 

prestressed concrete sleeper is great affected by the quantity and location of the tendons. The tendons 

provide restraint to the time-dependent shortening of concrete caused by creep and shrinkage. As the 

concrete creep and shrinkage, the tendons are gradually compressed. An equal and opposite tensile 

force is applied to the concrete at level of the tendons, thereby reducing the compression caused by 

prestress. It is the tensile forces that are applied gradually at each level of tendons that result in 

significant time-dependent changes in curvature and deflection [4]. Long-term deflections due to creep 

and shrinkage are affected by many variables, including load intensity, mix proportions, member size, 

age at first loading, curing conditions, total quantity of compressive and tensile reinforcing steel, level 

of prestress, relative humidity and temperature. The change in curvature during any time of sustained 

load may be determined. The long-term deflection can be calculated when the final curvature has been 

determined [4].  

 

This study will investigate methods to evaluate shortening and approximate deflection due to 

creep and shrinkage in railway prestressed concrete sleepers. Comparison between design 

codes of EUROCODE2 and AS2009-3600 will provide the insight into the durability of 

concrete sleepers. The outcome of the project will help rail track engineers to better design 

and maintain railway infrastructure, improving asset management efficacy. 
 

2.  Estimating long-term performance concept  

2.1.  Creep Prediction  

The concrete under load that strain increases with time is due to creep. Therefore, creep can be defined 

as the increase in strain under the sustained stress and it can be several times as large as the initial 

strain [5]. If the load is removed, the strain decreases immediately due to elastic recovery and a 

gradual incomplete recovery due to creep. This behaviour is shown in Figure 1. 

 

 
Figure 1: Time dependent creep 

 

When creep is taken into account, its design effects are always evaluated under quasi-permanent 

combination of actions irrespective of the design situation considered, i.e. persistent, transient or 

accidental. 

2.1.1.  Eurocode 2 

The total creep strain εcc (∞, t0) of concrete due to the constant compressive stress of 𝜎𝑐 applied at the 

concrete age of t0 is given by : 

 



 

 

 

 

 

 

 
Where (∞,0) is the final creep coefficient, which the value of 𝜎𝑐 does not exceed 0.45fck (t0). Ec is the 

tangent modulus. 

 
 

 
 

 
 

 
 

 
 

 
 

Where: RH = relative humidity in %, h0 = 2Ac/u mm, Ac = cross sectional area, u = perimeter of the 

member in contact with the atmosphere, S, R and N refer to different classes of cement. 

 

The final creep will be larger and final creep coefficient (∞,0) is multiplied by a factor 𝑘𝜎 if the 

compressive stress applied at the age of t0 exceeds 0.45fck(t0) as can happen during prestress transfer 

process. The Table 1 shows the value of 𝑘𝜎. The factor 𝑘𝜎 is given by: 

 

 
 

Table 1 Value of 𝒌𝝈 in terms of fck 

 

 

 
 

The creep coefficient at any age t can be given by empirical solutions [6, 10-12]. 

2.1.2.  Australian Standard 3600-2009 

The creep coefficient at any time 𝜑𝑐𝑐 can be determined by: 

 

 



 

 

 

 

 

 

 

Where 𝑘2 is the development of creep with time; 𝑘3 is the factor which depends on the age at first 

loading τ (in days); 𝑘4 is the factor which accounts for the environment; and 𝑘5 is the factor which 

accounts for the reduced influence of both relative and humidity and specimen size. 

 

For the development of creep with time 𝑘2 can be calculated by: 

 

 
 

Where 𝑡 is any time in days; 𝑡ℎ is the hypothetical thickness; 𝐴𝑔 is the cross-sectional area of the 

member; 𝑢𝑒 is the portion of the section perimeter exposed to the atmosphere plus half the total 

perimeter of any voids contained within the section.  

