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ABBREVIATIONS LIST 

aDLS: anterior dorsolateral striatum 

aDMS: anterior dorsomedial striatum 

ANOVA: analysis of variance 

A-O: ‘action-outcome’ 

BLA: Basolateral Amygdala 

IEG: Immediate Early Genes 

NAc: Nucleus Accumbens  

ODN: Oligodeoxynucleotides  

pDLS: posterior dorsolateral striatum 

pDMS: posterior dorsomedial striatum 

S-R: ‘stimulus-response’  

Zif268: Zinc Finger Protein 225 

 

HIGHLIGHTS: 

 Zif268 expression in the pDLS is not required for retrieval of habit-like memory 

 Knockdown of pDLS Zif268 expression reduces habit-like memory restabilisation 

 Zif268 expression increased in the BLA after reward memory retrieval  

 Despite extended T-Maze training rats did not use a S-R strategy 
 



  

 

 2 

 

ABSTRACT  

Under certain conditions pavlovian memories undergo reconsolidation, whereby the reactivated 

memory can be disrupted by manipulations such as knockdown of zif268. For instrumental 

memories, reconsolidation disruption is less well established. Our previous, preliminary data 

identified that there was an increase in Zif268 in the posterior dorsolateral striatum (pDLS) after 

expression of an instrumental habit-like ‘response’ memory, but not an instrumental goal-directed 

‘place’ memory on a T-maze task. Here, the requirement for Zif268 in the reconsolidation of a 

response memory was tested by knockdown of Zif268, using antisense oligodeoxynucleotide 

infusion into the pDLS, at memory reactivation. Zif268 knockdown reduced response memory 

expression 72H, but not 7d later. Western blotting revealed a non-significant increase in Zif268 in 

the pDLS in rats using response memories, but there was no change in Zif268 expression in the 

hippocampus following retrieval of a place memory. Zif268 expression increased in the basolateral 

amygdala after memory reactivation whether a response or place strategy was used during 

reactivation. We propose that Zif268 expression in the basolateral amygdala may be linked to 

prediction error, generated by the absence of reward at reactivation. Taken together, these results 

suggest a complex role for Zif268 in the maintenance of instrumental memories.    
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INTRODUCTION  

Habits are an adaptive way of performing behaviours with the minimum level of cognitive effort. 

However compulsive habits, e.g. in drug addiction, are highly maladaptive. For this reason, there has 

been great interest in developing treatments that allow compulsive habits to be overcome once 

established. One such treatment would disrupt the reconsolidation of habit memories so restoring 

control over behaviour by the values of goals  (Milton and Everitt, 2012). 

 Reconsolidation is the process by which memories become destabilised at reactivation, and 

subsequently updated or strengthened (Nader et al., 2000). Reconsolidation can be disrupted by 

antisense oligodeoxynucleotides (ASO-ODNs) infused intra-cerebrally in key loci to knockdown the 

expression of the plasticity-associated gene zif268 normally induced by memory reactivation (Lee et 

al., 2005). Pavlovian cue-drug memories, linking environmental stimuli to a drug high, reconsolidate 

(Milton et al., 2008; Sanchez et al., 2010; Theberge et al., 2010; Barak et al., 2013); but whether 

instrumental habit memories can also be specifically targeted for disruption is unclear.  

 Until recently, instrumental memories were thought not to reconsolidate, as protein 

synthesis inhibition did not produce reactivation-dependent amnesia (Hernandez and Kelley, 2004; 

for review Vousden and Milton, 2017). However, early studies did not take into account that 

instrumental behaviour can be supported by either goal-directed (‘action-outcome’, A-O) or habitual 

(‘stimulus-response’, S-R) associations. These associations form in parallel (Dickinson, 1985) and are 

psychologically and neurobiologically dissociable. The A-O association is mediated by the posterior 

dorsomedial striatum (pDMS) while the automaticity of responding, as it becomes a S-R habit, 

progressively engages the anterior dorsolateral striatum (aDLS) (Haber, 2003; Belin and Everitt, 

2008; Zapata et al., 2010; Murray et al., 2012) and requires an intact aDLS and posterior dorsolateral 

striatum (pDLS) (Packard and McGaugh, 1996; Yin et al., 2004). Although some data indicated that 

instrumental memories are robust because they do not undergo reconsolidation (Hernandez and 

Kelley, 2004), other studies have challenged this, showing that systemic NMDAR antagonism can 

disrupt instrumental memory reconsolidation under specific conditions (Exton-McGuinness et al., 

2014). 

