

Level-Based Analysis of Genetic Algorithms and
Other Search Processes
Corus, Dogan; Dang, Duc-Cuong ; Eremeev, Anton V.; Lehre, Per Kristian

DOI:
10.1109/TEVC.2017.2753538

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Corus, D, Dang, D-C, Eremeev, AV & Lehre, PK 2017, 'Level-Based Analysis of Genetic Algorithms and Other
Search Processes', IEEE Transactions on Evolutionary Computation, vol. 99.
https://doi.org/10.1109/TEVC.2017.2753538

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Birmingham Research Portal

https://core.ac.uk/display/185502441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TEVC.2017.2753538
https://research.birmingham.ac.uk/portal/en/publications/levelbased-analysis-of-genetic-algorithms-and-other-search-processes(97fac031-d261-4df3-b0a9-28ab430a9c54).html

Level-Based Analysis of Genetic Algorithms and

Other Search Processes

Dogan Corus1, Duc-Cuong Dang2, Anton V. Eremeev3, and
Per Kristian Lehre4

1University of Sheffield, United Kingdom
2University of Nottingham, United Kingdom

3Omsk Branch of Sobolev Institute of Mathematics, Russia
4University of Birmingham, United Kingdom

August 10, 2017

Abstract

Understanding how the time complexity of evolutionary algorithms
(EAs) depend on their parameter settings and characteristics of fitness
landscapes is a fundamental problem in evolutionary computation. Most
rigorous results were derived using a handful of key analytic techniques,
including drift analysis. However, since few of these techniques apply
effortlessly to population-based EAs, most time complexity results concern
simple EAs, such as the (1+1) EA.

We present the level-based theorem, a new technique tailored to population-
based processes. It applies to any non-elitist process where offspring are
sampled independently from a distribution depending only on the current
population. Given conditions on this distribution, our technique provides
upper bounds on the expected time until the process reaches a target
state.

The technique is demonstrated on pseudo-Boolean functions, the sort-
ing problem, and approximation of optimal solutions in combinatorial
optimisation. The conditions of the theorem are often straightforward to
verify, even for Genetic Algorithms and Estimation of Distribution Algo-
rithms which were considered highly non-trivial to analyse. The proofs
for the example applications are available in the supplementary materials.
Finally, we prove that the theorem is nearly optimal for the processes con-
sidered: Given the information the theorem requires about the process, a
much tighter bound cannot be proved.

1 Introduction

The theoretical understanding of Evolutionary Algorithms (EAs) has advanced
significantly over the last decades. Significant progress in developing and under-
standing a formal model of canonical GAs and their generalisations was made
in the nineties using dynamical systems [54]. Notably, the behaviour of the
dynamical systems model is closely related to the local optima structure of the

1

problem in the case of binary search spaces [55]. However, most of these find-
ings relate to the infinite population limit, from which it is difficult to derive
statements about performance. Researchers from theoretical computer science
argued in the early 2000s that EC theory had attempted to make either too
general, or too precise statements [3]. Instead, one should develop techniques
for deriving rigorous statements about worst-case optimisation time, starting
from the simplest possible settings. Much of the work assumed a population
size of one and no crossover operator, e.g., the (1+1)EA [20].

Early analyses of EAs with larger population sizes often ignored the recom-
bination operator. The family tree technique was introduced in [58] to analyse
the (µ+1)EA. The performance of the (µ+µ)EA for different settings of the
population size was analysed in [30], using Markov chains to model the search
processes, and in [4], using a similar argument to fitness levels. The analysis
of parallel EAs in [35] also made use of the fitness levels argument. The inef-
ficiency of standard fitness proportionate selection without scaling was shown
in [44] and in [36], using drift analysis [28]. In the recently introduced switch
analysis, the progress of the EA is analysed relative to a reference process that
is easier to understand [60].

Runtime analyses taking into account recombination often aimed at un-
derstanding how evolutionary search can benefit from sexual reproduction in
specific settings. For the simple linear OneMax problem, it is known that the
Standard Genetic Algorithm (SGA) [54] is inefficient, even when crossover is
enabled [45]. For a variant of the (µ+1) EA, crossover can speed up by a fac-
tor of 2 compared to the (1+1) EA [51]. GAs with even higher (non-constant)
speedups on OneMax are known, but they rely on non-conventional reproduc-
tion mechanisms [16,17]. The unrestricted black-box complexity of OneMax is
Ω(n/ log(n)) [21], the speedup of any unrestricted black-box algorithm relative
to the (1+1)EA is therefore at most O

(
log(n)2

)
. More complex settings are

required to show further speedups. So-called convex search algorithms, which
include non-elitist GAs with gene pool recombination and no mutation, have
been analysed on quasi-concave fitness landscapes. [41]. As a special case, con-
vex search algorithm has expected runtime O (n log n) on LeadingOnes, i.e., a
speedup of Θ(n/ log(n)) compared with the (1+1)EA. [47] considered non-elitist
GAs, also without mutation, on noisy OneMax. The (µ+1)GA decreases the
runtime on the Jump problem, however this was first only shown for artificially
small crossover probabilities [31, 32]. For realistic crossover probabilities, the
(µ+1)GA decreases the runtime by an exponential factor on instances of an
FSM testing problem, however, this result assumes a deterministic crowding
diversity mechanism [39]. It was recently shown that the standard (µ+1)GA
without any modification has a speed up of Ω(n/ log(n)) on the Jump problem
compared to the mutation-only variant (µ+1) EA [10].

Estimation of Distribution Algorithms (EDA), a relatively new type of EAs
[34], build explicit probabilistic models in every generation from the fittest indi-
viduals, from which the next generation is sampled. The sequence of probabil-
ity distributions should converge to a distribution concentrated on the optimal
search points. Traditional EAs can be seen as special cases of EDAs, where
the probability distributions are given implicitly via their genetic operators and
selection mechanisms. Most theoretical studies of EDAs have considered conver-
gence and scalability properties [27,43,46,50,61], and rigorous runtime analyses
of EDAs are still rare. Droste’s Θ(Kn) bound on the expected runtime on linear

2

functions for cGA with update parameter K ≥ n1+ε, is an early rigorous result
on the runtime of EDAs [19]. Recent runtime analyses have demonstrated the
noise robustness of cGA [25], as well as the impact of its update parameter [52].
The runtime of UMDA, a more complex EDA [42], has been analysed in a se-
ries of papers [5–8, 13, 37, 59]. Chen et al. describe easy and hard functions
for the UMDA under the so-called “no-random-error” assumption and with a
sufficiently large population [6]. This assumption was lifted in [8], but the anal-
ysis still assumed an unrealistically large population size, leading to too highs
bound on the expected runtime. It is usually necessary to impose margins on
the probability distribution of the UMDA [7], however, the only known setting
where the UMDA outperforms the (1+1) EA assumes the UMDA without mar-
gins [5]. An early variant of the level-based method provided the first upper
bound of O (nλ log λ) on the runtime of UMDA with realistic population size
λ = Ω(log n) on OneMax [13]. Recently, a more precise application of the
level-based method tightened this bound to O (nλ) under the assumption that
the parent population size is µ = O (

√
n) [37]. For offspring population sizes

λ = O (log n), this runtime bound is tight, because it matches the lower bound
of Ω(µn+ n log n) shown via drift analysis [33]. A different argument than the
level-based method yielded a similar upper bound [59] for the UMDA.

This paper shows that all non-elitist EAs with or without crossover, and
even EDAs, can be cast and analysed in the same framework. An early ver-
sion of the paper was communicated in [9]. This followed from work dating
back to the introduction of a fitness level technique for non-elitist EAs with
linear ranking selection [40], later on generalised to many selection mechanisms
and unary variation operators [36], with a refined result in [14]. The original
fitness level technique and its generalisation to the level-based technique have
already found several applications, including analysis of EAs in uncertain en-
vironments, such as partial information [14], noisy fitness functions [12], and
dynamic fitness functions [11]. It has also been applied to analyse the runtime
of complex algorithms such as self-adaptive EAs [15], pointing out multi-modal
fitness landscapes where they outperform classical, elitist EAs.

The present work improves the main result of [9] in many aspects. A more
careful analysis of the population dynamics leads to a much tighter expression
of the runtime bound compared to [9]. In fact, we prove that the new bounds
are close to optimal for the class of search procesess the theorem applies to.
This immediately implies improved results in the previously mentioned applica-
tions. In particular, the leading term in the runtime is improved by a factor of
Ω(δ−3), where δ characterises how fast good individuals can populate the pop-
ulation. This significantly improves the results of [12] and [14] concerning noisy
optimisation, for which δ is often very small (e.g., 1/n). We also recommend
a stepwise guideline for how to apply the theorem to new settings. Example
applications are given for the cases of GAs and UMDA in optimising standard
pseudo-Boolean functions, a simple combinatorial problem, and in searching for
local optima of NP-hard problems.

