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Abstract 

This work is a proof-of-principle study on the feasibility of performing enzyme bioassays using a dye-doped 

leaky waveguide (DDLW) where the substrate was immobilised in the entire volume of the waveguide and 

the fraction of light confined in the waveguide interacted with the absorbing product formed as a result of the 

enzyme's action on the substrate. The immobilisation of the substrate in the waveguide offers the following 

benefits: (1) The coloured product was still immobilised in the waveguide, and thus unable to diffuse away 

from the sensing region in the waveguide, which would otherwise lead to a rapid loss of the absorbance 

signal. (2) The interaction between the optical mode and the immobilised product in the waveguide was 

maximised, resulting in an experimentally determined sensitivity 57.5 times higher than total internal 

reflection (TIR). (3) Because of the small volume of the waveguide, a high local concentration of ~1.61 mM 

could be achieved using a small amount of substrate (7.29 pmol). This is ~100 times lower than the case 

where the same concentration of the substrate solution is present in a microfluidic flow cell of typical 

dimensions. (4) The high local concentration of the substrate ensured that the rate of product formation was 

largely dependent on the concentration of the enzyme in the waveguide. This work demonstrated the 

suitability of DDLW to perform enzyme bioassays using fluorescein diacetate 5(6)-isothiocyanate and 

esterase, and the formation of fluorescein was monitored by recording changes in the intensity of the 

reflected light at the resonance angle. The DDLW has potential applications in drug discovery, clinical 

diagnostics and industrial biotechnology. 

 

Keywords: Waveguide, immobilised, enzyme, bioassay, absorption. 

 

1. Introduction 

Enzyme bioassays are important for drug discovery, clinical diagnostics and industrial biotechnology [1-7]. 

Enzyme bioassays can be carried out in a number of different ways, but the most common methods are 

provided in Table 1 [8]. 

Method Basic principle Benefits Limitations 

Initial rate experiments 

Measure the rate of initial 

reaction after mixing 

enzyme with a large 

excess of substrate 

 Relatively easy to 

perform 

 Short timescales 

 Requires a sensitive 

detector to detect 

low concentrations of 

the product formed 

Progress curve 

experiments 

Measure the time course 

of enzymatic reaction 

 Complete 

determination of 

 Takes relatively long 

time to perform 
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reaction kinetics 

Transient kinetics 

experiments 

Monitor the formation of 

enzyme-substrate 

complex 

 Provide insights into 

the enzyme 

substrate binding 

 Instrumentally 

complex 

Relaxation experiments 

Enzyme, substrate and 

product are initially at 

equilibrium and the 

reaction is then rapidly 

perturbed by introducing 

a change in pressure, 

temperature or pH 

 Understanding of 

both the forward and 

backward enzymatic 

reactions 

 Reaction must be 

reversible 

Table 1: Different methods for performing enzyme bioassays including their benefits and limitations 

 

Many different approaches have been used to monitor the appearance of product/ depletion of the substrate 

with time [9-13], but the most common rely on changes in the optical absorption or fluorescence. Absorption 

spectrophotometry or fluorimetry in cuvettes or microtitre plates, however, typically require quite large 

sample volumes, up to 4 ml for a standard 1 cm cuvette or a few hundred µl for a single well of a 96 well 

microtitre plate. This limitation has been addressed by the use of microfluidic devices, but the detection 

sensitivity of single pass absorption spectroscopy integrated with microfluidic devices is limited because the 

optical pathlength is determined by the physical dimensions of microchannels. To improve detection 

sensitivity while reducing the sample volume techniques such as total internal reflection (TIR) fluorescence 

or absorbance integrated with microfluidics are used [14-16]. The technique, however, suffers from the 

disadvantage that the proportion of light in the evanescent field is quite small (typically 0.1-1% of the incident 

light) requiring high sensitivity detectors to achieve a good signal-to-noise ratio The proportion of light in the 

evanescent field is higher (20-35% of the incident light) for optical waveguides than TIR, but these are 

instrumentally complex and require elaborate fabrication methods.  For conventional high index waveguides, 

increasing the proportion of light in the evanescent field means operating closer to cut-off, which requires 

good control of both the waveguide thickness and refractive index.  Higher sensitivity can be achieved if the 

light in the waveguide rather than in the evanescent field is used to excite fluorescence or perform 

absorption spectroscopy. This can be achieved with a low index waveguide constructed from a porous 

transparent material such as a hydrogel where an absorbing or fluorescent species infiltrates into the 

waveguide and interacts directly with the optical mode in that waveguide. A second advantage of using a low 

index waveguide is the ease of coupling light in and out of these waveguides using a prism, and is a result of 

their characteristic partial confinement of light. Low index waveguides have been variously termed Leaky 