 Determining whether instrumental responding is goal-directed or habitual can be achieved 

through outcome devaluation (Dickinson, 1985) and contingency degradation (Hammond, 1980). A 

related method, first employed by Tolman (Tolman et al., 1946) and adapted by Packard & McGaugh 

(Packard and McGaugh, 1996), uses a modified T-maze task, which produces a different behavioural 

outcome depending upon which association is retrieved during a probe test. Briefly, animals are 

trained to run to a specific rewarded location in a T-maze. Animals can retrieve the reward either by 

using extramaze (allocentric) cues to produce a spatial ‘place’ representation of the goal, or by 
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encoding the motion (egocentric) cues required to reach the goal (e.g. ‘turn left’). In a probe test, 

animals start opposite the original starting location. Therefore, an A-O response leads to ‘place’ 

learners correctly choosing the previously baited arm on the probe test, whereas ‘response’ learners 

employ the body turns used in training (i.e. respond incorrectly/S-R). 

 Inactivation studies have shown the hippocampus to be necessary for expression of the 

‘place’ memory whereas the dorsolateral striatum supports the ‘response’ memory in this T-Maze 

task (Packard and McGaugh, 1996). Of particular interest, from a reconsolidation perspective, is the 

finding that instrumental training can increase striatal expression of zif268, and that after extensive 

training it remains elevated only in lateral striatal regions (Maroteaux et al., 2014). This is consistent 

with our preliminary data, showing that Zif268 was upregulated in the posterior (but not anterior) 

dorsolateral striatum (pDLS) of response learners in the T-Maze task (Milton and Everitt, 2012). As 

Zif268 is critical for appetitive pavlovian memory reconsolidation (Lee et al., 2006), we analysed the 

expression of Zif268 after extended training in the T-Maze task and investigated whether zif268 

knockdown in the pDLS using ASO-ODNs during memory reactivation would disrupt the subsequent 

expression and persistence of a response memory.  

 

EXPERIMENTAL PROCEDURES  

Subjects 

Subjects were 101 male Lister-Hooded rats (Charles River, Bicester, UK), weighing 250 g at the start 

of the experiment, that were housed in pairs in a vivarium maintained at 21oC, on a reversed light-

dark cycle (lights on at 1900hrs). Water was available ad libitum except for during behavioural 

training and testing sessions, and the animals were food-restricted at 85-90% of their free-feeding 

weight, being fed after behavioural procedures each day. Weights were monitored thrice-weekly. All 

procedures were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986. 

 

Behavioural apparatus 

Each animal was tested individually on a plus maze with four arms of 50cm long and 15cm wide, at a 

height of 50cm from the floor, with raised sides of 4cm. One arm of the plus maze, opposite to the 

start arm, was occluded by a white Perspex door, converting the apparatus into a T-maze. The maze 

was situated in a room with many external cues located around the maze, and these cues remained 

the same throughout training and testing of each batch of animals. 
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Surgery 

Rats were anaesthetised with intramuscular injections of a mixture of ketamine (Ketaset; Henry 

Schein, Dumfries, Scotland, 0.1 ml / 100g body weight) and xylazine (Rompun; Henry Schein, 0.05 ml 

/ 100g body weight). Each rat was placed into a stereotaxic frame (David Kopf, USA) and implanted 

with guide cannulae (24-gauge, 11-mm; Cooper’s Needleworks) targeting the pDLS, using the 

following co-ordinates (mm): AP -0.4 mm, ML ± 4.0 mm (from bregma), DV -3.8 mm (from the skull 

surface). Wire stylets (Cooper’s Needleworks) were inserted into the guide cannulae to maintain 

patency. Rats were allowed at least 7 days of recovery from surgery before behavioural procedures 

began. 