This paper has the following structure: Section 2 describes the class of algo-
rithms covered by the level-based theorem, showing that many GAs and EDAs
are special cases. The section then states the main theorem and corollaries
for special cases, followed by their proofs. Sections 4 and 5 apply the level-
based theorem to the Simple Genetic Algorithm (SGA) and UMDA on example
problems. Section 6 proves that the level-based theorem is tight for the class

3

of algorithms considered. Section 7 concludes the paper. Some proofs have
been omitted due to space restrictions, but are available in the supplementary
materials.

2 Main result

2.1 Abstract algorithmic scheme

We consider population-based processes as stochastic processes (Pt)t∈N, where
for each “generation” t ∈ N, Pt = (x1, . . . , xλ) ∈ X λ is a vector of λ individuals,
and where the set X represents the “search space” or “genospace”. Our goal is
to estimate the expected number of generations until the population contains
at least one element in some given subset of X . Our main assumption is that
for every generation t ∈ N, each individual in generation Pt+1 is obtained by
independent sampling from a distribution D(Pt). Intuitively, D describes the
randomised process determining how new individuals are produced, and may
include fitness evalations, selection, variation operators, external noise etc. For-
mally, D is a mapping from the set of all possible populations X λ into the space
of probability distributions over X . This scheme is summarised in Algorithm 1.

Algorithm 1 Population-based algorithm.

Require:
A finite state space X , and population size λ ∈ N,
a mapping D from X λ to the space of prob. dist. over X ,
and an initial population P0 ∈ X λ.

1: for t = 0, 1, 2, . . . until termination condition met do
2: Sample Pt+1(i) ∼ D(Pt) independently for all i ∈ [λ].
3: end for

Algorithm 1 covers many non-elitist search heuristics, such as Stochastic
Beam Search [54], Estimation of Distribution Algorithms, and Genetic Algo-
rithms [26].

For example, the GA given by Algorithm 2 is a special case of Algorithm 1,
where the operator D corresponds to lines 3–5 in Algorithm 2. Here, the random
operator select : X λ → [λ] represents a selection mechanism, which given a
vector of λ individuals, returns the index of the individual to be selected. The
selection mechanism is typically defined relative to a fitness function f : X → R.
The GA uses the two variation operators mutate : X → X , and crossover : X×
X → X .

4

Algorithm 2 Genetic Algorithm (GA)

Require:
A finite set X , a population size λ ∈ N, a recombination rate pc ∈ (0, 1],
and an initial population P0 ∈ Unif(X λ).

1: for t = 0, 1, 2, . . . until termination condition met do
2: for i = 1 to λ do
3: u := Pt(select(Pt)), v := Pt(select(Pt)).
4: With prob. pc, x := crossover(u, v) else x := u.
5: Pt+1(i) := mutate(x).
6: end for
7: end for

2.2 The level-based theorem

We now state the main result of the paper: a general technique for obtaining
upper bounds on the expected runtime of any process that can be described
in the form of Algorithm 1. We use the following notation. The natural log-
arithm is denoted by ln(·), and [n] = {1, . . . , n} denotes the first n natural
numbers. Suppose that for some m there is an ordered partition of X into sub-
sets (A1, . . . , Am) which we call levels. We define A≥j :=

⋃m
i=j Ai, i. e., the union

of all levels above level j. The canonical partition of X with respect to a fitness
function f : X → R, is x, y ∈ Aj if and only if f(x) = f(y) (see, e.g., [36]).
The partition is called f -based if f(x) < f(y) for all x ∈ Aj , y ∈ Aj+1 and all
j ∈ [m − 1]. As a result of the algorithmic abstraction, our main theorem is
not limited to this particular type of partition. Let P ∈ X λ be a population
vector of a finite number λ ∈ N of individuals. Given any subset A ⊆ X , we
define |P ∩ A| := |{i | P (i) ∈ A}|, i. e. the number of individuals in P that
belong to A.

Theorem 1. Given a partition (A1, . . . , Am) of X , define T := min{tλ | |Pt ∩
Am| > 0}, where for all t ∈ N, Pt ∈ X λ is the population of Algorithm 1 in
generation t. If there exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for
any population P ∈ X λ,

(G1) for each level j ∈ [m− 1], if |P ∩A≥j | ≥ γ0λ, then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ zj ,

(G2) for each level j ∈ [m− 2], and all γ ∈ (0, γ0]
if |P ∩A≥j | ≥ γ0λ and |P ∩A≥j+1| ≥ γλ, then

Pr
y∼D(P)

(y ∈ A≥j+1) ≥ (1 + δ)γ,

(G3) and the population size λ ∈ N satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

z∗δ2

)
, where z∗ := min

j∈[m−1]
{zj},

then

E [T] ≤
(

8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

)
.

5

The level-based theorem gives an upper bound on the expected time until the
algorithm discovers an element in the last level Am, given that certain conditions
on the operator D and population size λ are satisfied. Time is measured by the
random variable T , which is defined as the number of individuals sampled in
line 2 of Algorithm 1 until the end of the first generation having an individual
in level Am. This is an upper bound on the total number of sampled search
points until a search point in Am is conceived for the first time.

Informally, the two first conditions require a relationship between the current
population P and the distribution D(P) of the individuals in the next gener-
ation: Condition (G1) demands that the probability of creating an individual
at level j + 1 or higher is at least zj when some fixed portion γ0 of the popu-
lation has reached level j or higher. Furthermore, if the number of individuals
at level j + 1 or higher is at least γλ > 0, condition (G2) requires that their
number tends to increase further, by a multiplicative factor of 1 + δ. Finally,
(G3) requires a sufficiently large population. When all conditions are satisfied,
an upper bound on the expected time for the algorithm to create an individual
in Am is guaranteed.

We recommend these steps when applying the theorem:

1. Identify a partition of X reflecting the “typical” progress of the population
to the target set Am.

2. Find parameter settings of the algorithm and corresponding parameters
γ0 and δ which allow condition (G2) to be satisfied, possibly by adjusting
the partition of X .

3. For each level j ∈ [m − 1], estimate lower bounds zj such that condition
(G1) holds.

4. Determine the lower bound on the population size λ in (G3), using the
parameters obtained in the previous steps.

5. Compute the upper bound on E [T]. The terms ln
(

6δλ
4+zjδλ

)
can be bounded

by underestimating the denominator, either by 4, or by zjδλ, leading to
the upper bounds ln(3λ/2), respectively ln(6/zj).

We now illustrate this methodology on a simple example.

Corollary 2. Algorithm 3 with λ ≥ 72(ln(m) + 9) produces less than 216(m−
1)(λ+ 1) individuals in expectation before it discovers m.

Algorithm 3 Example algorithm to illustrate Theorem 1.

1: Sample an initial population P0 ∼ Unif([m]λ) u.a.r.
2: for t = 0, 1, 2, . . . until termination condition met do
3: Sort Pt = (x1, . . . , xλ) s.t. x1 ≥ x2 ≥ · · · ≥ xλ.
4: for i = 1 to λ do
5: z := xk, where k ∼ Unif([λ/2]).
6: y := z + Unif({−c, 0, 1}) for any fixed c ∈ [m]
7: Pt+1(i) := max{1,min{y,m}}.
8: end for
9: end for

6

To illustrate Theorem 1, we estimate the time until the element m is con-
tained in the population of Algorithm 3. The search space X is the set of natural
numbers between 1 and m. Following the scheme of Algorithm 1, the operator
D corresponds to lines 3–6. The new individual y is obtained by first selecting
uniformly at random one of the best λ/2 individuals in the population (lines 3
and 5) and mutating this individual by adding 1 subtracting c or doing nothing,
with equal probabilities. We will see that the value of c does not matter in our
analysis.

We now carry out the steps described previously.
Step 1: We use the partition Aj := {j} for all j ∈ [m].
Step 2: Assume that the current level is j < m− 1. This means that in Pt,

there are γ0λ individuals in A≥j , i. e., with fitness at least j, and at least γλ but
less than γ0λ individuals in A≥j+1, i. e., with fitness at least j + 1. We need to
estimate Pry∼D(Pt)(y ∈ A≥j+1), i. e., the probability of producing an individual
with fitness at least j + 1. We say that a selection event is “good” if in line 5,
the algorithm selects an individual in A≥j+1, i. e., with fitness at least j + 1. If
γ ≤ 1/2, then the probability of a good selection event is at least γλ/(λ/2) = 2γ.
We say that a mutation event is “good” if in line 6, the algorithm does not
subtract c from the selected search point. The probability of a good mutation
event is 2/3. Selection and mutation are independent events, hence we have
shown for all γ ∈ (0, 1/2] that Pry∼D(Pt)(y ∈ A≥j+1) ≥ (2γ)(2/3) = γ

(
1 + 1

3

)
.

