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Optical control of GPR40 signalling in pancreatic ββββ-cells 

James Allen Frank,a Dmytro A. Yushchenko,b,c Nicholas H.F. Fine,d,e Margherita Duca,a,f Mevlut 
Citir,b Johannes Broichhagen,a,g David J. Hodson,*d,e Carsten Schultz,*b,h, Dirk Trauner*a,i 

Fatty acids activate GPR40 and K+ channels to modulateβ-cell function. Herein, we describe the design and synthesis of 

FAAzo-10, a light-controllable GPR40 agonist based on Gw-9508. FAAzo-10 is a potent GPR40 agonist in the trans-

configuration and can be inactivated on isomerization to cis with UV-A light. Irradiation with blue light reverses this effect, 

allowing FAAzo-10 activity to be cycled ON and OFF with a high degree of spatiotemporal precision. In dissociated primary 

mouse β-cells, FAAzo-10 also inactivates voltage-activated and ATP-sensitive K+ channels, and allows us to control glucose-

stimulated Ca2+ oscillations in whole islets with light. As such, FAAzo-10 is a useful tool to study the complex effects, with 

high specificity, which FA-derivatives such as Gw-9508 exert at multiple targets in mouse β-cells. 

Introduction 

Although minimalistic in structure and often viewed as 

subunits of more complex lipids or simply an energy source, 

fatty acids can have profound effects on cell signalling.
1–4

 Free 

fatty acids most often consist of a long, unbranched carbon 

chain attached to a carboxyl headgroup, which is largely 

deprotonated and thus negatively charged at physiological 

pH.
5
 They are amphiphilic molecules with diverse structures 

that vary in the chain length and the level of unsaturation. A 

number of transmembrane signalling proteins, including 

G protein-coupled receptors (GPCRs) such as the GPR40,
6
 are 

stimulated by free fatty acids,
7
 resulting in a rise in the 

intracellular Ca
2+

 concentration ([Ca
2+

]i) in insulin-secreting 

pancreatic β-cells through activation of phospholipase C.
8–10

 

Given the role of GPR40 in glucose homeostasis, synthetic 

agonists for these receptors such as Gw-9508
11,12

 and TAK-

875
13,14

 have received significant attention as potential 

treatments for type 2 diabetes mellitus.
15,16

 However, a phase 

III clinical trial for TAK-875 was recently terminated due to off-

target effects and toxicity concerns.
17,18

 

 Glucose-stimulated insulin secretion (GSIS) relies on 

transport of glucose into the β-cell, followed by its metabolism 

to ATP. The resulting increase in the ATP/ADP ratio leads to 

closure of ATP-sensitive K
+
 channels (KATP) and subsequent 

membrane depolarization. This causes the opening of voltage 

activated L-type Ca
2+

 channels (Cav) and an increase in [Ca
2+

]i, 

driving exocytosis of insulin secretory granules
19

. Subsequent 

activation of delayed rectifier voltage-activated K
+ 

(Kv) 

channels leads to repolarization of the membrane, reduced 

Ca
2+ 

entry through Cav channels and termination of insulin 

secretion (Fig. 1).
20

 This is complemented by the action of 

other messengers, including those stemming from GPCRs (so-

called “amplifying” signals). Notably, the amplifying effects of 

GPR40 activation on insulin secretion remain elusive due to 

Fig. 1 Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. Upon 

uptake into the pancreatic β-cell, glucose is metabolized into ATP. The rising 

ATP/ADP ratio inhibits KATP which causes membrane depolarization and the 

opening of Cav. channels. The resulting increased [Ca2+]i triggers the fusion of 

secretory granules and the release of insulin. Kv channels work to repolarize the 

cell, generating oscillations in [Ca2+]i. GPR40 stimulation also leads to increased 

[Ca2+]i, further potentiating GSIS. 
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conflicting results in different experimental conditions,
12,21

 

which could be attributed to effects of FAs at different targets. 