 

Behavioural procedures 

Behavioural procedures were adapted from those described by Packard & McGaugh (1996). Prior to 

training, each rat received two days of habituation to the T-maze, and to the sucrose pellet reward 

(Noyes 45mg pellets, Sandown Scientific, UK). Each rat was placed in the maze for 5 minutes and 

allowed to freely explore, and following return to the home room was given 10 sucrose pellets in the 

home cage. 

 During behavioural training, rats were removed from their home cages and placed in a 

holding cage prior to the start of the trial. At the start of the trial each rat was placed in the ‘start’ 

arm, which was the same for each rat, and the timer started. One arm of the T-maze was baited with 

a single sucrose pellet; the rewarded arm was counterbalanced between rats, but remained the 

same throughout training for each rat. Each rat was given 4 trials on the maze each day, with trials 

separated by a 30-second intertrial interval (ITI) during which the rat was placed back into the 

holding cage. If the rat entered the incorrect arm during training, it was allowed to remain in the 

maze until the correct arm was chosen, or a predetermined ‘time-out’ of 120 seconds was reached. 

The experimenter remained in the room throughout testing, manually recording the latency to 

retrieve the pellet and the number of incorrect responses on each trial. The experimenter stood in 

the same position, behind the start arm, during all trials. On the last two days of training, the rats 

were habituated to the intracerebral infusion procedure at least once. 

 Following the completion of training, the rats underwent a memory reactivation session, 

designed as a ‘probe’ session. In this probe session, the Perspex occluder was moved to the original 

start arm, so that the rats started the probe test in the arm opposite the original start arm, though 

the maze itself remained in the same position relative to the rest of the objects within the room. 

During the probe test, no sucrose pellets were available, and the rats were only allowed to enter one 

arm, on a single trial. The experimenter remained in the room throughout the probe test, recording 
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arm choice and the latency to reach the end of the arm. The use of a different starting position in 

the maze was to allow determination of whether the rats were using a ‘place’ representation of the 

pellet location, or a ‘response’ representation, as previously described (Packard and McGaugh, 

1996). Rats using the ‘place’ representation to guide behaviour chose the same spatial location as in 

training, turning in the opposite direction to training; rats using the ‘response’ representation to 

guide behaviour would make the same response, and so move into the arm opposite the trained 

arm, away from the environmental cues associated with reinforcement during training. 90 minutes 

prior to this behavioural session, the rats received bilateral infusions of either zif268 antisense (ASO) 

or as a control missense (MSO) oligodeoxynucleotides into the pDLS. A ‘delayed infusion’ control 

group received an ASO infusion 6 hours following the probe test, as it has been shown in previous 

studies that levels of Zif268 return to baseline at 4-6 hours after retrieval (Lee et al., 2004; Milton 

and Everitt, 2012). Animals were allocated to groups after counterbalancing for performance 

(measured by latency and number of incorrect trials) and reward location during training. 

 A probe test was conducted 72 hours following memory reactivation (‘Test 1’). In order to 

assess the persistence of any deficit, subsequent tests were conducted 1 week (‘Test 2’) and 1 

month (‘Test 3’) following reactivation. 

 

Drug preparation and intracerebral microinfusions 

Oligodeoxynucleotides (ODNs) were PAGE-purified phosphorothioate end-capped 18-mer sequences 

resuspended in sterile phosphate-buffered saline (PBS) at a concentration of 2 nmol / μl (Zif268 

antisense ODN: 5’-GGT AGT TGT CCA TGG TGG-3’; Zif268 scrambled missense ODN: 5’-GTG TTC GGT 

AGG GTG TCA-3’, Alta Bioscience). Based on our previous work, the ASO-ODNs were expected to 

knock down zif268 expression acutely by approximately 60%, with expression levels recovering 24h 

later (Lee et al., 2005).  

 Infusions were carried out using a syringe pump and 5 μl Hamilton syringes, connected to 

injectors (28 gauge, projecting 1 mm beyond the guide cannulae) by polyethylene tubing. Infusions 

of ODNs (1.0 μl / side, 0.125 μl / minute) took place 90 minutes prior to the memory reactivation 

session. Injectors were inserted 30s prior to the start of the infusion, and remained in place for 60s 

after the end of the infusion, to allow diffusion of the solution away from the infusion site. Rats were 

habituated to the infusion procedure at least once on the two days prior to memory reactivation.  

