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A B S T R A C T

Cracks can occur in the articular cartilage surface due to the mechanical loading of the synovial joint, trauma or
wear and tear. However, the propagation of such cracks under different frequencies of loading is unknown. The
objective of this study was to determine the effect of frequency of loading on the growth of a pre-existing crack in
cartilage specimens subjected to cyclic tensile strain. A 2.26 mm crack was introduced into cartilage specimens
and crack growth was achieved by applying a sinusoidally varying tensile strain at frequencies of 1, 10 and
100 Hz (i.e. corresponding to normal, above normal and up to rapid heel-strike rise times, respectively). These
frequencies were applied with a strain of between 10–20% and the crack length was measured at 0, 20, 50, 100,
500, 1000, 5000 and 10,000 cycles of strain. Crack growth increased with increasing number of cycles. The
maximum crack growth was 0.6± 0.3 (mean± standard deviation), 0.8± 0.2 and 1.1± 0.4 mm at frequencies
of 1, 10 and 100 Hz, respectively following 10,000 cycles. Mean crack growth were 0.3± 0.2 and 0.4± 0.2 at
frequencies of 1 and 10 Hz, respectively. However, this value increased up to 0.6± 0.4 mm at a frequency of
100 Hz. This study demonstrates that crack growth was greater at higher frequencies. The findings of this study
may have implications in the early onset of osteoarthritis. This is because rapid heel-strike rise times have been
implicated in the early onset of osteoarthritis.

1. Introduction

Osteoarthritis (OA) is a degenerative, multifactorial disease. The
most recognized symptom of this disease is pain that drives individuals
to seek medical attention (Ayis and Dieppe, 2009). Approximately 27
million US adults and 8.5 million UK adults have clinical OA defined on
the basis of symptoms and physical findings (National Collaborating
Centre for Chronic Conditions, 2008; Lawrence et al., 2008). The sig-
nificant disability associated with this disease is a great physical burden
for affected individuals and an economic burden on the health-care
system (Woolf and Pfleger, 2003). Although OA is considered to be a
disease of the joint (Loeser et al., 2012), articular cartilage is central to
the disease and its progression (Creamer and Hochberg, 1997). The
disease involves a decrease in thickness and volume of the tissue
(Cicuttini et al., 2004), in addition to an increase in the number and size
of cartilage defects (Ding et al., 2005). This can be observed in both
animal and human tissue (Clark, 1991). An important element in the
disease is the fracture of cartilage, because once cartilage fractures, it
has a limited ability to heal the cracks (Buckwalter et al., 1987). It has
been hypothesised that these cracks grow with time as an important
constituent of the development and progression of OA (Meachim,
1972).

Most testing of cartilage mechanical failure has been undertaken

through quantifying the tensile strength of cartilage tissue (Akizuki
et al., 1986) or one-dimensional tensile testing of cartilage samples
(Roberts et al., 1986). However, cartilage fails by crack formation and
fibrillation (Clark and Simonian, 1997). Qualitative measurements of
the crack growth in slices of cartilage samples have introduced the
concept of cartilage fracture as an important process in the degenera-
tion of cartilage (Broom, 1986). Previous studies (Chin-Purcell and
Lewis, 1996; Stok and Oloyede, 2003) have also suggested methods to
measure the fracture toughness of cartilage. These studies came to the
conclusion that cartilage failure in vivo involves the progressive growth
of defects.

Rapid heel-strike rise times during gait have been implicated in the
early onset of OA in lower limb joints (Radin et al., 1986, 1991). Heel
strike rise times in the normal population have been determined to be
typically 100–150 ms (Shepherd and Seedhom, 1997). However, Radin
et al. (1986) have shown that at heel-strike, some people exhibit a very
high rate of loading with a distinct impulsive peak. These rapid heel-
strikes take only 5–25 ms to reach a maximum force (Simon et al.,
1981). The duration of the heel-strikes corresponds to loading fre-
quencies of 3–5 Hz for normal and up to 90 Hz for impulsive heel-strike
rise times (Fulcher et al., 2009). The effect of rapid heel-strike rise times
on crack growth in articular cartilage can be investigated by subjecting
cartilage specimens with an initial crack to frequencies representative
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to such rise times, as shown in Fig. 1. The rise time of the force is
approximated by the time taken from the trough to the peak of the sine
wave (Fulcher et al., 2009). That is

=t
f

1
2 (1)

where f is the frequency of the sine wave. Thus, a sinusoidally varying
force with a frequency of 92 Hz has been estimated as being re-
presentative of a rise time of 5.4 ms, and a frequency of 1 Hz as re-
presentative of a heel-strike with a rise time of 500 ms (Fulcher et al.,
2009). It has been argued that rapid heel-strike rise times (e.g. 5 ms)
lead to impulsive loading (Radin et al., 1991), which might be asso-
ciated with a predisposition to OA.