For example, fatty acids are known to directly affect various K
+
 

channels that are involved in modulation of the [Ca
2+

]i 

oscillation frequency,
1,22,23

 demonstrating their complex 

pharmacology and vital role in β-cell signalling. Therefore, a 

tool that could enable precise control over GPR40 signalling 

may be useful to better understand the effects of fatty acids, 

as well as specific agonists, on β- and other cell functions. This 

could lead to the development of novel therapeutics by 

delineating the receptor conformations required for biased 

signalling.
18,24

 

Previous studies in our laboratories have focused on the 

development of photoswitchable sulfonylureas and incretins, 

with which we could place pancreatic β-cell function under the 

precise spatiotemporal control of light.25–29 We also showed 

that photoswitchable diacylglycerols30–32 affect β-cell [Ca2+]i 

and insulin secretion. These diacylglycerols were constructed 

from a photoswitchable fatty acid (FAAzo) chain, however the 

pharmacology of these FAAzos alone remains largely 

unexplored. Given the sensitivity of GPR40 to unsaturated, and 

sometimes aryl-containing free fatty acid-like molecules, we 

hypothesized that the FAAzos themselves could enable optical 

control of this GPCR. Herein, we describe a novel approach 

towards the optical control of fatty acid/GPR40 signalling in β-

cells. 

Results and discussion 

Although GPR40 is activated by long-chain fatty acids such as 

arachidonic or linoleic acid,
10

 various aryl-containing carboxylic 

acids such as Gw-9508 are known to produce a similar effect 

(Fig.2a).
3
 We recognized that the benzyl-aniline moiety of 

Gw-9508 could be easily substituted by a phenyl diazene, and 

would afford a photoswitchable ligand with little disturbance 

to the overall size and structure of the drug. Therefore, we 

synthesized the azologue33 of Gw-9508, FAAzo-10, using the 

Mills reaction after nitroso formation in two steps and 45% 

overall yield (Fig. 2b). Similar to the other members of the 

FAAzo family,30 FAAzo-10 behaved as a regular azobenzene 

and could be isomerized between its thermally stable trans-

Fig.2 Design and synthesis of photoswitchable GPR40 agonists. (a) The chemical 

structures of Gw-9508, AA and FAAzo-4. (b) Chemical synthesis of FAAzo-10, a 

photoswitchable derivative of Gw-9508. (c) The UV-Vis spectra of FAAzo-10 in 

its dark-adapted (black), UV-adapted (gray) and blue-adapted (blue) states 

(20µM in PBS). 

Fig. 3 FAAzos enable optical control of GPR40 in HeLa cells expressing GPR40, C1-GFP. [Ca2+]i levels were recorded using the genetically encoded [Ca2+]i sensor R-GECO. (a) 

Spontaneous oscillations of [Ca2+]i were observed before addition of any compound. (b) Gw-9508 (200 nM) caused an increase in [Ca2+]i that was not affected by 375 nm irradiation. 

HIS (10 nM) application caused an increase in [Ca2+]i (n = 179 cells from two experiments). (c,d) trans-FAAzo-10 (200 nM) increased [Ca2+]i, and isomerization to cis-FAAzo-10 with 

375 nm light reversed this effect. Displayed as (c) individual [Ca2+]i traces from representative cells and (d) the average [Ca2+]I  for many cells (n = 157 cells from two experiments). (e) 

In cells not expressing GPR40, FAAzo-10 (200 nM) did not affect [Ca2+]i. (f) At 200 nM, FAAzo-4 (n = 211 cells from two experiments) did not affect [Ca2+]i  when compared to FAAzo-

10 (n = 153 cells from two experiments).(g) The fluorescent diacylglycerol sensor C1-GFP translocated to the plasma membrane alongside the increase in [Ca2+]i  when stimulated by 

trans-FAAzo-10 (20 µM, n = 10 cells from one representative experiment). Translocation (green) is displayed as the plasma membrane to cytoplasm (PM/CP) C1-GFP fluorescence 

intensity ratio. (h) Quantification of cell entry: fluorescence quenching of coumaryl-AA-loaded (100 nM) HeLa cells after application (100 nM, 2 experiments each) of FAAzo-4 (n = 29 

cells, orange), FAAzo-10 (n = 23 cells, green) and PhoDAG-1 (n = 39 cells, grey), respectively. Error bars were calculated as ± s.e.m. 
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form to the cis-form with UV-A light (Fig. 2c). The process 

could be reversed by irradiation with blue light, and 

photoswitching could be repeated over many cycles. 