 

Histological assessment of cannulae placements 

After the completion of testing, the rats were killed with an overdose of sodium pentobarbital (2.0 

ml per animal of Dolethal, Rhone Merieux, UK) before undergoing perfusion-fixation with 0.01 M 
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PBS, followed by 4% paraformaldehyde (PFA). The brains were removed and stored in 4% PFA, 

before being transferred to 20% sucrose for at least 8 hours prior to sectioning. The brains were 

coronally sectioned at 60 μm around the guide cannulae and stained using Cresyl Violet. The 

cannulae placements were subsequently verified by eye using a Leitz DMR-R microscope (Leica, 

Milton Keynes, UK). 

 

Sample Preparation and Western Blotting 

Either 2H or 6H post reactivation, animals were sacrificed by CO2 asphyxiation and the brains rapidly 

removed, frozen on dry ice and subsequently stored at -80°C. Samples from the basolateral 

amygdala (BLA), hippocampus, nucleus accumbens, anterior and posterior dorsolateral striatum and 

anterior and posterior dorsomedial striatum were microdissected using a 0.99-mm-diameter 

punching tool from 150μm-thick frozen brain sections (see Fig 5). The punched tissue from each 

animal was briefly sonicated in 200μl of cold lysis buffer (0.32M Sucrose, 20mM Tris, 1mM EDTA, 

1μg/ml Pepstatin A, 10 μg/ml leupeptin, 0.5 mM PMSF, and 10 μg/ml aprotinin) and centrifuged at 

5000rpm for 5 min at 4°C. The supernatant was transferred to a clean tube and stored at -20°C. The 

protein content was quantified using a spectrophotometer (Nanodrop). 5–10 μg of samples were 

loaded and separated using a 10% SDS-PAGE and electrotransferred onto a nitrocellulose membrane 

(Thermofisher Scientific, UK). Blots were probed with the following antibodies which were tested to 

deliver a linear relationship between the amounts of loaded protein in the blot and signal intensity: 

rabbit anti-Egr1 (Zif268, 1:300; Santa Cruz); mouse anti-beta actin (1:6000; Abcam); goat anti-rabbit-

HRP (1:2500; Sigma Aldrich); and rabbit anti-mouse-HRP (1:5,000; Sigma Aldrich) diluted in 1% non-

fat dried milk (Marvel) in Tris-buffered saline solution containing 0.25% of Tween-20. A 

chemiluminescent signal was induced using an enhanced chemiluminescent reagent (GE 

Healthcare), and images were captured using a CCD camera (ChemiDoc-It, UVP). Samples were run 

at least in duplicates. Signal analysis and quantification were performed using ImageJ software 

(version 1.49m, National Institutes of Health). The optical density (OD) of the bands of interest was 

measured, and normalised to OD of the loading control (β-actin).  

 

Statistical Analyses 

Data are presented as mean ± SEM, unless otherwise stated. Western blotting data were analysed 

using a one-way analysis of variance (ANOVA) with Dunnett’s test for post hoc comparisons. 

Behavioural differences between groups (ODN infusion and timepoint of tissue collection) during 

training on the T-Maze were analysed by repeated-measures ANOVA with Day as a within-subjects 

factor and Group as the between-subjects factor. Where the assumption of sphericity was not 
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satisfied by Mauchly’s test, a Greenhouse-Geisser correction was applied. The categorical arm choice 

data collected at memory reactivation and tests were analysed using a Chi-squared comparison. For 

Western Blotting, 2H time points for both strategies, when Zif268 is highly expressed, were 

compared to the 6H time point of the place group by analysis of variance and post hoc comparison 

of means by Dunnett’s test. Tests were carried out using GraphPad Prism 4.0 software (GraphPad 

Software Inc., San Diego, CA) and IBM SPSS Statistics software 22 (IBM, UK). The significance level 

was set at p < 0.05. 