Condition (G2) is therefore satisfied with δ = 1/3 for any γ0 ≤ 1/2. We will
choose the parameter γ0 later.

Step 3: Assume that population Pt has at least γ0λ individuals in A≥j . The
algorithm can then produce an individual in A≥j+1 by selecting an individual
in A≥j , and mutate this individual into A≥j+1 by adding 1 in line 6. We can
conveniently fix γ0 := 1/2, so that the probability of selecting an individual
in A≥j becomes 1. Furthermore, the probability of adding 1 to the selected
individual is exactly 1/3. Hence, we have Pry∼D(Pt)(y ∈ A≥j+1) ≥ 1(1/3), and
we can satisfy condition (G1) by defining zj := 1/3 for all j ∈ [m− 1].

Step 4: For the parameters we have chosen, it is easy to see by numerical
calculation that the population size λ ≥ 72(ln(m) + 9) satisfies condition (G3).

Step 5: Using that ln
(

6δλ
4+δλzj

)
< ln

(
6
zj

)
, the expected time to discover the

point m is no more than

8(
1
3

)2 m−1∑
j=1

(
λ ln

(
6
1
3

)
+

1
1
3

)
< 216(m− 1)(λ+ 1).

2.3 Proof of the level-based theorem

Theorem 1 will be proved using drift analysis [28, 29], which is a standard tool
in theory of randomised search heuristics. We use the following variant of the
additive drift theorem [29] and the proof can be found in the appendix. The
lower bound statement will be used in the last part of paper to discuss the
tightness of the level-based theorem. In what follows, “(Zt+1−Zt + ε) ; t < Ta”
is a short-hand notation for “(Zt+1 − Zt + ε) · 1{t<Ta}” (see 6.3 in [57]).

Theorem 3 (Additive drift theorem). Let (Zt)t∈N be a discrete-time stochastic
process in [0,∞) adapted to any filtration (Ft)t∈N. Define Ta := min{t ∈ N |

7

Zt ≤ a} for any a ≥ 0. For some ε > 0 and constant 0 < b < ∞, define the
conditions

1.1) E [Zt+1 − Zt + ε ; t < Ta | Ft] ≤ 0 for all t ∈ N,

1.2) E [Zt+1 − Zt + ε ; t < Ta | Ft] ≥ 0 for all t ∈ N,

2) Zt < b for all t ∈ N, and

3) E [Ta] <∞.

If 1.1), 2), and 3) hold, then E [Ta | F0] ≤ Z0/ε.
If 1.2), 2), and 3) hold, then E [Ta | F0] ≥ (Z0 − a)/ε.

When applying the additive drift theorem to a complex process, Zt is the
result of a (measurable) mapping of the states of the process to a real number.
Such a mapping is called the distance function, which measures the distance to
some target state. Our distance function takes into account both the current
level of the population, as well as the distribution of the population around the
current level. In particular, let the current level Yt be the highest level j ∈ [m]
such that there are at least γ0λ individuals at level j or higher. Furthermore,

for any level j ∈ [m], let X
(j)
t be the number of individuals at level j or higher.

Hence, we describe the dynamics of the population by m+1 stochastic processes

X
(1)
t , . . . , X

(m)
t , Yt. Assuming that these processes are adapted to a filtration

Ft, we write Et [X] := E [X | Ft] and Prt(E) := E [1E | Ft]. Our approach is

to measure the distance of the population at time t by a scalar g(X
(Yt+1)
t , Yt),

where g is a function that satisfies the conditions in Definition 4.

Definition 4. A function g : ({0} ∪ [λ])× [m]→ R is called a level function if
the following three conditions hold

1. ∀x ∈ {0} ∪ [λ],∀y ∈ [m− 1] : g(x, y) ≥ g(x, y + 1),

2. ∀x ∈ {0} ∪ [λ− 1],∀y ∈ [m] : g(x, y) ≥ g(x+ 1, y),

3. ∀y ∈ [m− 1] : g(λ, y) ≥ g(0, y + 1).

Note that the sum of two level functions is also a level function. Further-
more, the conditions ensure that the distance g(X

(Yt+1)
t , Yt) of the population

decreases monotonically with the current level Yt. Lemma 5 shows that this
monotonicity allows an upper bound on the distance in the next generation
which is partly independent of the change in current level.

Lemma 5. If Yt+1 ≥ Yt, then for any level function g

g
(
X

(Yt+1+1)
t+1 , Yt+1

)
≤ g

(
X

(Yt+1)
t+1 , Yt

)
.

Proof. The statement is trivial when Yt = Yt+1. On the other hand, if Yt+1 > Yt,
then the conditions in Definition 4 imply

g
(
X

(Yt+1+1)
t+1 , Yt+1

)
≤ g (0, Yt+1) ≤ g (0, Yt + 1)

≤ g (λ, Yt) ≤ g
(
X

(Yt+1)
t+1 , Yt

)
.

8

Proof of Theorem 1. We will use Theorem 3 with respect to the parameter a =

0 and a stochastic process Zt := g
(
X

(Yt+1)
t , Yt

)
, where g is a level-function

to be defined, and (Yt)t∈N and (X
(j)
t)t∈N for j ∈ [m] are stochastic processes

to be defined. We consider the filtration (Ft)t∈N induced by the sequence of
populations (Pt)t∈N.

We will assume w. l. o.g. that condition (G2) is also satisfied for j = m− 1,
for the following reason. Given Algorithm 1 with a certain mapping D, consider
Algorithm 1 with a different mapping D′(P): If |P ∩ Am| = 0, then D′(P) =
D(P); otherwise D′(P) assigns probability mass 1 to some element x of P that
is in Am, e. g., to the first one among such elements. Note that D′ meets
conditions (G1) and (G2). Moreover, (G2) holds for j = m − 1. For the
sequence of populations P ′0, P

′
1, . . . of Algorithm 1 with mapping D′, we can

put T ′ := λ ·min{t | |P ′t ∩Am| > 0}. Executions of the original algorithm and
the modified one before generation T ′/λ are identical. On generation T ′/λ both
algorithms place elements of Am into the population for the first time. Thus,
T ′ and T are equal in every realisation and their expectations are equal.

For any level j ∈ [m] and time t ≥ 0, let the random variable X
(j)
t :=

|Pt ∩ A≥j | denote the number of individuals in levels A≥j at time t. Because
A≥j is partitioned into disjoint sets Aj and A≥j+1, the definition implies

|Pt ∩Aj | = X
(j)
t −X

(j+1)
t (1)

Algorithm 1 samples all individuals in generation t+ 1 independently from dis-

tribution D(Pt). Therefore, given the current population Pt, X
(j)
t+1 is binomially

distributed X
(j)
t+1 ∼ Bin(λ, p

(j)
t+1), where p

(j)
t+1 := Prt,y∼D(Pt) (y ∈ A≥j) is the

probability of sampling an individual in level j or higher.

The current level Yt of the population at time t is defined as Yt := max
{
j ∈ [m]

∣∣∣ X(j)
t ≥ γ0λ

}
.

Note that (X
(j)
t)t∈N and (Yt)t∈N are adapted to the filtration (Ft)t∈N because

they are defined in terms of the population process (Pt)t∈N.
When Yt < m, there exists a unique γ < γ0 such that

X
(Yt+1)
t = |Pt ∩A≥Yt+1| = γλ, (2)

X
(Yt)
t = |Pt ∩A≥Yt | ≥ γ0λ, and (3)

X
(Yt−1)
t = |Pt ∩A≥Yt−1| ≥ γ0λ. (4)

In the case of X
(Yt+1)
t = 0, it follows from (1), (2) and (3) that |P ∩ Aj | =

X
(Yt)
t ≥ γ0λ. Condition (G1) for level j = Yt then gives

p
(Yt+1)
t+1 = Pr

y∼D(Pt)
(y ∈ A≥Yt+1) ≥ zYt . (5)

Otherwise if X
(Yt+1)
t ≥ 1, conditions (G1) and (G2) for level j = Yt with (2)

and (3) imply

p
(Yt+1)
t+1 = Pr

y∼D(Pt)
(y ∈ A≥Yt+1) (6)

≥ max

{
(1 + δ)

X
(Yt+1)
t

λ
, zj

}
. (7)

9

Condition (G2) for level j = Yt − 1 with (3) and (4) give

p
(Yt)
t+1 = Pr

y∼D(Pt)
(y ∈ A≥Yt) ≥ (1 + δ)γ0. (8)