 We then characterized the effects of FAAzo-10 on GPR40 in 

HeLa cells using confocal fluorescence microscopy and the 

genetically encoded fluorescent [Ca
2+

]i reporter R-GECO.
34

 

When transiently transfected with GPR40, a portion of cells 

displayed spontaneous [Ca
2+

]i oscillations without the addition 

of any external stimuli (Fig.3a, Fig. S1a). Gw-9508 induced a 

GPR40-dependent increase in the rate and intensity of [Ca
2+

]i 

oscillations, that was not affected by UV-A-irradiation (Fig.3b, 

Fig. S1b). In cells without GPR40, no response was observed 

(Fig.S1c,d). Complementary to this result, the application of 

trans-FAAzo-10 (200 nM) stimulated a significant increase in 

[Ca2+]i in HeLa cells expressing GPR40 (Fig. 3c,d). On 

isomerization to cis with 375 nm irradiation, a sharp decrease 

in the [Ca2+]i was observed. The effect was reversed and [Ca2+]I 

increased on termination of the irradiation. In cells lacking 

GPR40, FAAzo-10 did not affect [Ca2+]I (Fig. 3e, Fig. S1e). We 

also evaluated the effect of FAAzo-4, which possesses a similar 

structure to FAAzo-10, but was not active at this low 

concentration (Fig. 3f). Histamine35 (HIS, 10 µM) was used as a 

positive control and triggered a large increase in [Ca2+]i, 

independent of GPR40 expression (Fig. 3, Fig. S1).  

To investigate the downstream effects of GPR40 activation, 

we expressed the fluorescent diacylglycerol reporter C1-GFP, 

which translocates to the plasma membrane in response to 

increased diacylglycerol levels following PLC activation.36 Gw-

9508 (200 nM) triggered C1-GFP translocation towards the 

plasma membrane, indicating activation of the GPCR (Fig. 

S1f,g). On application of trans-FAAzo-10 (20 μM), we observed 

a similar effect on C1-GFP translocation. This could be reversed 

following isomerization to cis-FAAzo-10 with 375 nm 

irradiation, and translocation could be repeated over many 

cycles (Fig. 3g). These results demonstrate that oscillations in 

GPR40 activity and its downstream effectors (i.e. PLC, [Ca2+]i 

and diacylglycerols) can be modulated with good temporal 

control. 

 Surprisingly, the effects induced by the FAAzos in HeLa cells 

did not diminish over time (Fig. 3), unlike those induced by the 

photoswitchable diacylglycerol PhoDAG-1, which decreased in 

magnitude over multiple UV-A pulses of the same length.31 To 

control for differences in cell loading, we applied the 

coumarinyl-ester of AA (cg-AA) to the HeLa cells.6 This 

fluorescent fatty acid-derivative localizes predominantly at the 

inner cellular membranes.31 By monitoring the quenching of 

coumarin fluorescence by the azobenzene of FAAzos, we 

demonstrated that this observed variance in activity was not 

due to variable FAAzo uptake by cells. Application of both 

FAAzos caused a rapid and large (>60%) decrease in coumarin 

fluorescence (Fig. 3h), especially when compared to the 

quenching effect of PhoDAG-1 (<20%), which is known to 

remain trapped on the outer plasma membrane.31 A cellular 

lipid analysis by thin layer chromatography (TLC) confirmed 

only minor FAAzo metabolism in cells incubated with FAAzo-4 

and FAAzo-10 (100 µM) for up to 1 h (Fig. S2). Together, these 

results demonstrate that the FAAzos are quickly taken up into 

cells, and only minimally metabolized over the timeframe of a 

typical imaging experiment. 

A major advantage of FAAzo-10 when compared to 

conventional agonists is the ability to modulate GPR40 activity 

with increased spatial precision. By illuminating only cells of 

interest, we were able to selectively control GPR40 activity 

without affecting signalling in neighbouring unilluminated cells 

(Fig. 4). This allows GPR40 activity to be controlled in a 

spatially defined manner in large patches of cells or complex 

tissues.  