 

 

RESULTS 

 

Behavioural performance 

 

Experiment 1: Rats (total n = 12) were trained on a reinforced T-Maze task as described previously to 

establish a set of place or response strategy-using animals (Packard and McGaugh, 1996). All rats 

learned which arm was baited with sucrose and the latency to retrieve it plateaued by Day 5, 

[F(13,130)= 31.8, p <0.001, ɲ2=0.76], with no difference between the groups [F(1,10)= 2.31, p = 

0.997] (Fig. 1 B). Contrary to previously reported findings, the proportion of rats using a place or 

response strategy after 8 days of training was equivalent at the first probe test (Test 1). The 

proportion remained constant also at day 16 (Test 2), despite 8 out of 12 rats switching strategy 

from the last probe test (Fig 1 C).  

 

Experiment 2: It was previously reported that Zif268 expression was increased specifically in the 

pDLS of response rats (Milton and Everitt, 2012). We predicted that a knockdown of Zif268 

expression by using ASO-ODNs in the pDLS would disrupt the reconsolidation of the response 

memory after reactivation versus the control MSO-infused animals. In order to test this hypothesis 

rats (n = 73) were implanted with cannulae aimed at the pDLS and then trained as before. One squad 

(n = 43) were tested for the effects of ODN infusion before reactivation and the other (n=30) 6 hours 

post reactivation, as a control. For the first squad, latencies to collect the reward decreased with 

training [F(4.43,173)= 54.9, p <0.001, ɲ2=0.59], with no difference between the groups [F(1,39)= 

0.751, p = 0.392]. However, cannulation of the animals resulted in a slower acquisition curve (data 

not shown) for the task when compared to the un-cannulated animals in the first experiment and 

therefore training was extended to 21 days. At Day 22 the first squad (n = 43) were first infused with 

ASO or MSO 1 hour before being introduced to the inverted maze without reward, to reactivate the 
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memory (React).  There was no significant effect of ODN on expression of the response or place 

memory during the Reactivation session [X2 (1, N = 43) = 3.05, p = 0.081] (Fig. 2 Bii), although more 

animals were in the ‘place’ group overall. 72H later (Test 1), the subsequent effect of ASO treatment 

on memory reconsolidation was tested. A significant decrease in the proportion of animals using a 

response memory was observed, [X2 (1, N = 43) = 5.58, p = 0.018]. However, in post hoc comparison, 

when ASO was administered, the standardised residual approached but did not reach significance 

for a habit strategy (z = -1.3). The odds ratio determined that the odds of using a response strategy 

and having received MSO-ODN were 4.67 times higher than if the rat was treated with ASO-ODN (Fig 

2B ii). However, this effect did not persist 7 days later (Test 2) as the proportions were equivalent 

across the groups [X2 (1, N = 43) = 0.02, p >.05].  As a control, ODN administration 6 hours post-

reactivation (n = 30) did not affect responding in subsequent tests (Fig 3 Bii). Overall, these results 

indicate that knockdown of zif268 in the pDLS alone does not permanently disrupt a response 

memory.  

 

Experiment 3: Zif268 is a key plasticity protein expressed in response to reactivation of various forms 

of memory across limbic regions. We therefore anticipated to detect changes in Zif268 levels across 

limbic regions depending on strategy used at reactivation. To investigate this we trained another 

group of rats (total n = 16) for 21 days in order to compare with the previous Experiment 2 (Fig 4 Ai). 

Importantly, the rats were not cannulated and the task was acquired quickly as latency decreased 

significantly over training, [F(20,280)= 10.3, p <0.001, ɲ2=0.42], at a rate very close to that found in 

Experiment 1 (Fig 1 B). It was observed that a significant majority of animals used a place strategy at 

reactivation: χ2 (1, N = 16) = 16, p <.001 (Fig 4 A iii). This is contrary to predictions, based on previous 

data, that with extended training a response symptomatic of habit will form and dominate 

behaviour (Packard and McGaugh, 1996).  