We now define the process (Zt)t∈N as Zt := 0 if Yt = m, and otherwise, if

Yt < m, we let Zt := g
(
X

(Yt+1)
t , Yt

)
, where for all k, and for all 1 ≤ j < m,

g(k, j) = g1(k, j) + g2(k, j) and

g1(k, j) := ln

(
1 + (δ/2)λ

1 + (δ/2) max{k, zjλ/(1 + δ)}

)
+

m−1∑
i=j+1

ln

(
1 + (δ/2)λ

1 + (δ/2)λzi/(1 + δ)

)
,

g2(k, j) :=
1

qj

(
1− δ2

7

)k
+

m−1∑
i=j+1

1

qi
,

where qj := 1− (1− zj)λ.
It follows from Lemma 18 that g(k, j) is a level function. Furthermore,

g(k, j) ≥ 0 for all k ∈ {0} ∪ [λ] and all j ∈ [m]. Due to properties 1 and 2 of
level functions, and Lemma 31 from [14], the distance is always bounded from
above by

g(0, 1) ≤
m−1∑
i=1

(
ln

(
1 + (δ/2)λ

1 + (δ/2)ziλ/(1 + δ)

)
+

1

qi

)

<

m−1∑
i=1

(
ln

(
4 + 2δλ

4 + δziλ

)
+ 1 +

1

λzi

)
. (9)

Using that zi ≤ 1, this can be bounded further by

<
m−1∑
i=1

(
ln

(
4 + 2δλ

zi(4 + δλ)

)
+ 1 +

1

λzi

)
(10)

=

m−1∑
i=1

(
ln

(
1

zi

(
1 +

δλ

4 + δλ

))
+ 1 +

1

λzi

)
.

We then exploit that ln(x) ≤ x− 1 for all x > 0 so

<

m−1∑
i=1

(
2

zi
+

1

λzi

)
.

Finally, since zi ≥ z∗ and λ ≥ d4 ln(128)e = 20 by (G3)

<
m

z∗

(
2 +

1

λ

)
≤ 41m

20z∗
. (11)

Hence, we have 0 ≤ Zt < g(0, 1) <∞ for all t ∈ N which implies that condition
2 of the drift theorem is satisfied.

10

The drift of the process at time t is Et [∆t+1], where

∆t+1 := g
(
X

(Yt+1)
t , Yt

)
− g

(
X

(Yt+1+1)
t+1 , Yt+1

)
.

We bound the drift by the law of total probability as

Et [∆t+1] = (1− Prt (Yt+1 < Yt))Et [∆t+1 | Yt+1 ≥ Yt]
+ Prt (Yt+1 < Yt)Et [∆t+1 | Yt+1 < Yt] . (12)

The event Yt+1 < Yt holds if and only if X
(Yt)
t+1 < γ0λ. Due to (8), we obtain the

following by a Chernoff bound

Prt (Yt+1 < Yt) = Prt

(
X

(Yt)
t+1 <

(
1− δ

1 + δ

)
(1 + δ)γ0λ

)
≤ exp

(
− δ2γ0λ

2(1 + δ)

)
≤ δ2z∗

128m
, (13)

where the last inequality takes into account the population size required by
condition (G3). Given the low probability of the event Yt+1 < Yt, it suffices to
use the pessimistic bound (11)

Et [∆t+1 | Yt+1 < Yt] ≥ −g(0, 1) ≥ −41m

20z∗
. (14)

If Yt+1 ≥ Yt, we can apply Lemma 5

Et [∆t+1 | Yt+1 ≥ Yt]

≥ Et
[
g
(
X

(Yt+1)
t , Yt

)
− g

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
.

Note that event Yt+1 ≥ Yt is equivalent to having X
(Yt)
t+1 ≥ γ0λ, then due to

Lemma 20, in the following we can skip the condition on the event when needed.

If X
(Yt+1)
t = 0, then X

(Yt+1)
t ≤ X(Yt+1)

t+1 and

Et

[
g1

(
X

(Yt+1)
t , Yt

)
− g1

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
≥ 0,

because the function g1 satisfies property 2 in Definition 4. Furthermore, we
have the lower bound

Et

[
g2

(
X

(Yt+1)
t , Yt

)
− g2

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
> Prt

(
X

(Yt+1)
t+1 ≥ 1

)
(g2 (0, Yt)− g2 (1, Yt)) ≥

δ2

7
,

where the last inequality follows because of (5) and Prt

(
X

(Yt+1)
t+1 ≥ 1

)
≥ 1 −(

1− p(Yt+1)
t+1

)λ
≥ 1− (1−zYt)λ = qYt , and g2 (0, Yt)−g2 (1, Yt) = (1/qYt)(δ

2/7).

In the other case, where X
(Yt+1)
t ≥ 1, we obtain

Et

[
g1

(
X

(Yt+1)
t , Yt

)
− g1

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
11

≥ Et

ln

 1 + δ
2X

(Yt+1)
t+1

1 + δ
2 max

{
X

(Yt+1)
t ,

zYtλ

1+δ

}
 ≥ δ2

7
,

where the last inequality follows from Lemma 19 for the parameters X :=

X
(Yt+1)
t+1 and p := p

(Yt+1)
t+1 as given by (7). For the function g2, we get

Et

[
g2

(
X

(Yt+1)
t , Yt

)
− g2

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
=

1

qYt

(1− δ2

7

)X(Yt)
t

− Et

(1− δ2

7

)X(Yt+1)
t+1

 > 0,

where the last inequality is due to Lemma 6 from [14] (see also the supplementary

materials), applied to X
(Yt+1)
t+1 ∼ Bin(λ, p

(Yt+1)
t+1) with p

(Yt+1)
t+1 ≥ (1+δ)X

(Yt+1)
t /λ

(see (7)) and the parameter κ = − ln(1− δ2/7) < δ.
Taking into account all cases, we have

Et [∆t+1 | Yt+1 ≥ Yt] ≥
δ2

7
. (15)

We now have bounds for all the quantities in (12) with (13), (14), and (15),
and we get

Et [∆t+1] = (1− Prt (Yt+1 < Yt))Et [∆t+1 | Yt+1 ≥ Yt]
+ Prt (Yt+1 < Yt)Et [∆t+1 | Yt+1 < Yt]

≥
(

1− δ2z∗
128m

)
δ2

7
−
(
δ2z∗
128m

)(
41m

20z∗

)
>
δ2

8
.

We now verify condition 3 of Theorem 3, i. e., that T has finite expectation.
Let p∗ := min{(1 + δ)/λ, z∗}, and note by conditions (G1) and (G2) that the
current level increases by at least one with probability Prt (Yt+1 > Yt) ≥ (p∗)

γ0λ.
Due to the definition of the modified process D′, if Yt = m, then Yt+1 = m.
Hence, the probability of reaching Yt = m is lower bounded by the probability
of the event that the current level increases in all of at most m consecutive
generations, i. e., Prt (Yt+m = m) ≥ (p∗)

γ0λm > 0. It follows that E [T] <∞.
By Theorem 3 and the upper bound on g(0, 1) in (9),

E [T] ≤ λ · g(0, 1)

δ2/8
<

(
8λ

δ2

)m−1∑
i=1

ln

(
4 + 2δλ

4 + ziδλ

)
+ 1 +

1

λzi
,

then using that 4 ≤ δλ/5 from (G3) and (1/5 + 2)e < 6,

<

(
8λ

δ2

)m−1∑
i=1

(
ln

(
6δλ

4 + ziδλ

)
+

1

λzi

)
.

It can be seen from the proof of Theorem 1 that it easily extends to al-
gorithms where the mapping D is time-dependent, provided that (G1), (G2),
and (G3) hold for any t for some fixed (time independent) values z1, . . . , zm−1, δ,
and γ0.

12

3 Tools for Analysing Genetic Algorithms

In this section, we derive two corollaries of Theorem 1 tailored to Algorithm 2
and give conditions on tunable parameters of selection mechanisms making the
corollaries applicable.

A fitness function is not defined explicitly in Algorithm 2, so no assumptions
on an f -based partition will be needed in the corollaries. Here we generalise the
cumulative selection probability of select, denoted β(γ, P), which was defined
relative to the fitness function f in [14], to the one that is relative to the partition
(A1, . . . , Am). To define β(γ, P) of select w.r. t. f for a population P of λ
search points, we first assume (f1, . . . , fλ) to be the vector of sorted fitness
values of P , i. e., fi ≥ fi+1 for each i ∈ [λ− 1]. Then

β(γ, P) :=

λ∑
i=1

psel(i | P) ·
[
f(P (i)) ≥ fdγλe

]
for any γ ∈ (0, 1]. Here and below, [·] is the Iverson bracket.