Previous studies, on the fracture propagation, of articular cartilage
have been focused on the effect of split line direction in tension
(Sasazaki et al., 2006) or the effect of impact (Borrelli et al., 1997).
However, the effect of frequency has been ignored. Previous studies
(Fulcher et al., 2009; Sadeghi et al., 2015a; Espino et al., 2014) have
hypothesised that the possibility of cartilage failure would increase
with loading frequency because at higher frequencies the ability of the
tissue to store energy increased. Therefore, at higher frequencies more
energy is available to damage cartilage (Fulcher et al., 2009). Damage
caused by increasing the loading frequency (or rate of loading) has been
suggested to be different to the damage by increasing load only fol-
lowing comparisons between failure patterns from static loading tests
(Fick and Espino, 2011, 2012). This has been demonstrated experi-
mentally by increasing the loading frequency, from relevant gait (1 Hz)
to an impulsive frequency (100 Hz), which resulted in more failure of
the cartilage-on-bone specimen samples subjected to cyclic compression
(Sadeghi et al., 2015b) and bending (Sadeghi et al., 2017). However,
these studies focused on compression and bending, rather than tensile
strains which have been implicated in the growth of superficial carti-
lage cracks during impact loading (Kelly and O’Connor, 1996). There-
fore, it is currently unknown whether frequencies associated with rapid

heel-strikes might also predispose articular cartilage to increased crack
growth under purely tensile conditions.

This study aimed to investigate the effect of the variation of loading
frequencies associated with relevant gait (1 Hz), above gait (10 Hz) and
impulsive loading frequencies (100 Hz) on crack growth in bovine ar-
ticular cartilage specimens subjected to tensile strains.

2. Methods

2.1. Specimen preparation

Ten bovine shoulder joints, aged between 18 and 24 months, were
obtained from Dissect Supplies (King's Heath, Birmingham, UK). Bovine
cartilage was used because it is an accepted model for human cartilage
(Taylor et al., 2012) and the frequency-dependent viscoelastic trends of
bovine articular cartilage have been shown to be consistent with those
of human articular cartilage; this includes a similar frequency de-
pendency and high-frequency plateau (Temple et al., 2016). Upon ar-
rival in the laboratory, the humeral head, of each joint, was isolated.
The humeral head was wrapped in tissue soaked in Ringer's solution
(Sigma-Aldrich, Dorset, UK), sealed in a plastic bag and stored at –
40 °C. The influence of freeze-thaw treatment on the mechanical
properties of articular cartilage was assumed to be negligible (Stok and
Oloyede, 2003, 2007). On the day of testing, humeral heads were re-
moved from storage, and allowed to thaw at room temperature. India
ink (Loxley Art Materials, Sheffield, UK) was applied to the humeral
heads to identify surface lesions (Meachim, 1972). The India ink was
rinsed off and regions, without surface damage, were selected for
testing. Three rectangular 40 × 20 mm specimens, which comprised of
both bone and cartilage, were cut using a saw from the central load-
bearing region of each humeral head.

The underlying bone was approximately 60 mm in thickness and
was used to grip the specimens. A mandoline slicer (Mastrad inc., Paris,
France) with a 1 mm gap was used to remove cartilage slices while it
was still attached to the bone. Cartilage specimens had a maximum of
1 mm depth from the articulating surface towards the bone. In total 30
test specimens, consisting only of cartilage, were obtained from ten
humeral heads.

The final cartilage specimens for testing were then produced with
dimensions of 20 × 10 mm using a 15 blade medical scalpel (Swann-
Morton, Sheffield, UK). A digital Vernier calliper (Fisher Scientific,
Leicestershire, UK) was used to measure and highlight an area of 10 ×
10 mm and a 2.26 mm crack was cut into the middle of the specimen
using a scalpel blade (Fig. 2). The length of the crack was based on the
work of McCormack and Mansour (1998), where the initial crack length
was 22.6% of the specimen width.