 

Zif268 expression 

 

Zif268 expression is induced by reactivation of many forms of memory (Veyrac et al., 2014). We 

measured Zif268 expression after memory reactivation across brain regions recruited by the T-Maze 

task. Animals were randomly allocated to a 2-hour (when Zif268 levels should be elevated) or 6-hour 

time-point (control, when Zif268 levels have decreased) for sacrifice. As only 3 animals used a 

response strategy, one was allocated to the 6-hour group for comparison but was not included for 

statistical analyses. Based on previous findings, it was predicted that the levels of Zif268 should 

increase in the pDLS following reactivation of a response memory. Due to only a small proportion of 
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animals using a response strategy after 21 days of training, the expected increase was visibly 

detected but not statistically significant (Fig. 4 B). In contrast, there was no change in Zif268 

expression in the group using a place strategy. However, despite the requirement of hippocampal 

activity for the expression of the place strategy (Packard and McGaugh, 1996), Zif268 expression did 

not increase in the hippocampi of animals that had used this strategy at reactivation (Fig. 4 B). 

Interestingly, a significant increase of Zif268 expression was detected in the BLA sample for the place 

2H group by ANOVA [F(2,12)=4.240, p<0.05] using group as the factor, revealed by a post-hoc 

Dunnett’s Test versus the control group (Fig. 4 B). The other striatal regions (namely the NAc, aDLS, 

aDMS and pDMS) did not have altered Zif268 levels (Fig 4 B).  

 

DISCUSSION 

In this study, we investigated the requirement of the immediate early gene zif268 in the pDLS for the 

reconsolidation of an S-R memory. Our previous, preliminary data (Milton and Everitt, 2010) had 

indicated that animals, trained on a T-maze and using a S-R strategy in a probe test, had increased 

levels of Zif268 expression selectively in the pDLS. We therefore investigated whether Zif268 

expression in this locus was causally involved in the reconsolidation of the habit-like memory that 

underlies S-R responding. Contrary to our predictions and previous work (Packard and McGaugh, 

1996), we found that: (i) extended training did not result in a preponderance of animals using an S-R 

strategy; (ii)  knockdown of Zif268 in the pDLS prior to memory reactivation altered the proportion 

of animals using an S-R strategy 72H after reactivation but not at the subsequent test (7 days after 

reactivation), and; (iii) there were no changes in Zif268 expression in the hippocampus of animals 

using an place strategy during a probe test. Our previous finding, that Zif268 increased in the pDLS of 

animals using an S-R strategy during a probe test, was replicated but likely underpowered. Finally, 

exploratory analyses revealed an increase in Zif268 expression in the basolateral amygdala 2 hours 

after the probe test, irrespective of the response strategy used.   

 It had been previously reported that following 14 days of training, approximately 80% of 

animals use the response strategy in a probe test (Packard and McGaugh, 1996). By contrast, we saw 

approximately equal numbers using the ‘place’ and ‘response’ strategies. This seems to contradict 

predictions that with extended training a habit-like response should form. Furthermore, we found 

that extensive training (21 days) led to the majority of rats using a place strategy. A number of 

factors can influence response strategy including environment complexity, rat strain, motivation and 

anxiety (Scharlock, 1955; Restle, 1957; Asem and Holland, 2013). The rate of task acquisition, i.e. 

latency to obtain reward, in cannulated animals in the present experiments was slower than in 

uncannulated rats and took longer to plateau as compared to uncannulated animals. There is 
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extensive evidence that stress, even vehicle injection, may promote the use of response strategies in 

both rodents (Schwabe et al., 2010) and humans (Schwabe, 2013). The uncannulated animals may 

have been exposed to fewer stressful events, which may be related to their faster acquisition of the 

task and hence the high proportions of place responders at day 21.  