Similarly, given a partition (A1, . . . , Am), if we use (`1, . . . , `λ) to denote the
sorted levels of search points in P , i. e., `i ≥ `i+1 for each i ∈ [λ − 1], then the
cumulative selection probability of select w.r. t. (A1, . . . , Am) is

ζ(γ, P) :=

λ∑
i=1

psel(i | P) ·
[
P (i) ∈ A≥`dγλe

]
.

These definitions are related by the following lemma, which is proved in the
supplementary materials.

Lemma 6. For any f -based partition of X and λ ∈ N,

∀P ∈ X λ,∀γ ∈ (0, 1] ζ(γ, P) ≥ β(γ, P). (16)

3.1 Analysis of non-permanent use of crossover

We first derive from Theorem 1 a corollary that is adapted to Algorithm 2 with
pc < 1. This setting covers the case pc = 0, i. e., only unary variation operators
are used. This specific case is the main subject of [14]. As we will see later on,
stronger and more general results can be claimed with the corollary.

Corollary 7. Given a partition (A1, . . . , Am) of X , define T := min{tλ |
|P ∩ Am| > 0} where for all t ∈ N, Pt ∈ X λ is the population of Algorithm 2
in generation t. If pc < 1 and there exist s1, . . . , sm−1, s∗, p0, δ ∈ (0, 1], and a
constant γ0 ∈ (0, 1) such that for any population P ∈ X λ,

(M1) for each level j ∈ [m− 1]

pmut (y ∈ A≥j+1 | x ∈ Aj) ≥ sj

(M2) for each level j ∈ [m− 1]

pmut (y ∈ A≥j | x ∈ Aj) ≥ p0

13

(M3) for any population P ∈ (X \Am)
λ

and γ ∈ (0, γ0]

ζ(γ, P) ≥ (1 + δ)γ

p0(1− pc)

(M4) the population size λ satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

γ0s∗δ2

)
where s∗ := min

j∈[m−1]
{sj},

then

E [T] <

(
8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + γ0sjδλ

)
+

1

γ0sj

)
.

Proof. We apply Theorem 1 following the guidelines. Step 1 is skipped because
we already have the partition.

Step 2: Assume that |P ∩ A≥j | ≥ γ0λ and |P ∩ A≥j+1| ≥ γλ > 0 for some
γ ≤ γ0. To create an individual in A≥j+1, it suffices to pick an x ∈ |P ∩Ak| for
any k ≥ j + 1 and mutate it to an individual in A≥k, the probability of such an
event, according to (M2) and (M3), is at least (1− pc)ζ(γ, P)p0 ≥ (1 + δ)γ. So
(G2) holds with p0, δ and γ0 from (M3).

Step 3: We are given |P ∩ Aj | ≥ γ0λ. Thus, with probability ζ(γ0, P),
the selection mechanism chooses an individual x in either Aj or A≥j+1. If
x ∈ Aj , then the mutation operator will by (M1) upgrade x to A≥j+1 with
probability sj . If x ∈ A≥j+1, then by (M2), the mutation operator leaves
the individual in A≥j+1 with probability p0. Finally, no crossover occurs with
probability 1− pc, so the probability of producing an individual in A≥j+1 is at
least (1− pc)ζ(γ0, P) min{sj , p0} ≥ (1− pc)ζ(γ0, P)sjp0 > γ0sj and (G1) holds
with zj = γ0sj , z∗ = γ0s∗.

Step 4: Given z∗ = γ0s∗, condition (M4) yields (G3).
Step 5: Conditions (G1–3) are satisfied and Theorem 1 gives

E [T] ≤ 8λ

δ2

m−1∑
j=1

(
ln

(
6δλ

4 + zjδλ

)
+

1

zjλ

)

=
8

δ2

m−1∑
j=1

(
λ ln

(
6δλ

4 + γ0sjδλ

)
+

1

γ0sj

)
.

The proof implies that any operator can stand for crossover in line 4 of
Algorithm 2, and the result will still hold.

3.2 Analysis of permanent use of crossover

We now adapt Theorem 1 to Algorithm 2 with pc = 1.

Corollary 8. Given a partition (A1, . . . , Am) of X , define T := min{tλ |
|Pt∩Am| > 0}, where for all t ∈ N, Pt ∈ X λ is the population of Algorithm 2. If
pc = 1 and there exist s1, . . . , sm−1, s∗, p0, ε, δ ∈ (0, 1], and a constant γ0 ∈ (0, 1)
such that

14

(C1) for each level j ∈ [m− 1]

pmut (y ∈ A≥j+1 | x ∈ Aj) ≥ sj ,

(C2) for each level j ∈ [m]

pmut (y ∈ A≥j | x ∈ Aj) ≥ p0,

(C3) for each level j ∈ [m− 2]

pxor (x ∈ A≥j+1 | u ∈ A≥j , v ∈ A≥j+1) ≥ ε,

(C4) for any population P ∈ (X \Am)
λ

and γ ∈ (0, γ0]

ζ(γ, P) ≥ γ

√
1 + δ

p0γ0ε
,

(C5) the population size satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

γ0δ2s∗

)
, where s∗ := min

j∈[m−1]
{sj},

then

E [T] <

(
8

δ2

)m−1∑
j=1

(
λ ln

(
6δλ

4 + γ0sjδλ

)
+

1

γ0sj

)
.

Proof. We apply Theorem 1 following the guidelines. Again, Step 1 is skipped
because the partition is already defined.

Step 2: We are given |P ∩A≥j | ≥ γ0λ and |P ∩A≥j+1| ≥ γλ > 0. To create
an individual in A≥j+1, it suffices to pick the individual u in A≥j and v in
A≥j+1, then to produce an individual in Ak for any k ≥ j + 1 by crossover
and not destroy the produced individual by mutation. The probability of
such an event according to (C2), (C3), and (C4) is bounded from below by
ζ(γ0, P)ζ(γ, P)εp0 ≥ (1 + δ)γ. Condition (G2) is then satisfied with the same
γ0 and δ as in (C4).

Step 3: We assume |P ∩ Aj | ≥ γ0λ. Note that condition (C3) written for
level j−1 is pxor(x ∈ A≥j | u ∈ A≥j−1, v ∈ A≥j) ≥ ε, and because A≥j ⊂ A≥j−1

then pxor(x ∈ A≥j | u ∈ A≥j , v ∈ A≥j) ≥ ε. To create an individual in levels
A≥j+1, it then suffices to pick both parents u and v from levels A≥j in line 3,
produce an intermediary offspring in Ak for any k ≥ j via crossover, and from
this an individual in A≥j+1 via mutation. If k = j, we need to improve the
produced individual by mutation, relying on (C1). Otherwise if k > j it suffices
not to destroy the produced individual by mutation, relying on (C2). It follows
from (C4) that the probability of producing an individual in A≥j+1 is at least
ζ(γ0, P)2εmin{sj , p0} ≥ ζ(γ0, P)2εsjp0 > γ0sj . Condition (G1) then holds for
zj = γ0sj and z∗ = γ0s∗.

Step 4: Given that z∗ = γ0s∗, (C5) implies (G3).
Step 5: Conditions (G1–3) are satisfied, so Theorem 1 gives

E [T] ≤ 8

δ2

m−1∑
j=1

(
λ ln

(
6δλ

4 + γ0sjδλ

)
+

1

γ0sj

)
.

Corollary 8 is similar to Corollary 7, except that condition (C2) has to
additionally hold for level Am, that (C3) is a new condition on the crossover

operator, and that condition (C4) on the select operator differs from (M3).

15

3.3 Analysis of selection mechanisms

We show how to parametrise the following selection mechanisms such that con-
dition (M3) of Corollary 7 and (C4) of Corollary 8 are satisfied. In k-tournament
selection, k individuals are sampled uniformly at random with replacement
from the population, and the fittest of these individuals is returned. In (µ, λ)-
selection, parents are sampled uniformly at random among the fittest µ indi-
viduals in the population. A function α : R → R is a ranking function [26]

if α(x) ≥ 0 for all x ∈ [0, 1], and
∫ 1

0
α(x)dx = 1. In ranking selection with

ranking function α, the probability of selecting an individual among γλ best
individuals is

∫ γ
0
α(x)dx. In linear ranking selection, parametrised by η ∈ (1, 2],

the ranking function is α(γ) := η(1 − 2γ) + 2γ. We define exponential ranking
selection parametrised by η > 0 with α(γ) := ηeη(1−γ)/(eη − 1).