Waveguides (LWs) [8,17-21], Light Condensers (LCs) [22] or Hydrogel Optical Waveguides (HOGs) [23-25], 

but will be referred to as LWs hereafter.  

 

This work investigates the sensitivity of detection of a LW with a porous waveguide to allow a fluorescent 

species to infiltrate into the waveguide and hence interact with the optical mode in that waveguide. The 

theoretical and experimental sensitivity of detection of the porous LW was compared against total internal 

reflection (TIR). A variant of LW where a dye in present in the waveguide called dye-doped leaky waveguide 

(DDLW) was subsequently exploited to perform enzyme bioassays by immobilising substrate in the entire 
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volume of the waveguide and using the interaction between the fraction of light confined in the waveguide 

and absorbing product formed as a result of the enzyme's action on the substrate. More specifically, the 

DDLW consisted of an agarose waveguide doped with reactive blue 4 (RB4) on a glass substrate. The 

immobilised RB4 served two purposes: Firstly, it permits visualisation of the resonance angle as a dip in the 

reflectivity curve at wavelengths away from the absorption of fluorescein. Secondly, RB4 contains a 

dichlorotriazine group, which reacts with hydroxy groups in agarose under basic conditions, leaving a 

reactive monochlorotriazine for subsequent immobilization steps. In this work, the monochlorotriazine group 

was used to immobilise fluorescein diacetate 5(6)-isothiocyanate (FDAITC) through a diethylenetriamine 

linker. FDAITC is colourless, but becomes coloured when converted to fluorescein 5(6)-isothiocyanate 

(FITC) by esterase. Thus, absorption measurements were performed to monitor the formation of the 

coloured product, FITC, which confirmed the presence of esterase in a sample. Although fluorescence is 

generally regarded as more sensitive than absorbance, there are two reasons why in this case it is 

preferable to monitor absorption. Firstly, fluorescence is emitted largely isotropically, meaning that much of 

the fluorescence is lost. Secondly, in this case it is instrumentally much easier to monitor the light emerging 

from the prism at a well-defined range of angles. To monitor fluorescence from above would require a 

transparent flowcell and sample, while monitoring from below would require a truncated prism. In addition, 

fluorescence is usually excited and detected using relatively expensive instrumentation such as lasers, 

photomultipliers, cooled charge coupled device (CCD) cameras or electron-multiplying CCD cameras  In 

contrast, the absorbance data in this work was acquired using a low cost white light emitting diode (LED) and 

a simple and inexpensive complementary metal oxide silicon (CMOS) camera. 

 

2. Experimental 

2.1 Chemicals and Materials  

1 mm thick glass slides and 1 cm pathlength cuvettes were purchased from VWR (Leicestershire, UK). 

Ethanol, acetone, phosphate buffered saline (PBS), fluorescein 5(6)-isothiocyanate (FITC), fluorescein 

diacetae (FDA), esterase, FDA 5(6)-isothiocyanate (FDAITC),  reactive blue 4 (RB4, 35%),  sodium 

hydroxide, potassium chloride, sodium carbonate, sodium bicarbonate, diethylenetriamine (99%) and 

glutaraldehyde were purchased from Sigma-Aldrich (Gillingham, UK). The enzymatic activity of the esterase 

used was ≥50 U/mg. Ultrapure
TM

 LMP agarose was obtained from Life Technologies (Paisley, UK). 