Zif268 was targeted in this study due to its established role in memory reconsolidation and 

our preliminary observation that it was increased in the pDLS at reactivation. Zif268, along with 

other IEGs (e.g. c-fos) are commonly used as markers of synaptic activity as their shortlived 

expression is tightly linked with activity and, in particular, glutamate receptor activity. However, the 

direct targets of this transcription factor that mediate its effects on memory and learning are still 

unknown. This is despite some signalling mechanisms being established by the study of pathological 

systems, although these may not directly apply to the in vivo role of Zif268 in memory (Veyrac et al., 

2014).  In our previous work,  zif268 ASO knocked down Zif268 expression by approximately 60%, 

when compared to the MSO (Lee et al., 2006). Herein, knockdown of Zif268 expression in the pDLS 

prior to memory reactivation did not alter the response strategy chosen during the probe trial (the 

memory reactivation session), and although it reduced the likelihood of rats using the ‘response’ 

strategy shortly (72H) after the manipulation, this effect was transient and did not persist to 

subsequent tests. In a previous study in mice, Zif268 expression remained elevated in the pDLS, but 

not DMS, after 5 days of a food-rewarded operant task (Maroteaux et al., 2014). However, a similar 

study in rats showed increased Zif268 mRNA in the aDMS and aDLS after limited training, but after 

extensive action-outcome pairings there was a non-significant decrease in Zif268 mRNA (Hernandez 

et al., 2006). On the other hand Homer1a remained elevated, although the authors did not test if 

behaviour had become habitual in nature. Different stages of memory training may therefore 

preferentially recruit different immediate early genes. Here, targeting of zif268 in the pDLS alone 

may not be sufficient to disrupt the plasticity of the reactivated response memory.  

 Based on previous data (Packard and McGaugh, 1996) showing that inactivation of the 

hippocampus biased animals away from using a place strategy, we predicted that the hippocampus 

would be required for the reactivation as well as retrieval of the place strategy, and that this would 

be correlated with the expression of Zif268. However, we did not observe an increase in Zif268 in 

the hippocampus of rats using the ‘place’ strategy at test. This is in agreement with a previous report 

using Zif268 immunohistochemistry after explicit place or response training in the T-maze in which 

neither place nor response testing induced hippocampal Zif268 expression above control levels, 

whereas c-Fos levels differed depending on the strategy used (Gill et al., 2007). Therefore, these 

data together indicate that the hippocampus may recruit a variety of IEGs at reactivation and 
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knockdown of zif268 in the pDLS does not prevent the expression or restabilisation of the T-Maze 

place memory. 

Regardless of the strategy used, we observed increased levels of Zif268 in the BLA. In both 

groups a common feature of the reactivation procedure is a violation of expectation, as they should 

predict to receive the sucrose reward at the end of the arm and in both cases it was absent. This may 

suggest this activation of Zif268 in the BLA in both groups is linked to a negative prediction error 

signal. In the NAc, which is well-documented as receiving information about positive prediction error 

signals (Schultz et al., 1997), there was no change in Zif268 expression across groups (Fig. 4 B). 

Whilst there is some evidence that encoding of reward absence in extinction recruits amygdala 

neurons and therefore may induce plasticity-related gene expression (Tye et al., 2010), there is no 

evidence that the probe tests are sufficient to induce extinction learning. There is a theoretical 

negative prediction error in both instances, which could engage either reconsolidation or extinction, 

but whether this causally induces Zif268 expression remains unclear.  

The pDLS was targeted in this study based on the observation of a specific increase in Zif268 

(Milton and Everitt, 2012, this present study). Excitotoxic combined lesion of the aDLS and the pDLS 

showed that these regions are involved in S-R responding (Yin et al., 2004); similarly inactivation of 

the pDLS prevented rats from using a S-R strategy at test (Packard and McGaugh, 1996). We failed to 

detect any increase in Zif268 in the aDLS, which is perhaps surprising given the known involvement 

of this area in the acquisition and expression of stimulus-response habits (Zapata et al., 2010; 

Murray et al., 2012). However, as any distinct role of the pDLS was not directly investigated in those 

studies and the tasks were different to that used in the present study, it is difficult directly to 

compare across them. Whether restabilisation of a response memory can be disrupted by zif268 

knockdown in the aDLS merits further investigation.  

 

Conclusion 

Specific knockdown of Zif268 in the pDLS alone appears not to be necessary for the 

reconsolidation of the habit-like memory underlying an S-R strategy on the T-maze. Whether 

knockdown of Zif268 in other structures engaged by memory reactivation – such as the basolateral 

amygdala and/or aDLS – would produce longer-lasting changes in response strategy remains an open 

question. 
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LEGENDS: 

 

Figure 1: 12 uncannulated rats were trained to collect reward pellets from a specific location on 

the T-maze, with probe tests conducted on Days 8 and 16 to determine whether they were using a 

place or response strategy. 