Lemma 9. Assuming that (A1, . . . , Am) is a partition of X with (A1, . . . , Am−1)
being an f -based partition of X \ Am, for any constants δ′ > 0, p0 ∈ (0, 1),
ε ∈ (0, 1), and for any non-negative parameter pc = 1 − Ω(1), there exists a
constant γ0 ∈ (0, 1) such that all the following selection mechanisms

1. k-tournament selection,

2. (µ, λ)-selection,

3. linear ranking selection, and

4. exponential ranking selection

with their parameters k, λ/µ, and η being set to no less than
1 + δ′

(1− pc)p0
sat-

isfy (M3), i. e., ζ(γ, P) ≥ (1 + δ′′)γ

p0(1− pc)
for any γ ∈ (0, γ0], any P ∈ (X\Am)λ,

and some constant δ′′ > 0.

Lemma 10. Given a partition (A1, . . . , Am) of X with (A1, . . . , Am−1) being an
f -based partition of X \Am, for any constants δ′ > 0, p0 ∈ (0, 1), and ε ∈ (0, 1),
there exists a constant γ0 ∈ (0, 1) such that the following selection mechanisms

1. k-tournament selection with k ≥ 4(1 + δ′)/(εp0),

2. (µ, λ)-selection with λ/µ ≥ (1 + δ′)/(εp0), and

3. exponential ranking selection with η ≥ 4(1 + δ′)/(εp0)

satisfy (C4), i. e., ζ(γ, P) ≥ γ

√
1 + δ′

p0εγ0
for any γ ∈ (0, γ0], and any P ∈ (X\Am)λ.

Lemmas 9 and 10 are proved in the supplementary materials.

4 Applications to Genetic Algorithms

We now apply the results from Section 3. Proofs have been moved to the
supplementary materials due to space limitations. Given a bitstring x a bitwse
mutation operator, returns a bitstring y, where for each i ∈ [n], bit yi, is set
independently to 1 − xi with probability pm and is otherwise kept equal to xi.
The parameter pm ∈ [0, 1] is called the mutation rate.

16

4.1 Optimisation of pseudo-Boolean functions

In this subsection, we consider the expected runtime of non-elitist GAs in Algo-
rithm 2 on the following functions: OneMax(x) :=

∑n
i=1 xi = |x|1 = Om(x),

LeadingOnes(x) :=
∑n
i=1

∏i
j=1 xi = Lo(x),

Jumpr(x) :=


n+ 1 if |x|1 = n

r + |x|1 if |x|1 ≤ n− r
n− |x|1 otherwise

,

RoyalRoadr(x) :=
∑n/r−1
i=0

∏r
j=1 xir+j , Linear(x) :=

∑n
i=1 cixi, where each

ci ∈ R. For Linear, w. l. o.g. we can assume c1 ≥ · · · ≥ cn > 0 [14]. We also
consider the class of `-Unimodal functions, where each function has exactly `
distinctive fitness values f1 < · · · < f`, and each bitstring x of the search space
is either optimal or it has a Hamming-neighbour y with f(y) > f(x).

Several results about the runtime of EAs with parent or offspring population
size greater than can be found in the literature. For the illustrative purpose,
we cite just some of results. In [48], it is shown that (1, λ) EA on OneMax
has the runtime O (n log n+ nλ), provided that λ ≥ log e

e−1
n, and on the `-

Unimodal functions this algorithm has the runtime O(`n+ `λ), given that λ ≥
log e

e−1
(`n). A non-elitist GA using bitwise mutation and tournament selection

with k = Ω(λ) and λ = Ω(n log n) has runtime O (nλ) on LeadingOnes [22].
The (1 + λ) EA on any linear function has runtime O(n log n + nλ), see [18].
A (µ + 1) GA where the uniform crossover is applied with probability pc =
O (1/(nr)) and µ is chosen appropriately is shown to have O

(
µn2r3 + 4r/pc

)
runtime on Jumpr function [31]. The case of pc = 1 is treated in [10].

Our results presented below apply only to non-elitist GAs with bitwise mu-
tation. For a moderate use of crossover, i. e., pc = 1 − Ω(1), Corollary 7 and
Lemma 9 yield

Theorem 11. The expected runtime of the GA in Algorithm 2, with pc =
1 − Ω(1), using any crossover operator, a bitwise mutation with mutation rate
χ/n for any fixed constant χ > 0 and one of the selection mechanisms: k-
tournament selection, (µ, λ)-selection, linear or exponential ranking selection,
with their parameters k, λ/µ, and η being set to no less than (1 + δ)eχ/(1− pc),
where δ ∈ (0, 1] being any constant, is

• O (nλ) on OneMax if λ ≥ c lnn,

• O
(
n2 + nλ lnλ

)
on LeadingOnes if λ ≥ c lnn,

• O (n`+ `λ lnλ) on `-Unimodal if λ ≥ c ln(`n),

• O
(
n2 + nλ lnλ

)
on Linear if λ ≥ c lnn,

• O
((

n
χ

)r
+ nλ+ λ lnλ

)
on Jumpr if λ ≥ cr lnn,

• O
((

n
χ

)r
ln
(
n
r

)
+ nλ lnλ

r

)
on RoyalRoadr≥2 if λ ≥ cr lnn,

for some sufficiently large constant c.

17

The proof is in the supplementary materials.
In the case of regular use of crossover, i. e., pc = 1, we limit our consideration

to mask-based crossovers. Given two parent genotypes u and v, such operator
consists in first choosing (deterministically or randomly) a binary string m̃ =
(m1, . . . ,mn) to produce two offspring vectors x′, x′′ as

x′i =

{
ui, if mi = 1
vi, otherwise,

x′′i =

{
vi, if mi = 1
ui, otherwise.

Then one element of {x′, x′′} chosen uniformly at random is returned. The
well-known uniform crossover and k-point crossover are examples of mask-based
crossover operators.

For a frequent use of crossover, i. e., pc = 1, Lemma 2 from [9], Corollary 8,
and Lemma 10 yield

Theorem 12. Assume that the GA in Algorithm 2 with pc = 1 uses any mask-
based crossover operator, a bitwise mutation with mutation rate χ/n for any
fixed constant χ > 0, and one of the following selection mechanisms:

• k-tournament selection with k ≥ 8(1 + δ)eχ,

• (µ, λ)-selection with λ/µ ≥ 2(1 + δ)eχ, or

• exponential ranking selection with η ≥ 8(1 + δ)eχ,

for any constant δ > 0. Then there exists a constant c > 0, such that the
expected runtime of the GA is

• O (nλ) on OneMax if λ ≥ c lnn,

• O
(
n2 + nλ lnλ

)
on LeadingOnes if λ ≥ c lnn.

The proof can be found in the supplementary materials.
In the next sections, we further demonstrate the generality of Theorem 1

through Corollary 7 by deriving bounds on the expected runtime of GAs with
pc = 1− Ω(1) to optimise or to approximate the optimal solutions.

4.2 Optimisation on permutation space

Given n distinct elements from a totally ordered set, we consider the problem
of ordering them so that some measure of sortedness is maximised. In [49],
the (1+1)EA was analysed on several measures of sortedness, including Inv(π)
which is defined to be the number of pairs (i, j) such that 1 ≤ i < j ≤ n, π(i) <
π(j) (i. e., pairs in correct order). We show that with the method introduced in
this paper, analysing GAs on Sorting problem with Inv measure, denoted by
SortingInv, is not much harder than analysing the (1+1)EA.

For the mutation, we use the Exchange(π) operator [49], which consecutively
applies N pairwise exchanges between uniformly selected pairs of indices, where
N is a random number drawn from a Poisson distribution with parameter 1.

Theorem 13. If the GA in Algorithm 2 with pc = 1−Ω(1) uses any crossover
operator, the Exchange mutation operator, one of the selection mechanisms k-
tournament selection, (µ, λ)-selection, and linear or exponential ranking selec-
tion, with their parameters k, λ/µ and η being set to no less than (1+δ)e/(1−pc),
then there exists a constant c > 0 such that if the population size is λ ≥ c lnn,
the expected time to obtain the optimum of SortingInv is O

(
n2λ

)
.

18

The proof may be found in the supplementary materials.

4.3 Search for Local Optima

A great interest in the area of combinatorial optimisation is to find approxi-
mate solutions to NP-hard problems, because exact solutions for such problems
are unlikely be computable in polynomial time under the so-called P 6=NP hy-
pothesis. In the case of maximisation problems, a feasible solution is called
a ρ-approximate solution if its objective function value is at least ρ times the
optimum for some ρ ∈ (0, 1]. Local search is one method among others to
approximate solutions for combinatorial optimisation problems through finding
local optima (a formal definition is given below). For a number of well-known
problems, it was shown [1] that any local optimum is guaranteed to be a ρ-
approximate solution with a constant ρ.