 

For factor 𝑘3 which depends on the age at first loading τ can be shown as: 

 

 
 

For the factor 𝑘4 which accounts for the environment: 

 

𝑘4    = 0.7 𝑓𝑜𝑟 𝑎𝑛 𝑎𝑟𝑖𝑑 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 
= 0.65 𝑓𝑜𝑟 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡 
= 0.60 𝑓𝑜𝑟 𝑎 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡 
= 0.5 𝑓𝑜𝑟 𝑎 𝑡𝑟𝑜𝑝𝑖𝑐𝑎𝑙 𝑜𝑟 𝑛𝑒𝑎𝑟−𝑐𝑜𝑎𝑠𝑡𝑎𝑙 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡 

 

For the factor 𝑘5 is given by:  

 

𝑘5 = 1.0  𝑤ℎ𝑒𝑛 𝑓𝑐′≤50𝑀𝑃𝑎 

𝑘5 = (2.0−𝛼3)−0.02(1.0−𝛼3)𝑓’𝑐 𝑤ℎ𝑒𝑛     50𝑀𝑃𝑎 < 𝑓’𝑐 < 100𝑀𝑃𝑎 

 

Where 𝛼3=0.7/(𝑘4𝛼2). The basic creep coefficient 𝜑𝑐𝑐.𝑏 is shown table below: 

 

2.2.  Shrinkage Prediction 

Both of creep and shrinkage are influenced by the same parameters. Shrinkage is not an entirely 

reversible process like creep and it can be also influenced by relative humidity, surface exposed to 

atmosphere, compressive strength of concrete and types of cement. Shrinkage can be divided by two 

parts [5]: 

 

(1) Plastic shrinkage: it happens in few hours after concrete placed. 

 

(2) Dry shrinkage: evaporation leads to loss of water. 

2.2.1.  Eurocode 2 

The total shrinkage strain 𝜀𝑐𝑠 can be given by: 



 

 

 

 

 

 

 

𝜀𝑐𝑠=𝜀𝑑𝑠+𝜀𝑎𝑠 
 

Where 𝜀𝑑𝑠 is drying shrinkage strain; and 𝜀𝑎𝑠 is autogenous shrinkage strain. 

 

2.2.2.  Australian Standard 3600-2009 

The total shrinkage strain 𝜀𝑐𝑠 is shown below: 

 

𝜀𝑐𝑠 = 𝜀𝑐𝑠𝑒 + 𝜀𝑐𝑠𝑑 
 

Where 𝜀𝑐𝑠𝑒 is autogenous shrinkage strain; 𝜀𝑐𝑠𝑑 is drying shrinkage strain. 

 

The autogenous shrinkage 𝜀𝑐𝑠𝑒 is given by: 

 

 
 

 
 

 
 

Where 𝜀’𝑐𝑠𝑑.𝑏 depends on the quality of the local aggregates and may be taken as 800×10
−6

 for concrete 

supplied in Sydney and Brisbane, 900×10
−6 

in Melbourne and 1000×10
−6

 in elsewhere. 

 

The drying shrinkage strain 𝜀𝑐𝑠𝑑 after the beginning of drying (𝑡−𝜏𝑑) can be estimated: 

 

 
 

Where 𝑘1 is the factor which describes the development of drying shrinkage with time; and 𝑘4 is the 

factor which accounts for the environment [4-6]. 

 

2.3.  Deflection and shortening  

In prestressed concrete construction, a large proportion of the sustained external load is often balanced 

by the transverse force exerted by the tendons. Under this balanced load, the short-term deflection may 

be zero, but the long-term deflection is not zero. The restraint to creep and shrinkage offered by non-

symmetrically placed reinforcement on a section can cause significant time-dependent curvature and, 

hence, significant deflection of the member. The mid-span deflection can be determined by: 

 

 
 

2.3.1.  Creep-induced curvature 

The creep-induced curvature κ𝑐𝑐(𝑡) of a particular cross-section at any time t due to a sustained 

service load first applied at age 𝜏0 may be obtained from: 

 

 
 

Where κ𝑠𝑢𝑠,0 is the instantaneous curvature due to the sustained service loads,  



 

 

 

 

 