To evaluate the effects of FAAzo-10 on K
+
 channels, we 

used whole-cell electrophysiology in dissociated mouse β-cells, 

which express both Kv and KATP channels.
37,38

 Kv channel 

conductance is a major determinant of the [Ca
2+

]i oscillation 

frequency.
20

 Like AA
31

 and Gw-9508 (Fig. 5a), trans-FAAzo-10 

reduced Kv channel conductance in the dark or under blue 

irradiation (Fig. 5b). On isomerization to cis-FAAzo-10, Kv 

channel activity was restored to a level comparable with the 

vehicle controls (Fig. 5a). FAAzo-10 could be switched ON and 

OFF repeatedly, effectively allowing us to quickly mimic the 

wash-in and wash-out of Gw-9508 using only a UV-A/blue 

irradiation (Fig. 5c). Furthermore, we could also fine-tune the 

effect of FAAzo-10 with greater precision by scanning through 

different irradiation wavelengths. The Kv conductance could be 

precisely controlled by gradually increasing the blocking effect 

of FAAzo-10 when scanning from UV-A to blue wavelengths. 

This was demonstrated by applying voltage ramps under 350-

450 nm irradiation (Fig. 5d,e). 

Gw-9508 has also been shown to potentiate KATP channels 

in mouse β-cells.
11

 We measured the whole-cell KATP current 

without extracellular glucose. IV-curves were measured 

between −110 and −50 mV to exclude any effect of the Kv 

Fig. 4 Spatial control of GPR40 signalling with FAAzo-10. (a) Confocal images of 

HeLa cells expressing GPR40 and R-GECO before and after treatment with FAAzo-

10 (200 nM) and illumination with 375 nm light. The green rectangle indicates the 

area of illumination. After addition of FAAzo-10, all transfected cells showed 

increased [Ca
2+

]i. Following illumination, only cells within the green rectangle 

showed a sharp decrease in [Ca
2+

]i levels, which recovered after termination of 

illumination. Scale bar = 100 μm.(b) Normalized [Ca
2+

]i in illuminated cells (within 

the green rectangular in (a)) in blue (n = 52) and those in unilluminated cells 

(outside the green rectangular) in black (n = 82). Time points 1-4 correspond to 

the respective time frames in (a). Error bars were calculated as ± s.e.m. 
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channels. After dialysis of the cytoplasm with intracellular 

buffer to reduce the ATP/ADP ratio, the KATP current increased 

to a steady state (Fig. 6a, Fig. S3a). In line with previous 

reports, Gw-9508 increased the KATP conductance further 

(Fig. 6a,c). 

 Interestingly, trans-FAAzo-10 behaved differently, and 

reduced the KATP conductance, while isomerization to 

cis-FAAzo-10 reversed the effect (Fig. 6b). Similar to the 

effects observed on the Kv channels, FAAzo-10 activity at KATP 

could be fine-tuned by altering the irradiation wavelength 

(Fig. 6d). Under blue irradiation, the KATP current was reduced, 

while the blockade was reversed towards UV-A wavelengths. 

In control experiments, application of the sulfonylurea 

tolbutamide reduced the KATP current significantly (Fig. 6e, Fig 

S3a), and neither UV-A no blue irradiation alone affected the 

KATP conductance (Fig. 6e, Fig. S3). 

 Finally, we evaluated our photoswitchable ligands for their 

effects on intact pancreatic islets using confocal fluorescence 

imaging. We employed the fluorescent small-molecule [Ca2+]I 

indicator Fluo-8 to monitor [Ca2+]I oscillations stimulated by a 

high glucose concentration (11 mM). Similar to the application 

of Gw-9508 (Fig.7a,b), application of trans-FAAzo-10 (20 µM) 

caused a marked increase in the [Ca2+]i oscillation frequency 

(Fig. 7c,d). In line with the effects that would be expected from 

our results on GPR40, Kv, and KATP, isomerization to 

cis-FAAzo-10 with 365 nm irradiation reversed this effect 

entirely (Fig. 7e). Lower concentrations of FAAzo-10 (2.5 µM) 