 

2.2 DDLW device fabrication 

Glass squares of ~25.4 mm by 25.4 mm were cleaned in soap solution, de-ionised water and ethanol 

consecutively for 30 min each using an ultrasonic bath. 2% (w:v) agarose solution was heated in a 

microwave oven until agarose was fully dissolved. The solution was placed on a hot plate set at 95 °C, 12.5 

µl of 25% (v:v) glutaraldehyde was added to 10 ml solution and allowed to react for 15 min. Subsequently, 

the solution was spin coated at a speed of 2250 rpm for 30 s. As shown in the inset in Figure 1 (b), the plate 

used to make a flow cell consisted of two inlets and a single outlet, a recessed Y-shaped cavity 0.2 mm deep 

and a groove to mount an O-ring. The Y-shaped flow channel was 4 mm wide. The plate was fabricated by 

CNC machining of a 3 mm thick black acrylic sheet. The plate was placed on an agarose coated glass slide 

and held in place using a fixture clamped on top. To visualise the resonance angle, a freshly prepared RB4 

solution containing 0.78 mM of the dye, 0.268 M KCl and 10 mM NaOH was pumped on top of the agarose 

coated slide for 15 minutes. This resulted in a dip in the reflectivity curve at the resonance angle. 
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2.3 Instrumentation 

As shown in Figure1 (a), an ocean optics spectrometer (USB4000 UV-Vis) in combination with a tungsten-

halogen lamp (HL2000), cuvette holder assembly and optical fibres (FC-UV400-1) was used to perform the 

enzyme bioassay using single pass absorption spectroscopy. A schematic of the instrumentation used to 

perform the enzyme bioassays using DDLW is shown in Figure 1 (b). Briefly, a BK7 equilateral prism made 

(Qioptic Photonics, Denbighshire, UK) was used to couple light in and out of the DDLW device. The light 

source, a white LED (W57L5111P, Roithner Lasertechnik, Vienna, Austria) and camera (Pixelink, Ottowa, 

Canada) were mounted on rails, which were connected to goniometers to control their angular position. The 

end of the LED was sawn off and the cut end sanded with 1200 grit emery cloth, then polished successively 

with 30, 10, 3 and 1 µm diamond lapping film to obtain a flat end of good optical quality. An achromatic 

doublet was used to obtain a collimated beam. Light was then passed through a cylindrical lens to obtain a 

wedge-shaped beam with a wedge angle of ~14° in air or ~9° in the prism. The output of the DDLW was 

passed through a transmission grating and an achromatic doublet to focus it onto the camera. For single 

wavelength scans, a 491 nm laser (Cobolt Capypso, Cobolt AB, Solna, Sweden) was used as the light 

source and a 10 mm diameter silicon photodiode (Centronic OSD100-6, RS components, Corby, UK) was 

used as the detector. 

 

 

 

Figure 1: Schematic of the instrumentation for (a) single pass- and (b) DDLW-based broadband 

absorption spectroscopy (where the inset shows prism, DDLW and flow cell assembly with respect 

to the incoming and reflected light. The flow cell was black in colour, but is shown to be transparent 

to illustrate how components stacked on top of each other) 

 

2.4 Methodology 

2.4.1 Enzyme bioassay using single pass absorption spectroscopy 

Stock solution of 5 mg/ml FDA was prepared in acetone. The lamp was turned off and the dark spectrum 

(wavelength dependent Id) was captured. Subsequently, the lamp was turned on and allowed to warm up for 

at least 30 minutes. A cuvette was filled with 3 ml of PBS and 20 µl of the FDA stock solution. Thus, the 

concentration of fluorescein diacetate in the cuvette was ~78.9 µM. The cuvette was placed in the path of the 

light beam consecutively and the corresponding intensity of transmitted light (i.e. Io) was recorded. The 

integration time was set to 100 ms and number of scans to average was 10. 2.58 µg ml
-1

 (or 15.4 nM or 

0.129 U/ml) of esterase was added to the cuvette, mixed thoroughly and the intensity of transmitted light (i.e. 
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I) was recorded after every ~1.1 s. The values of Io, I and Id were substituted in Beer-Lambert law to obtain 

time dependent absorbance spectra. Subsequently, the average absorbance value between 493 nm and 497 

nm was plotted against time. The above procedure was repeated for 1.31, 0.66, 0.33 and 0.17 µg ml
-1

 of 

esterase.  The same experiment was repeated for a fixed concentration, 2.58 µg ml
-1

, of esterase, but 

different concentrations of FDA. 