2.2. Mechanical testing

Testing was performed using a Bose ElectroForce 3200 testing ma-
chine (Bose Corporation, Minnesota, USA; now, TA Instruments, New
Castle, DE, USA) running WinTest 4.1 Software. Two custom-made
grips were attached to the testing machine. Emery paper (120 grit) was
fixed to the grips (McCormack and Mansour, 1998) and the cartilage
specimen was secured by the tightening of screws (Fig. 3). A preload of
0.1 N was applied to the cartilage specimens to prevent the twisting of
the specimens about the axial length (aligned with loading axis) while
being tested. The actuator of the testing machine applied a sinusoidally
varying tensile strain to the tissue specimen with a minimum of 10%
and a maximum of 20% of the specimen length (10 mm) for 10,000
cycles. A block command function was used, to initially displace spe-
cimens to 15% of their gauge length; specimens were then held in this
position for 5 s while an image was acquired. Images were taken using
an Apple iPhone 6 Plus (Apple Inc, California, USA) operated under iOS
8 with Sony Exmor RS camera (8 megapixels, 1.5 focus pixels). A scale-
bar was included in each image, positioned in the field of view. Images

Fig. 1. Sinusoidally varying force a) at 92 Hz (rise time 5.4 ms) b) at 1 Hz (rise time
500 ms).
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were acquired at 0, 20, 50, 100, 500, 1000, 5000 and 10,000 cycles.
Specimens were tested at either 1 Hz, 10 Hz or 100 Hz; these test fre-
quencies correspond to normal, above normal and up to rapid heel-
strike rise times, respectively (Sadeghi et al., 2015b, 2017). For the
calculation of 95% confidence intervals, sample size for each frequency
was 10 (n = 10) (Ranstam, 2012). To prevent dehydration, the tissue
specimens were irrigated with Ringer's solution every 600 cycles.

2.3. Image and data analysis

Digital images were analysed using Image-J software (version 1.5,

Rasband, W.S., U.S. National Institutes of Health, Bethesda, Maryland,
USA). For each image, measurements were calibrated using the scale
bar at the right-hand side of the frame. Lines were drawn manually
along the crack length (c) for each image. The software was then used to
measure the crack length (in mm) with a 0.1 mm precision. The crack
growth (δc) was calculated from:

= −δc c c0 (2)

where c is the total crack length and c0 is the originally inserted crack
length.

2.4. Statistical analysis

The crack length measurements were obtained from each image,
therefore, 240 image analysis measurements were obtained in total.
The progression of δc was analysed with respect to the number of cycles
at the tested loading frequencies. All statistical analyses were under-
taken using SigmaPlot (SYSTAT, San Jose, CA, USA). Regression ana-
lyses were performed to evaluate the significance of the curve fits. From
the regression analyses, Mann-Whitney rank sum tests were performed
to evaluate the difference of the coefficients and the constants between
the three different frequencies. Statistical results were considered sig-
nificant if p<0.05.

3. Results

Images from three cartilage specimens, tested at 1, 10 and 100 Hz,
with varying number of cycles are shown in Fig. 4. From Fig. 4, it can be
observed that strain experienced by the specimens at higher frequency
e.g. 100 Hz caused a greater crack growth.

Crack growth (δc) was found to increase significantly (p<0.05)
with an increasing number of loading cycles when the mean values of
10 specimens (per frequency) were plotted against the number of cycles
(Fig. 5). Crack growth (δc) values at a frequency of 100 Hz were always
larger compared to the crack growth at a frequency of 1 or 10 Hz. The
trends for the crack growth (δc) against number of cycles (N) were
described by the logarithmic curve fit

= +δc A ln N B( ( )) (3)

where A and B are coefficients (Table 1). Coefficient (A) of the curve fits
were found to increase from 0.08 to 0.14 mm at frequencies of
1–100 Hz, respectively. Only the coefficient (A) between 1 Hz and
100 Hz were significantly different; other comparisons were not sig-
nificantly different (p>0.05).

All ten specimens were found to undergo extensive necking during
testing at the frequency of 1 Hz (Fig. 4a, Fig. 6). However, necking
occurred at a lower degree to the specimens tested at 10 or 100 Hz
(Fig. 4b, c). Necking was also found to progress continually with in-
creased number of cycles from qualitative observations (Fig. 4a, Fig. 6).

Fig. 2. Specimen preparation. (a) Three sections of cartilage-on-
bone were removed from each humeral head. (b) Top view of a
cartialge-on-bone section. (c) Side view of a cartilage-on-bone
section. Cuts were made in relation to the curvature of each
humeral head. Cartilage sheets were obtained from the flattest
surface of each cartilage-on-bone section using a mandoline slicer.
The scale bar is in mm.