did not affect oscillation frequency in either configuration 

(Fig. 7f). To exclude imaging artifacts, in particular 

fluorescence quenching, the cells were treated with a methyl 

ester FAAzo-derivative, FAAzo-5(OMe), which possesses an 

azobenzene photoswitch with similar spectral characteristics 

to FAAzo-10.30 FAAzo-5(OMe) produced a small increase in the 

[Ca2+]I oscillation frequency in either configuration (Fig. S4a-c), 

as methyl esterification of the acid group abolished cis-activity. 

Although FAAzo-10 effectively increased [Ca2+]I oscillations, we 

did not observe a significant increase in insulin secretion in 

either trans or cis at both low (3 mM) and high (11 mM) glucose 

concentrations (Fig. 7g). Similarly, benchmark Gw-9508 did not 

stimulate GSIS at 3 mM or 11 mM glucose (Fig. 7g). An effect of 

BSA on Gw-9508 and/or FAAzo-10 potency was unlikely, since 

assays with low (3 mM) glucose concentration were performed 

in the absence of BSA. Experiments were also repeated at high 

(17 mM) glucose, but without BSA, showing a similar lack of 

stimulation with Gw-9508 or FAAzo-10 (Fig. S4d). Neither 

FAAzo-10 nor Gw-9508 were able to suppress tolbutamide-

stimulated insulin secretion, further supporting an effect on 

KATP channel conductance.11 UV-A irradiation alone did not 

affect oscillatory behavior or insulin secretion levels, as 

expected from previous studies25,31 (Fig. S4e). 

Fig. 5 Optical control of β-cell Kv channel activity. The 

whole-cell Kv channel current in dissociated wt mouse β-

cells was measured using electrophysiology. (a) An IV-

plot showed that Gw-9508 (50 µM)(n = 8 cells from 2 

animals) reduced the Kv conductance when compared to 

a vehicle control (n = 6 cells from 3 animals). (b) Under 

blue light, trans-FAAzo-10 (20 µM) reduced the whole-

cell Kv current. Isomerization to cis-FAAzo-10 with UV-A 

light reversed this effect(n = 7 cells from 3 animals). 

(c) Similar to the wash-in and wash-out of Gw-9508, 

FAAzo-10 could be activated and inactivated over several 

cycles using irradiation. Shown are IV-steps from −70 to 

+80 mV from representative cells. (d,e) An action 

spectrum between 350-450 nm showed that Kv activity 

could be fine-tuned by changing the irradiation 

wavelength. Displayed as (d)overlaid sequential voltage 

ramps (−70 to +80 mV) from a representative cell and (e) 

the normalized current (to I350nm) under each wavelength 

(n = 3 cells from 2 animals). Error bars were calculated as 

±s.e.m. 

Fig. 6 Optical control of β-cell KATP channels. The whole-cell KATP current from 

dissociated mouse β-cells was measured between −110 to −50 mV. (a-c) After 

dialysis of the cytoplasm with the pipette solution, the KATP current developed to a 

steady state (black = before, n = 21; green = after, n = 20 cells from 2 animals). 

Application of Gw-9508 (20 µM, red, n = 9 cells from 2 animals) increased KATP 

conductance. In contrast, the application of trans-FAAzo-10 (20 µM, blue) 

decreased the KATP current, while isomerization to cis-FAAzo-10 (gray) reversed this 

effect (n = 7 cells from 2 animals). Data is displayed as (a,b) the full IV relationship 

between −110 to −50 mV and (c) the % KATP current (at −110 mV) for multiple cells, 

normalized to the KATP open (green) state. (d) In the presence of FAAzo-10, an 

action spectrum between 350-450 nm revealed that KATP was inhibited the most 

under blue irradiation. Irradiation with UV-A light prevented FAAzo-10 from 

blocking the KATP current. Displayed as the normalized current (to I350nm) under each 

wavelength (n = 3 cells from one animal). (e) UV-A or blue irradiation did not affect 

the KATP current, and tolbutamide (40 µM) significantly reduced the magnitude of 

the KATP current (∆I from −110 to −50 mV, n = 3 cells from one animal).  ns = P>0.05, 