 

2.4.2 Enzyme bioassay using DDLW 

The relationship between camera pixel and wavelength was determined by introducing interference filters of 

known wavelength in the path of incident light and recording the corresponding pixel position of the reflected 

light. The relationship between the camera pixel number and wavelength is given by: N=5994.53-8.95×λ (r
2
: 

0.999) where N is the pixel number and λ the wavelength in nm. The camera integration time was set to 25 

ms. A glass slide was placed on top of the prism and an output was captured, which was used to normalise 

all other images. A dark image was captured with the LED turned off. The DDLW was washed with PBS and 

100 mM bicarbonate buffer of pH 9.5. Subsequently, ~1.85 M diethylenetriamine solution prepared in 

bicarbonate buffer was recirculated on top of the DDLW for 60 min. After a PBS wash, a solution containing 

~78.9 µM FDAITC in PBS was allowed to react with the amine groups for 30 min. The device was then 

washed with PBS. Esterase solution was introduced in the flow cell, the enzyme was allowed to act on the 

FDAITC for 3 h, and the output of the DDLW was captured at intervals of 30 s. All these fluids were pumped 

through the flow cell using a peristaltic pump at a flow rate of 0.3 ml min
-1

. The image analysis was 

performed using ImageJ. Briefly, the dark image was subtracted from all output images, which were then 

normalised using a white image recorded at the same integration time but with a glass chip instead of the 

waveguide, and the value corresponding to the dip position was extracted for all wavelengths. The values 

obtained for images for DDLW before and after 3 hour treatment with esterase solution were substituted in 

Beer-Lambert law to obtain the absorption spectrum.  

 

3. Results and discussion 

3.1 Single pass absorption spectroscopy 

FDA was introduced in enzymatic studies by Guilbault et. al. [26] because it is hydrolysed by a number of 

enzymes including esterases. FDA is now widely used to measure the activity of general esterases in a 

variety of samples such as soil, lake water and living cells [27-32]. The reaction scheme between FDA and 

esterase is provided in Figure 2. The activity of esterases is typically measured by quantifying the 

concentration of coloured fluorescein as the enzyme acts on the colourless FDA. FDA is weakly absorbing 

because there is no charge delocalisation over the extended π structure of the molecule, whereas the 

dianionic form of fluorescein absorbs strongly at ~490 nm with a shoulder around 475 nm [33]. FDA 

hydolyses rapidly at alkaline pH (7.5-9.5), while the activity of esterase is strongest at ~pH 8.0. Thus, as a 

compromise, the enzyme assay was carried out at pH 7.4. 

 

Figure 2: Reaction scheme for the hydrolysis of FDA by esterase 
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A summary of enzyme bioassays performed using single pass absorption spectroscopy in a cuvette is 

provided in Figure 3. Figure 3 (a) shows the evolution of absorption spectra as FDA is converted to 

fluorescein with time interval of 1 min between traces starting ~30 s after adding esterase. As expected, the 

absorption increases with time after the addition of esterase. For this particular case, the concentration of 

FDA was 78.9 µM. Figure 3 (b), which is a plot of average absorbance between 493 nm and 497 nm (i.e. 4 

nm wide window around the wavelength at which absorbance peak was observed) against time, shows that 

the initial rate of change of absorbance (i.e. at time=0 in Figure 3 (b), which is within 30 s of adding esterase 

to the substrate solution) is independent of the enzyme concentration when the substrate concentration is in 

the range between 19.8 µM and 78.9 µM (i.e. at least ~1260 times higher than esterase concentration). Inset 