Fig. 3. Mechanical testing. (a) Dimensions of the cartilage specimen. (b) Cartilage spe-
cimen placed in grips, ready for testing. All units are in mm.
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4. Discussion

The results from this study demonstrate how pre-existing cracks in
articular cartilage samples grow when subjected to cyclic strains at

different frequencies. In the current study, crack growth was found to
increase with an increasing number of cycles. Crack growth rate was
also found to be greater at higher frequencies. This is a new observation
because controlled crack growth experiments have not been used to
explain the influence of frequency on the growth of pre-existing cracks
in cartilage off-bone samples under tension. Initiation and progression
of damage can cause failure in the articular cartilage of joints.
Understanding the mechanism associated with the failure of articular
cartilage is important to help identify strategic solutions which curtail
such failure mechanisms. Crack growth in cartilage specimens, where
cracks are initiated through the depth of cartilage specimens and al-
lowed to propagate at different frequencies could help to further un-
derstand the link between mechanical loading and cartilage failure.
Experimental data previously obtained from cartilage samples have
shown that pre-existing cracks can grow under tension (Stok and
Oloyede, 2003, 2007). In our current study, the crack length increased
with increases in the frequency between 1, 10 and 100 Hz, independent
of load.

The findings of the current study are consistent with those
of Sadeghi et al. (2015b), where subjecting cartilage-on-bone samples
to 10,000 cycles of compressive loads using a metal indenter (5.2 mm

Fig. 4. Specimen images taken at 0, 20, 50, 100, 500, 1000, 5000 and 10,000 cycle. Each specimen was subjected to a maximum strain of 20% undertaken at loading frequencies of a)
1 Hz, b) 10 Hz and c) 100 Hz. Increasing the loading frequency caused a higher crack growth in cartilage specimens. All units are in mm.

Fig. 5. Mean crack growth (δc) against the natural logarithm of the number of cycles (N).
Logarithmic curves (Eq. (3)) fitted the data points well. Error bars represent 95% con-
fidence intervals for the samples. For clarity, only positive error bars are included. As-
terisk denotes a significant difference at p<0.05 between coefficients (A) of the curve
fits.

Table 1
Details of the constants from the mean crack growth against number of cycles curve fits.
Units for A and B are in mm.

Frequency (Hz) A (SE) B (SE) R2

1 0.08 (0.003) − 0.15 (0.02) 0.98
10 0.09 (0.007) − 0.05 (0.04) 0.94
100 0.14 (0.008) − 0.2 (0.05) 0.90

The correlation between crack growth and number of cycles is described by logarithmic
curve fits for each loading frequency. Mean crack growth against number of cycles curve
fits were statistically significant (p<0.001) for all frequencies. SE is the standard error of
the coefficients A and B. R2 is a squared correlation coefficient and shows how well the
line fits the data points.

Fig. 6. Sample images taken from cartilage specimen number 8, tested at frequency of
1 Hz at the initial testing position and following 10,000 cycles. Vertical lines were in-
serted in each image to show the displacement of the sides of the cartilage specimen
relative to their initial position.
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diameter), resulted in crack formation on the articular surface of tissue
samples. A follow-up study (Sadeghi et al., 2017) subjected beam-
shaped cartilage-on-bone samples to cyclic three-point bending. It also
showed that increasing the loading frequency from normal and above
gait (1 and 10 Hz) to impulsive loading frequencies (50 and 100 Hz)
reduced the ability of the specimen samples to resist fracture. However,
those studies focused on cartilage-on-bone, under compression and
three-point bending, not purely tensile loading.