*P<0.05, **P<0.01. Error bars were calculated as ± s.e.m. 
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Conclusions 

In summary, we have demonstrated that FAAzo-10 is a potent 

photoswitchable agonist of GPR40, and reversibly inactivates 

K
+
 channels in dissociated mouse β-cells. Although our 

previous studies using the FAAzos conjugated to different 

headgroups afforded cis-active compounds,
30,31

 we found the 

opposite in this case. FAAzo-10 was more active in the trans-

form at all targets, and can reversibly stimulate [Ca
2+

]i 

oscillations in pancreatic β-cells using light. Interestingly, 

stimulation of [Ca
2+

]i oscillations with FAAzo-10 did not 

translate to increased insulin secretion in primary mouse islets, 

in line with the effects of benchmark Gw-9508. This suggests 

that oscillations by themselves are potentially not a sufficient 

signal for effective granule fusion, and that an additional factor 

was not triggered under these conditions. Of note, previous 

studies using Gw-9508 have afforded either stimulatory, 

inhibitory or no effect on insulin secretion,
11,21,39

 with two 

conflicting reports in mouse islets.
12,40

 As previously alluded to 

using the PhoDAGs,
31

 the variation of the effects induced by 

Gw-9508 application may stem from different protein 

expression levels or membrane area between immortalized 

and primary cells, or conversely off-target effects on GPR120, 

which shares some homology with GPR40. Similarly, 

differential effects caused by plasma membrane vs. 

intracellular fatty acid-signalling, as was observed using caged 

AA-derivatives, may contribute to this effect.
6
 By contrast, long 

chain fatty acids such as linoleic and palmitic acid have been 

consistently shown to potently stimulate insulin secretion, and 

this can be abrogated by GPR40 knockdown/silencing.
18

 Our 

studies thus reinforce the notion that signals in addition to 

GPR40 activation may be required for fatty-acid-stimulated 

insulin release, highlighting the complexity of fatty acid 

signalling in the β-cell, and underscoring the importance of 

FAAzo-10 for studying the intricate relationship between 

[Ca2+]i oscillations and insulin secretion. More broadly, FAAzo-

10 opens up the possibility to precisely interrogate the 

contribution of GPR40 signalling in different body 

compartments (e.g. brain and liver) to glucose homeostasis.  
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Fig. 7 FAAzo-10 enables optical control of [Ca2+]i oscillations in pancreatic islets. [Ca2+]i oscillations were stimulated by a high glucose concentration (11 µM, G11) and monitored 

in intact mouse islets using the fluorescent [Ca2+]i indicator Fluo-8. (a,b) The application of Gw-9508 (50 µM) caused an increase in the [Ca2+]ioscillation frequency. Displayed as 

(a) a representative trace from a single islet and (b) the oscillation frequency averaged over multiple islets (n = 6 recordings). (c,d) The application of trans-FAAzo-10 (20 µM) 

also caused a marked increase in the oscillation frequency. Isomerization to cis-FAAzo-10 with 365 nm irradiation reversed this effect. Results are displayed as (c) a 

representative trace from a single islet and (d) the average oscillation frequency from multiple islets (n = 5 recordings). (e,f) FAAzo-10 enabled optical control of β-cell [Ca2+]i 

oscillations at 20 µM, but not at 2.5 µM (n = 4-5 recordings) (representative images cropped to show a single islet; scale bar = 25 µm). (f)  FAAzo-10 (20 µM) did not afford a 

consistent effect on GSIS at [glucose] = 3 µM (G3) or G11. Gw-9508 (20 µM) also did not affect secretion (n = 3-8 assays using islets from at least 3 animals). Grey lines are raw 

traces (to show frequency effects), black lines are smoothed traces (to show amplitude effects). **denotes significance between G3 and G11. *P<0.05 and **P<0.01, ANOVA, 

with repeated measures as necessary. Error bars were calculated as ± s.e.m. 
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