(i) in Figure 3 (c) illustrates that when the substrate concentration is 78.9 µM, the initial rate of change of 

absorbance is linearly related to the enzyme concentration. The relationship between the two is given by the 

following equation: Rt=-1.73×10
-4

+2.87×10
-3

×c(r
2
: 0.999) where c is the enzyme concentration (µg ml

-1
) and 

Rt is the initial rate of change of absorbance (s
-1

). Figure 3 (c) shows that for esterase solutions of 

concentrations 0.66 µg ml
-1

, 1.31 µg ml
-1 

and 2.58 µg ml
-1

, plot of absorbance against time rises 

exponentially to a maximum value, which implies that the rate of change of absorbance decreases within 500 

s (i.e. the duration of the experiment). This is because as the substrate is used up, the enzyme's active sites 

are no longer saturated and hence substrate concentration becomes rate limiting. In contrast, for esterase 

solutions of concentrations 0.17 µg ml
-1

 and 0.33 µg ml
-1

, the exponential time constant for the plot of 

absorbance against time is so long that the rate of change of absorbance appears to be constant within 500 

s. This in turn suggests that at these low concentrations of the enzyme, the amount of substrate used up 

over the duration of the experiment is insignificant compared to its initial concentration. As a result, the 

substrate concentration is always high enough to saturate the esterase's active sites.  
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Figure 3: (a) Absorbance spectra as 78.9 µM FDA is converted to fluorescein on adding 2.58 µg ml
-1 

of 

esterase, time-varying absorbance for (b) 2.58 µg ml
-1 

of esterase but different concentrations of FDA, 

and (c) 78.9 µM of FDA but different concentrations of esterase (where inset (i) shows the initial rate 

of change of absorbance versus enzyme concentration and error bars are too small to be visible) 

 

3.2 Comparison of DDLW- versus TIR-based absorption 

The sensitivity of the DDLW to absorption in the waveguide layer can be determined by first finding the real 

part of the mode effective index, which then allows the coupling angle to be determined following which the 

reflectivity at the coupling angle to be calculated. We can determine the modes of a LW by using a simple 

model that consists of a plane waveguiding layer of thickness h and refractive index n1 bounded on one side 

by a semi-infinite (much thicker than the wavelength) substrate of higher refractive index (n0) than the 

waveguide layer and on the other side a semi-infinite cover layer of a lower refractive index n2. Figure 4 

shows this structure diagrammatically, with the addition of a coupling prism of index n0.  

 

The mode equation for this structure can be written as: 

 mztot 22 1210           (1) 

Where tot  is the total phase shift for one complete back-and-forth reflection between the two 

waveguide/substrate boundaries, z  is the phase shift for the propagation of the wave from one boundary to 

the other, 10  is the phase shift on reflection at the waveguide/substrate boundary and 12  is the phase 

shift on reflection at the waveguide/cover boundary. To satisfy the transverse resonance condition, tot  must 

be an integral multiple of 2π. 

From optical theory we obtain: 
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Where β is the real part of the complex effective mode index N = β+iK. Thus, equation (1) becomes: 
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The term 10  will have the value  in equation (2) because the angle of incidence in the leaky waveguide 

layer is always greater than the polarisation angle. We can see from these equations that 21 nn   , 

otherwise one of the terms  22

1 n  or  2

2

2 n  will be imaginary and will not permit real solutions of the 

equations. This equation cannot be solved analytically so must be solved numerically or graphically to 

determine β.  

 

Figure 4: A schematic of the DDLW mounted on a coupling prism 

 

Once we have determined β we can use the transfer matrix method [34] to determine the reflectivity of the 

structure in the presence of absorption in either the waveguide or cover layer. Firstly we can determine the 

angles in each layer from: 
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Where m = 0, 1 or 2 for the substrate, waveguide and cover layers respectively. The reflection coefficients 

for the substrate/waveguide and waveguide/cover layers can be determined using the Fresnel equations: 
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Where mn is 01 for the substrate/waveguide interface and 12 for the waveguide/cover interface. The 

reflection coefficient for the complete structure is then given by: 
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The intensity reflection coefficient can be determined using: 

 2rR               (8) 

The imaginary part of the waveguide complex refractive index (K) can be calculated from the wavelength 

dependent extinction coefficient ε (M
-1

 m
-1

) and the concentration c (M) of the dye in the waveguide using: 

 

 

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4

4.230 c
K               (9) 

 