 

𝜑𝑐𝑐(𝑡, 𝜏0) is the creep coefficient at time 𝑡 due to load first applied at age 𝜏0 

α is a creep modification factor 

2.3.2.  Shrinkage-induced curvature 

The shrinkage-induced curvature on a reinforced or prestressed concrete section is approximated by: 

 

 
 

Where κ𝑟 depends on quantity and location of tendons 

𝜀𝑐𝑠(𝑡) is the shrinkage strain 

D is overall depth of the section 

 

3.  Case study: long-term performance assessment of prestresssed concrete sleeper 

The effects of shortening and approximate deflections for estimating creep, shrinkage strain will be 

evaluated. The fundamental engineering properties of prestressed concrete sleeper used for calculation 

are based on previous research by Remennikov et al. The results are generated for comparisons 

between Eurocode 2 (EC2) and Australian standard 3600-2009 (AS). Figure 2 shows the cross section 

at rail seat of the prestressed concrete sleepers. The parameters of prestressed concrete sleeper are 

shown below [7]: 

(1) Sleeper length: 2700mm 

(2) Track gauge: 1600mm 

(3) Prestressing nominal force: 550kN 

 

 
 

Figure 2: Cross section of railway sleepers 

 

The case is estimated for 18250 days (50 years) in same conditions (uniform dimension of sleepers, 70% 

relative humidity, steam curing) 

 

4.  Shortening and Deflection Evaluations 

4.1.  Creep shortening 

To investigate creep shortening, the 7 cases have been analysed using different characteristic strength 

(20MPa, 25MPa, 32MPa, 40MPa, 55MPa, 65MPa, 80MPa), which are plotted in Figure 3. The data of 

creep shortening are calculated by EC2 and AS codes respectively. All the cases are estimated from 1 



 

 

 

 

 

 

day up to 18250 days (50 years) in the same conditions (uniform dimension of sleepers, 70% relative 

humidity, steam curing etc.).  

 
 

Figure 3 creep shortening 

4.2.  Shrinkage shortening 

Figure 4 shows 7 cases of different strength of prestressed concrete sleepers on the shrinkage effect. 

The data of shrinkage shortening are calculated by EC2 and AS3600-2009 codes respectively. 

 

 
 

Figure 4 shrinkage shortening 

 

 

Based on the sensitive analysis, we found that long-term performance in prestressed concrete sleeper 

depends on various factors. According to obtained data, the shortening and deflection depend on strain, 

which means large strain leads to more shortening and deflection in prestressed concrete sleeper. 

Previous research had stated that the higher strength of concrete has less loss of prestress and concrete 

strength less than 25MPa was not suitable for use in prestressed concrete sleepers [3]. Figure 5 and 

Figure 6 indicates total long-term shortening and approximate deflections (due to creep and shrinkage), 

which higher strength of concrete has less shortening and approximate deflection. However, in initial 

period, higher strength has more shortening than lower strength concrete due to autogenous shrinkage. 

 



 

 

 

 

 

 

  
Figure 5 total long-term shortening 

 

 
Figure 6 deflections 

 

5.  Conclusions 

In real life, railway infrastructure experiences harsh environment and aggressive loading conditions 

from increased traffics and load demands, which means creep and shrinkage strains could have more 

significant influence for deformation of track components. When shortening and deflection occur in 

prestressed concrete sleepers, the track gauge could change with shortening and deflections. It is 

hazard that train derails because of track gauge change. Furthermore, there are many other factors to 

affect prestressed concrete sleepers shortening and deflections like relative humidity, curing conditions, 

age at first loading, temperature, abrasion etc. In this paper, Eurocode 2 and AS3600-2009 are used in 

predicting creep and shrinkage shortening and deflection. Comparison between design codes provides 

the insight into long-term performance of prestressed concrete sleepers. This paper presents shortening 

and deflections due to creep and shrinkage. It will improve the rail maintenance and inspection criteria 

in order to establish appropriate sensible remote track condition monitor network in practice. 
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