Suppose that a neighbourhood N (x) ⊆ X is defined for every x ∈ X . The
mapping N : X → 2X is called the neighbourhood mapping and all elements of
N (x) are called neighbours of x. For example, a frequently used neighbourhood
mapping in the case of binary search space X = {0, 1}n is defined by the Ham-
ming distance H(·, ·) and a radius r as N (x) = {y | H(x, y) ≤ r}. If f(y) ≤ f(x)
holds for all neighbours y of x ∈ X , then x is called a local optimum w.r. t. N .
The set of all local optima is denoted by LO (note that global optima also
belong to LO).

A local search method starts from some initial solution y0. Each iteration of
the algorithm consists of moving from the current solution x to a new solution
in its neighbourhood, so that the value of the fitness function is increased. The
algorithm continues until a local optimum is reached. Let m be the number of
different fitness values attained by solutions from X\LO plus 1. Then start-
ing from any point, the local search method finds a local optimum within at
most m− 1 steps, each step requiring at most N (x) fitness evaluations.

The following result provides sufficient conditions that ensure the GA finds
(at least) a local optimum with a runtime not much greater than that of the
local search.

Corollary 14. Given some positive constants p0, ε0 and δ, define the following
conditions:

(X1) pmut(y | x) ≥ s for any x ∈ X , y ∈ N (x).

(X2) pmut(x | x) ≥ p0 for all x ∈ X .

(X3) pxor

(
f(x′) ≥ max{f(u), f(v)} | u, v

)
≥ ε0 for any u, v ∈ X .

(X4.1) The non-elitist GA in Algorithm 2 is set with pc = 1, and it uses one
of the following selection mechanisms:

• k-tournament selection with k ≥ 4(1+δ)
ε0p0

,

• (µ, λ)-selection with λ
µ ≥

(1+δ)
ε0p0

,

• exponential ranking selection with η ≥ 4(1+δ)
ε0p0

.

(X4.2) The non-elitist GA is set with pc = 1 − Ω(1), and it uses one of the
following selection mechanisms: k-tournament selection, (µ, λ)-selection,

19

linear or exponential ranking selection, with their parameters k, λ/µ, and

η being set to no less than (1+δ)
(1−pc)p0

.

If (X1–3) and (X4.1) hold, or exclusively (X1–2) and (X4.2) hold, then there
exists a constant c, such that for λ ≥ c ln

(
m
s

)
, a local optimum is reached for

the first time after O
(
mλ lnλ+ m

s

)
fitness evaluations in expectation.

Condition (X4.1) or (X4.2) characterises the setting of selection mechanisms,
while (X1–3) bear the properties of the variation operators over the neighbour-
hood structure N . Particularly, (X1) assumes a lower bound s on the proba-
bility that the mutation operator transforms an input solution into a specific
neighbour. Note that in most of the local search algorithms, the neighbourhood
N (x) may be enumerated in polynomial time of the problem input size. For
such neighbourhood mappings, a mutation operator that generates the uniform
distribution over N (x) will satisfy (X1) with 1/s polynomially bounded in the
problem input size.

If crossover is frequently used, i. e., pc = 1, we also need to satisfy condition
(X3) on the the crossover operator. It requires that the fitness of solution x on
the output of crossover is not less than the fitness of parents with probability at
least ε0. Note that such a requirement is satisfied with ε0 = 1 for the optimized
crossover operators, where the offspring is computed as a solution to the optimal
recombination problem (see, e.g., [23]). This supplementary problem is known
to be polynomially solvable for Maximum Clique, Set Packing, Set Partition
and some other NP-hard problems (see e.g. [23]).

The proof of Corollary 14 directly follows from Corollaries 8 and 7 of Theo-
rem 1, see supplementary materials.

Consider the binary search space {0, 1}n with Hamming neighbourhood of a
constant radius r, a fitness function f such that m ∈ poly(n), and assume that
the GA uses the bitwise mutation operator and pc = 1 − Ω(1). This operator

outputs a string y, given a string x, with probability p
H(x,y)
m (1 − pm)n−H(x,y).

Note that probability pjm(1− pm)n−j , as a function of pm attains its maximum
at pm = j/n. It is easy to show (see, e.g., [22]) that for any x ∈ X and
y ∈ N (x), the bitwise mutation operator with pm = r/n satisfies the condition
pmut(y | x) = O (1/nr). For a sufficiently large n and any x ∈ X holds pmut(x |
x) ≥ e−r/2 = Ω(1). By Corollary 14, a GA with the above mentioned operators,
given appropriate λ, pm and pc, first visits a local optimum w.r. t. a constant
radius Hamming neighbourhood after a polynomially bounded number of fitness
evaluations in expectation.

Consider the following two unconstrained (and unweighted) problems. (i) Max-SAT:
given a CNF formula in n logical variables which is represented bym′ clauses c1, . . . , cm′

and each clause is a disjunction of logical variables or their negations, it is re-
quired to find an assignment of the variables so that the number of satisfied
clauses is maximised. (ii) Max-CUT: given an undirected graph G = (V,E),
it is required to find a partition of V into two sets (S, V \ S), so that δ(S) :=
|{(u, v) | (u, v) ∈ E, u ∈ S, v /∈ S}|, is maximised.

Both problems are NP-hard, and their solutions can be naturally represented
by bitstrings. Particularly, any local optimum w.r. t. the neighbourhood defined
by Hamming distance 1 has at least half the optimal fitness [1].

Theorem 15. Suppose the GA in Algorithm 2 is applied to Max-SAT or to
Max-CUT using a bitwise mutation with pm = χ/n, where χ > 0 is a con-

20

stant, a crossover with pc = 1 − Ω(1) and one of the selection mechanisms:
k-tournament selection, (µ, λ)-selection, linear or exponential ranking selection,

with their parameters k, λ/µ and η being set to no less than (1+δ)eχ

1−pc , where δ > 0

is any constant. Then there exists a constant c, such that for λ ≥ c ln(nm′),
a 1/2-approximate solution is reached for the first time after O (m′λ lnλ+ nm′)
fitness evaluations in expectation for Max-SAT, and after O (|E|λ lnλ+ |V | |E|)
for Max-CUT.

The proof is analogous to the analysis of `-Unimodal function in Theo-
rem 11, combined with Corollary 14, where m ≤ m′ + 1 for Max-SAT and
m ≤ |E|+ 1 for Max-CUT.

5 Estimation of Distribution Algorithms

There are few rigorous runtime results for UMDA and other EDAs. The tech-
niques used in previous analyses of EDAs were often complex, e.g., relying on
Markov chains theory. Surprisingly, even apparently simple problems, such as
the expected runtime of UMDA on OneMax, were open until recently. Indeed,
much more is known about classical EAs, e.g., the (1+1) EA solves OneMax
in expected time Θ(n lnn), and this is optimal for the class of unary unbiased
black-box algorithms [38].

Algorithm 1 matches closely the typical behaviour of estimation of distri-
bution algorithms: given a current distribution over the search space, sample
a finite number of search points, and update the probability distribution. We
demonstrate the ease at which the expected runtime of UMDA with margins
and truncation selection on the OneMax function can be obtained using the
level-based theorem without making any simplifying assumptions about the op-
timisation process.

To start, we give a formal description of UMDA. If P ∈ X λ is a population
of λ solutions, let P (k, i) denote the value in the i-th bit position of the k-th
solution in P . The Univariate Marginal Distribution Algorithm (UMDA) with
(µ, λ)-truncation selection is defined in Algorithm 4.

21

Algorithm 4 UMDA

Require:
A pseudo-Boolean function f : {0, 1}n → R,
and “margins” m′ ∈ [0, µ/2).

1: Initialise the vector p0 := (1/2, . . . , 1/2).
2: for t = 1, 2, 3, . . . do
3: for x = 1 to λ do
4: Sample the x-th individual Pt(x, ·) according to

Pt(x, i) ∼ Bernoulli(pt−1(i)) for all i ∈ [n].

5: end for
6: Sort the population Pt according to f .
7: For all i ∈ [n], with Xi :=

∑µ
k=1 Pt(k, i), define

pt(i) := max

{
min

{
Xi

µ
, 1− m′

µ

}
,
m′

µ

}
.

8: end for

The algorithm has three parameters, the parent population size µ, the off-
spring population size λ, and a parameter m′ < µ controlling the size of the
margins. It is necessary to set m′ > 0 to prevent a premature convergence, e.g.,
without this margin, pt(i) can go to a non-optimal fixation, this prevents further
exploration and causes an infinite runtime. Based on insights about optimal mu-
tation rates in the (1+1) EA, we will use the parameter setting m′ = µ/n in
the rest of this section.