In order to compare the detection sensitivity of absorbance of LW and TIR, modelling was performed using 

the transfer matrix method. A program using this methodology was written in C++. A recursive descent 

expression evaluator was built in to the program to permit rapid modification of the structure and scan 

parameters. In addition, a simplex optimisation algorithm [35] was incorporated to allow the program to 

obtain the best fit structure parameters for a given experimental reflectivity plot. Figure 5 (a) shows  

theoretical reflectivity plots for a 1.5 µm thick 10% (w/v) agarose waveguide on a BK7 glass substrate and 

prism at 491 nm for different concentrations of FITC. It can be seen that at an internal angle of 62.23° the 

reflectivity is most strongly affected by the presence of the dye. This is the angle at which light is coupled 

most strongly into the waveguide. Figure 5 (b) shows the reflectivity curve at 491 nm for simple TIR with the 

same concentrations of FITC solutions above the glass substrate. It can be seen that TIR gives much 

smaller changes in reflectivity. The inset in Figure 5 (b) shows the peak absorbance at 62.23° (the reflectivity 

minimum) for the LW and 61.5° (close to the critical angle of 61.4679°) for TIR. At these angles, the LW is 

theoretically about 32 times as sensitive to absorption as TIR. In addition, the slope of the TIR reflectivity 

curve near the critical angle is very steep, with the result that very small changes in the critical angle caused 

by refractive index changes in the sample layer will cause large changes in the reflectivity. In the case of the 

LW, we can find the position of the minimum very easily using either curve fitting or a simple centre of gravity 
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algorithm and hence find the value of reflectivity at the minimum. Figure 6(a) shows an experimentally 

determined series of reflectivity curves for an agarose waveguide spin coated from a 2% solution for the 

same FITC concentrations as in Figure 5(a). In this case, the agarose waveguide was not treated with RB4 

before applying the FITC solutions. It can be seen that the experimentally determined reflectivity minimum in 

Figure 6 (a) for all concentrations of FITC solutions is lower than Figure 5 (a). A possible explanation is that 

the local concentration of FITC in the waveguide is six to seven times higher than the bulk concentration 

because of non-covalent interactions between the agarose and FITC. Based on the estimated agarose 

repeating unit concentration in the waveguide of 80 mM, this would imply a dissociation constant for an 

FITC-agarose complex of ~12 mM. FITC does not react with agarose at the pH used in this work (pH 7.4). 

Additionally, the experimentally determined reflectivity minimum saturated at 1000 µM FITC. Figure 6(b) 

gives the corresponding experimental reflectivity plots for simple TIR, showing that the changes in reflectivity 

are much smaller than those of the LW. The inset in Figure 6(b) shows the absorbances for LW (at the 

reflectivity minimum) and for TIR (at 61.5°). The best fit lines (in the linear region from 0 to 300 µM FITC for 

the LW) give slopes of 1.96×10
-3

 µM
-1

 for LW and 3.41×10
-5

 µM
-1

 for TIR, showing that experimentally 

determined sensitivity of LW is 57.5 times higher than TIR. 

 

Figure 5: Theoretical plot of reflectivity against angle for a (a) 1.5 µm thick 10% agarose LW (where 

the concentration of RB4 is zero) and (b) TIR on a BK7 substrate at 491 nm for different 

concentrations of FITC (where inset compares peak absorbance values versus FITC concentration 

for DDLW and TIR) 
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Figure 6: Experimental plot of reflectivity against angle for a (a) LW spin coated from 2% agarose 

solution and (b) TIR on a BK7 substrate at 491 nm for different concentrations of FITC (where inset 

compares peak absorbance values versus FITC concentration for DDLW and TIR) 

 

3.3 Estimation of the concentration of immobilised substrate 

The reaction scheme used for the immobilisation of FDAITC to agarose waveguide is provided in Figure 7. 

RB4 was first immobilised to agarose waveguide under basic conditions (pH 12) to allow the hydroxy groups 

in agarose to react with dichlorotriazine group in RB4. In addition, 0.27 M KCl was added to increase the 

affinity of RB4 to agarose. Subsequently, one of the amine groups in diethylenetriamine was allowed to react 

with the monochlorotriazine group of RB4 leaving behind a free amine at pH 9.5. These free amine groups 

reacted with FDAITC. Tests with FITC as a substitute for FDAITC showed that the diethylenetriamine linker 

increased the amount of FITC immobilised by a factor of ~3 compared to the direct reaction of FITC with 

RB4 labelled agarose as the maximum absorbance increase by this factor when the linker was used. 