A: Schematic of protocol. (HAB = habituation to the T-maze apparatus.) 

B: Latency to collect the reward pellet decreased throughout training, with no difference in latency 

across the groups by choice of strategy used at test. The grey dotted line represents the average 

latency of the last 7 days, where performance plateaued (4.02s).  

C: After 7 days of training the proportion of animals using a place or habit response strategy was 

equivalent. 7 days later the strategy proportions remained the same, even though at an individual 

level many animals used a different strategy at the second test.  

 

Figure 2: The effects of Zif268 knockdown in the pDLS on the reconsolidation of the memory 

underlying a response strategy was assessed in 43 cannulated rats previously trained on the T-

maze. 

A: Rats were implanted with cannulae targeting the DLS and underwent training in the T-Maze as 

before.  

B (i): Latencies to collect the reward decreased during training, with no difference between the 

prospective MSO or ASO groups.  

(ii) Infusion of the ASO-ODNs (Day 22) did not affect the latency to reach the reward location during 

the reactivation session.  A chi-square test of independence was performed to examine the 

relationship between ODN administration and strategy at Reactivation. The relationship between 

these variables was not significant. These data show that acute knockdown of Zif268 did not 

influence the strategy selected to perform the task. The effects of Zif268 knockdown at reactivation 

were probed 72 hours later (Test 1). There was a significant association between ODN 

administration and the type of strategy used at test. However, in post hoc comparison, when ASO 

was administered the standardised residual approached but did not reach significance for a habit 

strategy (z = -1.3). Animals were tested one week after reactivation (Test 2) and the proportions of 

response to place strategy were unaffected by prior ODN administration.  
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Figure 3: There was no effect of Zif268 knockdown in the pDLS on subsequent strategy choice in 30 

rats when ODNs were administered outside the reconsolidation window.  

A: Protocol described as before, except that animals were administered a delayed infusion of the 

ODN (MSO or ASO) 6 hours after reactivation (outside the reconsolidation window) as a control.  

B (i): Latencies to collect the reward decreased with training, with no difference between the 

prospective MSO and ASO groups.  

(ii): The infusion of ODN 6 hours after reactivation had no effect on the subsequent strategy used at 

the long-term memory tests 72 hours and 1 week after reactivation.  

  

Figure 4: 16 rats underwent a memory reactivation session after 21 days of training on the T-maze, 

immediately before brains were harvested for assessment of Zif268 expression.  

A (i): The rate of acquisition followed that of Experiment 1, although training was extended to 21 

days to compare to the cannulated animals in Experiment 2.  

(ii): Latency to collect the reward decreased with training with no effect of strategy used at Test 1.  

(ii) Extended training of uncannulated rats resulted in a significant shift in the proportion of animals 

using a place strategy, ***p < 0.001. 

B: In samples taken from the pDLS, a non-significant increase in the expression of Zif268 relative to 

the 6H control group was seen in the rats using a response strategy, although the number of animals 

here is too small to draw a strong conclusion for the response group. The use of a place strategy did 

not appear to increase Zif268 expression in the hippocampus. The levels of Zif268 were not altered 

in the hippocampus by use of either strategy. Interestingly, there was an apparent increase in Zif268 

levels in the BLA regardless of the strategy used at test. There was no significant difference in Zif268 

levels after reactivation in the NAc, aDLS, aDMS nor pDMS. Bars are mean per group (Place 6H n=5, 

Place 2H n= 6, Habit 2H n=2) +/- SEM; images are representative blots.  

 

Figure 5: 

Illustration of location, start and end points for tissue collection punches from the regions analysed 

for Zif268 expression by western blotting.  
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HIGHLIGHTS: 

 Zif268 expression in the pDLS is not required for retrieval of habit-like memory 

 Knockdown of pDLS Zif268 expression reduces habit-like memory restabilisation 

 Zif268 expression increased in the BLA after reward memory retrieval  

 Despite extended T-Maze training rats did not use a S-R strategy 

 
 