In the present study, higher crack growth rate of specimen samples
occurred at higher frequencies. This could correspond to cartilage ap-
proaching a glass transition when subjected to dynamic loading at
frequencies above 10 Hz. Cartilage changes from soft tissue to “glass-
like” material (Fulcher et al., 2009) that could result in the fast growth
of cracks in cartilage samples when subjected to impulsive frequencies
(Kelly and O’Connor, 1996). Other studies (Fulcher et al., 2009;
Sadeghi et al., 2015a; Espino et al., 2014; Pearson and Espino, 2013)
have also suggested that there might be an increase in cartilage damage
with increasing loading frequency. They noted that it might be based on
the frequency dependency of viscoelastic properties of cartilage. The
suggestion was consistent with the reported increase in energy under
impact loading in vitro was also suggested to cause cartilage fracture
(Jeffrey and Aspden, 2006) and measurements of hysteresis (energy
dissipation) following drop-tower tests showed that hysteresis could
increase with increased loading velocity (Edelsten et al., 2010). Fulcher
et al. (2009) hypothesised that cartilage underwent a glass transition
due to the alteration in frequency-dependent trends of storage and loss
moduli. At higher frequencies, the ability of the tissue to store energy
for elastic recoil increased. However, the ability of the tissue to dis-
sipate energy remained the same. It was, thus, suggested that if the
energy available for storage exceeded a certain level it might induce
damage to the cartilage (Fulcher et al., 2009). The dependence of sto-
rage modulus on frequency, in which the storage modulus increases but
then levels out to a plateau, is characteristic of a material undergoing a
glass transition (Ferry, 1980).

In our current study, it was found that specimens subjected to ten-
sile strain at a frequency of 1 Hz underwent necking, while this effect
happened to a lesser degree for specimens tested at frequencies of 10 or
100 Hz. Necking represents a lateral displacement, of the intact side of
cartilage, relative to its initial length along the axis of loading. This
observation has previously been reported in full thickness cartilage
samples following tensile loading (Stok and Oloyede, 2003, 2007).
These studies suggested that as cartilage is loaded in tension, the col-
lagen fibres within the solid matrix align and stretch along the axis of
loading. Such necking might be due to the pull of the collagen fibres in
response to the tensile strain. However, this effect is more evident in
samples tested at 1 Hz as opposed to 100 Hz. Collagen is arranged to
provide reinforcing to a highly hydrated proteoglycan gel in cartilage
tissue (Aspden and Hukins, 1981). Viscoelastic properties of articular
cartilage are associated with the stress transfer mechanism during gel-
collagen interaction (Goh et al., 2010). Thus, the difference in the be-
haviour of cartilage samples at the tested frequencies could be the
consequence of the variation of the interactions between the structural
components of the tissue. This could also be related to before/after glass
transition (Fulcher et al., 2009).

Flachsmann et al. (2006) subjected cartilage-on-bone samples to
compression using an indenter (8 mm diameter). They found that in-
troducing cracks about 1 mm in length in the superficial layer of car-
tilage reduced the compressive strength to less than half of the value
measured from samples without cracks. Increased compression at the
edge of a surface defect (Braman et al., 2005) as well as increased
cartilage failure in a joint with a pre-existing defect have also been
described in the literature (Hollander et al., 1995). These findings are in
agreement with the current study that showed a pre-existing crack
could grow in a cartilage specimen subjected to cyclic strains, which
may lead to the complete failure of the specimen. Quinn et al. (2001)
subjected cartilage-on-bone samples to impact loading at varying strain

rates between 3 × 10−5 and 0.7 s−1, to maximum stresses in the range
3.5–14 MPa, respectively. At the higher strain rates tissue cracks were
observed particularly near the superficial layer. However, at lower
strain rates no signs of damage were observed. This is consistent with
the findings of this study that showed crack growth rate is higher at
higher loading frequencies. However, these studies were of cartilage-
on-bone samples and tested in compression.

Most studies on the tensile failure of cartilage (McCormack and
Mansour, 1998; Weightman, 1976; Weightman et al., 1978; Kempson,
1982, 1991) have been concerned with variations in properties among
joints, the effects of repeated load, and age. The tensile loading of
human cartilage samples in vitro was shown to cause surface fibrillation
(Weightman, 1976). Cartilage samples from the femoral head were
subjected to cyclic tensile stress by Weightman et al. (1978). They
found that the resistance of the specimen samples decreased with age.
Other studies (Kempson, 1982, 1991) documented changes including a
decrease in tensile strength and stiffness of cartilage tissue which might
make the tissue more predisposed to injury and development of de-
generation. While McCormack and Mansour (1998) found that a suffi-
cient number of compressive load cycles under an average stress of
3.2 MPa, applied to the cartilage surface in situ, caused a decrease in
tensile strength. After 64,800 cycles of compressive loading their results
showed no change in the tensile strength of cartilage, but after 97,200
cycles, tensile strength was reduced significantly. The difference is
that McCormack and Mansour (1998) tested cartilage in tension fol-
lowing compressive cycles of loading. However, it demonstrated that
following cyclic loading, cartilage was prone to failure under tension
which is in agreement with the findings of this study. The current study,
however, goes a step further by demonstrating that the frequency of
loading is variable in the tensile failure of cartilage.