 

Figure 8 (a) shows the experimental and best fit reflectivity curves for the RB4, RB4-FDA before enzymatic 

hydrolysis and RB4-FDA after 3 h of enzymatic hydrolysis. Taking the reflectivity profile of DDLW consisting 

of RB4 doped agarose waveguide at 495 nm and fitting using the transfer matrix method gave a waveguide 

thickness of 1.134 µm, a swelling ratio of 9.75% and an RB4 concentration of 10.87 mM. Based on the 

swelling ratio, the concentration of agarose in the waveguide was ~20.5% (w:v), which is ~10 times higher 

than the concentration of agarose solution that was used to fabricate the waveguide. This means that the 

original gel dried down and when rehydrated, swelled up to 20.5% (w/v) agarose resulting in a thinner, higher 

refractive index waveguide than the original deposited film. The refractive index of the rehydrated agarose 

with a swelling ratio of 20.5% is 1.36886 (versus 1.34015 for undehydrated gel) at 495 nm. The propagation 

distance (i.e. the distance for which light travels in the waveguide before it couples out) and penetration 

depth of the evanescent field for this structure are estimated to be ~14.1 µm and ~0.17 µm respectively. A 

profile of the optical mode travelling in the agarose of the DDLW structure is provided in Figure 8 (b) and 
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clearly shows that ~77% of the light is confined in the waveguide, while the remaining 23% is present in the 

evanescent field. Thus, in case of DDLW, a large proportion of the incident light will interact with the coloured 

product formed as a result of the enzyme's action on the substrate.    

 

Figure 7: Reaction scheme for immobilising FDAITC to agarose waveguide 

 

After immobilisation of FDAITC, the reflectivity profile was fitted with the addition of an unknown 

concentration of fluorescein and a real refractive index offset to account for the shift in peak position caused 

by the refractive index increase following immobilisation. This gave a fluorescein concentration of 383 µM. 

This implies that ~383 µM of FDAITC in the waveguide was converted to fluorescein because of hydrolysis at 

pH 7.4 of during the immobilisation process [36]. Esterase (0.24 µg ml
-1

) was then flowed over the 

waveguide for 3 h, following which a reflectivity profile at 495 nm was again taken and fitted. This gave a 

fluorescein concentration of 1.61 mM. Thus, the concentration of FDAITC is estimated to be ~1.61 mM, 

which is about 20 times higher than the maximum concentration of FDA used in cuvettes for single pass 

absorption spectroscopy. This in turn implies that while performing the enzyme assay using DDLW, we will 

be in the regime where the reaction will depend on the concentration of esterase, but will be independent of 

the concentration of FDAITC. Further, the real refractive index of the waveguide was reduced by 6.11×10
-4 

after the DDLW with FDAITC immobilised in the waveguide was treated with esterase for 3 h. The negative 

real refractive index shift is thought to be a result of the loss of acetate resulting in a reduction of the 

molecular mass of the immobilised FDAITC.  
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Figure 8: Experimental and best fit reflectivity curves for the RB4, FDAITC before after 3 h of 

enzymatic hydrolysis, and (b) theoretical profile of the optical mode travelling in the waveguide 

 

3.5 Enzyme bioassay using DDLW 

Typical outputs of the DDLW after immobilising FDAITC and irrigating it with 0.24 µg ml
-1

 of esterase in PBS 

are shown in Figure 9 (a) and (b) respectively. The difference between the two (see Figure 9 (c)) clearly 

shows the appearance of the band corresponding to the FITC absorption. The difference image was created 

using the ImageJ image processing program by subtracting the image before esterase from the image after 

esterase treatment and applying auto contrast enhancement to emphasize the appearance of the absorption 

band of fluorescein. Only the raw images were used when extracting reflectivity information; no contrast 

enhancement was applied. 

 

Figure 9: Typical output images of the DDLW (a) after FDATIC immobilisation, (b) esterase treatment 

and (c) difference between the two after applying auto contrast enhancement 
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Figure 10 shows the result of irrigating an FDAITC activated device with 0.24 µg ml
-1

 of esterase in PBS. The 

absorbance has been normalised to aid the comparison with the theoretical plot derived below. As noted in 

the previous section, the substrate is present in high concentration (at least 1.6 mM) in the waveguide and 

the enzyme is present in low concentration. Under these conditions, a linear increase in absorbance would 

be expected, but instead the rate of change of absorbance increases with time. This implies that the enzyme 

concentration in the waveguide is increasing with time, so the rate of reaction also increases with time. As a 

first approximation, we assume that the concentration of enzyme at the cover/waveguide interface is 

constant, that is, there is no depletion of enzyme caused by diffusion into the waveguide. Also, we assume 

that diffusion of enzyme into the waveguide is sufficiently slow that the concentration of enzyme at the 

waveguide/substrate interface is much less than the concentration in the cover layer. This puts an upper limit 

on the range of enzyme diffusion coefficients that will meet this limitation given by: 

 
t

h
D

2

2

max                      (10) 

Under these conditions, we can use a simple linear diffusion model to determine the concentration of 

enzyme at any point in the waveguide. In this case, we obtain: 

 

 
Dt

x
CC

2
erfc0                    (11) 

 

Where C is the enzyme concentration at a distance x from the waveguide/cover interface, C0 is the enzyme 

concentration in the cover layer, D is the diffusion coefficient of the enzyme in agarose and t is time. To 

obtain the rate of reaction, we must integrate equation 11 from 0 (the top of the waveguide) to the height of 

the waveguide h to obtain the total amount of enzyme that has diffused into the waveguide: 
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The concentration of product will be the integral of equation 12 with respect to time multiplied by the 

appropriate rate constant k: 
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Unfortunately this function cannot be integrated analytically, so must be integrated numerically.  
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Figure 10: Plot of normalised absorbance against time for an FDAITC chip irrigated with  0.24 µg ml
-1

 

esterase in PBS (black trace) and a theoretical plot of normalised absorbance derived from equation 

12 for an enzyme diffusion coefficient in agarose of 1.5×10
-15

 m
2
 s

-1
. 

 

Figure 10 shows a theoretical plot based on a diffusion coefficient of esterase in agarose of 1.5×10
−15

 m
2
 s

-1
. 

This compares with a literature value of ~4×10
-11

 m
2
 s

-1
 [37], showing that the waveguide layer significantly 

hinders the diffusion of enzyme and hence the pore size distribution in agarose waveguides is considerably 

smaller than esterase. This is because the dehydration/rehydration dramatically reduces the pore size of 

agarose and is in accordance with the modelling results that indicated that rehydrated agarose waveguides 

are structurally as well as optically denser than those that have never been dehydrated. Based on the width 

of light beam, waveguide thickness and width of the microchannel, the substrate volume being sensed was 

~4.53 nL. This when multiplied with the estimated concentration of the substrate in the waveguide resulted in 

~7.29 pmol of the substrate.  

 

4. Conclusions 

A dye-doped leaky waveguide (DDLW) for carrying out enzymatic bioassays has been developed. The 

DDLW consisted of a substrate, fluorescein diacetate 5(6)-isothiocyanate (FDAITC), immobilised to the 

agarose waveguide. The reaction of esterase solution on the substrate resulted in the formation of 

fluorescein tethered to the waveguide. The formation of the absorbing species, fluorescein, was monitored 

by recording the changes in the intensity of the reflected light at the resonance angle. A mathematical model 

governing the reflection coefficient at the resonance angle of DDLW was developed and implemented in C++ 

using a transfer matrix method. The experiments showed that the sensitivity of DDLW to absorbance was 

57.5 times higher than TIR. Additionally, as the coloured product formed as a result of the action of the 

enzyme on the substrate was still immobilised in the waveguide, it could not diffuse away from the sensing 

region in the waveguide, thereby preventing a rapid loss of the absorbance signal. The immobilisation of the 

substrate in the small volume of the waveguide resulted in high local concentration of 1.61 mM, while 
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requiring only 7.29 pmol of the substrate. The high local concentration of the substrate ensured that the rate 

of product formation was largely dependent on the concentration of the enzyme, which was limited by the 

rate of diffusion of the enzyme in the waveguide. The future work will focus on devising DDLW with highly 

porous waveguides and subsequently using them to perform bioassays at different enzyme concentrations.   
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