In a comparable study, subjecting bovine cartilage to 10,000 cycles
of maximum stress of 4.2 MPa at frequency of 10 Hz and a lower stress
of 2.8 MPa but at a higher frequency of 100 Hz, produced cracks on the
cartilage surface (Sadeghi et al., 2015b). In the current study the
number of cycles was kept constant to analyse the effect of altering the
loading frequency on crack growth while specimens were subjected to
an average 15% strain. Maximum physiological cartilage strains have
been measured to be approximately 12% which are consistent with the
dynamic strain used in the current study (Chan et al., 2016). However,
cartilage ex vivo studies have often exceeded these strains assessing
cartilage at strains of up to 40% (Demarteau et al., 2006) and 60%
(Edelsten et al., 2010).

Our current study demonstrates that the frequency at which a joint
is loaded is an additional factor when assessing crack growth and car-
tilage failure. Previous studies have shown that high tensile stresses are
generated in the knee in flexion (Minns et al., 1979) and these stresses
arise in the surrounding regions of the loaded surfaces in contact in the
joint (Kelly and O’Connor, 1996). Tensile failure of cartilage has been of
interest, because it was suggested that vertical cracks in cartilage were
initiated by tensile stresses on the articular surface (Eberhardt et al.,
1991). Fracture mechanics of cartilage have been studied extensively
(Chin-Purcell and Lewis, 1996; Stok and Oloyede, 2003, 2007) by
measuring fracture toughness, or the ability of the cartilage to resist
crack growth. Stok and Oloyede (2003, 2007) and Chin-Purcell and
Lewis (1996) studied crack growth in cartilage with tensile loading,
while Wang et al. (2011) investigated the strain distribution at com-
pressive loading. Chin-Purcell and Lewis (1996) measured the fracture
toughness of cartilage using energy based methods. This study showed
that cartilage quickly distributes loads via crack growth when subjected
to instantaneous loads to avoid stress concentration.

4.1. Limitations and future work

The initial crack was introduced in the cartilage specimens in this
study and the growth of such cracks was observed across the area of the
cartilage specimens with respect to increasing the number of cycles of
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loading. This is distinct from the methods used by comparable studies
(Stok and Oloyede, 2003, 2007) in which the crack growth was in-
vestigated through the depth of cartilage specimens. Propagation across
cartilage is relevant as shown by Fick (2013) who found that loading
was distributed to adjacent areas under compression. This indicates that
crack propagation could occur across the area of cartilage not only
through the depth; which has been confirmed through this present
study. Observations on necking have previously focused on necking
through the depth of cartilage specimens (Stok and Oloyede, 2003,
2007). However, in the current study, observations were made on
necking perpendicular to the cartilage depth. Although this could make
the results of this study less physiologically relevant, it also demon-
strates the role of collagen recruitment during loading and propagation
of failure through the depth and perpendicular to the 20 mm edge of
cartilage specimens. It was not the aim of the current study to distin-
guish between different fracture mechanisms of crack growth in carti-
lage. However, the specimens in this study underwent repeated cyclical
loading to understand the crack propagation in cartilage.

Specimens used in this study had a maximum of 1 mm depth from
the articulating surface towards the bone. These specimens likely in-
clude superficial and transition-zones as well as the middle and deep
zones, in part or in full, given that bovine humeral head varies from 0.8
to 1.6 mm (Töyräs et al., 2001). One of the other limitations of this
study was that cartilage has zonal variations of collagen orientation
across its area (Fick, 2013) which was not accounted for in our study.
There also may have been limited repeatability of between specimens
due to testing along or perpendicular to split-line directions, and due to
some cartilage specimens being full depth and others not; as collagen
fibril orientation varies through its depth (Aspden and Hukins, 1981;
Minns and Steven, 1977). These could limit the wider applicability of
our findings. Regardless, this study found a clear trend of increased
crack propagation across the surface with increased frequency. This
finding opens up the potential for future studies which asses how fre-
quency of loading and failure interact with collagen orientation.

5. Conclusion

Crack growth increased with the number of cycles of loading. The
crack growth rate of cartilage samples was greater at higher fre-
quencies. The variation of crack growth of cartilage specimen samples
at loading frequencies associated with normal (1 Hz), above normal
(10 Hz) and up to rapid heel-strike rise times (100 Hz) may have im-
plications in the early stages of OA.
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