It is immediately clear that the UMDA in Algorithm 4 is a special case of
Algorithm 1. The probability distribution D(Pt) of y is computed in steps 7,

and is Pr (y = x) =
∏n
j=1 pt(j)

xj (1− pt(j))1−xj . for any bitstring x ∈ {0, 1}n.
In some other randomised search heuristics, such as ant colony optimisation

(ACO) and compact genetic algorithms (cGA), the sampling distribution Dt

does not only depend on the current population, but also on additional infor-
mation, such as pheromone values. The level-based theorem does not apply to
such algorithms.

Theorem 16. Given any positive constants δ ∈ (0, 1), and γ0 ≤ 1
(1+δ)13e ,

the UMDA with offspring population size λ with b ln(n) ≤ λ ≤ n/γ0 for some
constant b > 0, parent population size µ = γ0λ, and margins m′ = µ/n, has
expected optimisation time O (nλ lnλ) on OneMax.

The proof which is available in our supplementary materials follows our
guidelines of level-based analysis, a preliminary version of it appeared in [13].
To obtain lower bounds on the tail of the level distribution, we make use of the
Feige inequality [24] (or see Corollary 3 in [13]).

A similar analysis for LeadingOnes [13] yields a runtime boundO
(
nλ lnλ+ n2

)
with offspring population size λ ≥ b ln(n) for some constant b > 0 without use
of Feige’s inequality. The previous result [8] on LeadingOnes requires a larger
population size and gives a longer runtime bound.

Table 1 summarises the runtime bounds for the example applications of the
tools presented in this paper and the above mentioned result for UMDA on

22

LeadingOnes.

23

Table 1: Summary of results for the GA (Algo. 2, pc = 1− Ω(1)), GA1 (Algo. 2, pc = 1) and UMDA (Algo. 4, m′ = µ/n).

Runtime result

Problem Algorithm Min. λ Runtime

OneMax
GA, GA1 c lnn O (nλ)
UMDA c lnn O (nλ lnλ)

LeadingOnes GA, GA1, UMDA c lnn O
(
n2 + nλ lnλ

)
`-Unimodal GA c ln(n`) O (n`+ `λ lnλ)
Linear GA c lnn O

(
n2 + nλ lnλ

)
Jumpr GA cr lnn O

((
n
χ

)r
+ nλ+ λ lnλ

)
RoyalRoadr≥2 GA cr lnn O

((
n
χ

)r
ln
(
n
r

)
+ nλ lnλ

r

)
SortingInv GA c lnn O

(
n2λ

)
1
2 -approx. Max-SAT GA c ln(nm′) O (nm′ +m′λ lnλ)
1
2 -approx. Max-CUT GA c ln(|V | |E|) O (|V | |E|+ |E|λ lnλ)

Configuration

Alg. Recomb. Selection Setting

GA any k-tournament k ≥ (1+δ)eχ

1−pc
any (µ, λ)-selection λ

µ ≥
(1+δ)eχ

1−pc
any linear ranking η ≥ (1+δ)eχ

1−pc
any exp. ranking η ≥ (1+δ)eχ

1−pc

GA1 mask-based k-tournament k ≥ 8(1 + δ)eχ

mask-based (µ, λ)-selection λ
µ ≥ 2(1 + δ)eχ

mask-based exp. ranking η ≥ 8(1 + δ)eχ

UMDA n/a (µ, λ)-selection λ
µ ≥ 13(1 + δ)e

On {0, 1}n, GA and GA1 use bitwise mutation operator with rate χ/n, where χ is any constant. On permutation search space, i. e.,
Sorting, GA uses Exchange mutation and its setting assumes χ = 1. In the case of Max-SAT, n is the number of logical variables and
m′ is the number of clauses. Parameter δ is any positive constant, and c is some constant.

24

6 The level-based theorem is almost tight

How accurate are the time bounds provided by the level-based theorem? To
answer this question, we first interpret the theorem as a universally quan-
tified statement over the operators D satisfying the conditions of the theo-
rem. More formally, given a choice of level-partition and set of parameters
z1, . . . , zm−1, δ, γ0, which we collectively denote by Θ, the theorem can be ex-
pressed in the form of ∀D ∈ DΘ : E [TD] ≤ tΘ, where DΘ is the set of operators
D in Algorithm 1 that satisfy the conditions of the level-based theorem with
parameterisation Θ, E [TD] is the expected runtime of Algorithm 1 with a given
operator D, and tΘ is the upper time bound provided by the level-based theorem
which depends on Θ.

In order to obtain an accurate bound for a specific operator D, e. g., the (µ,λ)
EA applied to the OneMax function, it is necessary to choose a parametrisation
Θ that reflects this process as tightly as possible. If the bounds on the upgrade
probabilities zj for the (µ,λ) EA are too small, then the class DΘ includes other
processes which are slower than the (µ,λ) EA, and the corresponding bound tΘ
cannot be accurate. Hence, the theorem is limited by the accuracy at which one
can describe the process by some class DΘ.

Assuming a fixed parameterisation Θ, it is possible to make a precise state-
ment about the tightness of the upper bound tΘ. Theorem 17 below is an ex-
istential statement on the form ∃D ∈ DΘ : E [TD] ≥ t′Θ,where the lower bound
t′Θ is close to the upper bound tΘ. Hence, given the information the theorem
has about the process through Θ, the runtime bound is close to optimal. More
information about the process would be required to obtain a more accurate
runtime bound.

In some concrete cases, one can prove that the level-based theorem is close
to optimal, using parallel black-box complexity theory [2]. From Corollary 7
with pc = 0, which specialises the level-based theorem to algorithms with unary
mutation operators, one can obtain the bounds O (nλ+ n lnn) for OneMax,
and O

(
nλ lnλ+ n2

)
for LeadingOnes for appropriately parameterised EAs.

These bounds are within a O (lnλ)-factor of the lower bounds that hold for any
parallel unbiased black-box algorithm [2]. For population sizes λ = O (n/ lnn)
and λ = Ω(lnn), the resultingO

(
n2
)

bound on LeadingOnes is asymptotically
tight, because it matches the lower bound that holds for all black-box algorithms
with unary unbiased variation operators [38].

Theorem 17. Given any partition of X into m non-empty subsets (A1, . . . , Am),
for any z1, . . . , zm−1, δ, γ0 ∈ (0, 1), where zj ∈ (0, γ0) for all j ∈ [m − 1], and
λ ∈ N, there exists a mapping D which satisfies conditions (G1), (G2), and
(G3) of Theorem 1, such that Algorithm 1 with mapping D has expected hitting
time

E [T] ≥

 2

3δ

m−2∑
j=1

λ ln

(
γ0λ

1 + 2λzj + 1/δ2

)+

m−1∑
j=1

1

zj
,

where T := min{λt ∈ N | |Pt ∩Am| > 0}.

The proof can be found in the supplementary materials.

25

7 Conclusion

This paper introduces a new technique, the so-called level-based analysis, that
easily yields upper bounds on the expected runtime of complex, non-elitist
search processes. The technique was first illustrated on Genetic Algorithms.
We have shown that GAs efficiently optimise standard benchmark functions
and some combinatorial optimisation problems. As long as the population size
is not overly large, the population does not incur an asymptotic slowdown on
these functions compared to standard EAs that do not use populations. So,
speedups can be achieved by parallellising fitness evaluations. Furthermore,
previous work using a weaker form of the level-based analysis indicates that
non-elitist, population-based EAs have an advantage on more complex prob-
lems, including those with noisy [12], dynamic [11], and peaked [15] fitness
landscapes. To demonstrate the generality of the theorem, we also provided
runtime results for the UMDA algorithm, an Estimation of Distribution Algo-
rithm, for which few theoretical results exist. Finally, we have shown via lower
bounds on the runtime of a concrete process that, given the information the
theorem requires about the process, the upper bounds are close to tight.

The conditions of the level-based theorem yield settings for algorithmic pa-
rameters, such as population size, mutation and crossover rates, selection pres-
sure etc., that are sufficient to guarantee a time complexity bound. This opens
up the possibility of theory-led design of EAs with guaranteed runtimes, where
the algorithm is designed to satisfy the conditions of the level-based theorem.
This paper also opens several new directions for future work. An important
open problem is to develop techniques for proving lower bounds on the runtime
of Algorithm 1. Rowe and Sudholt showed that the non-elitist (1,λ) EA becomes
inefficient when the population size is too small [48]. While condition (G3) in
this paper gives a sufficient condition for the population size, it would be inter-
esting to determine a necessary condition on the population size to efficiently
reach the last level Am.

Acknowledgements The research was supported by the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no
618091 (SAGE) and Russian Foundation for Basic Research grants 15-01-00785
and 16-01-00740. Early ideas were discussed at Dagstuhl Seminars 13271 and
15211 “Theory of Evolutionary Algorithms”.

Appendix A

We prove the additive drift theorem. Equalities and inequalities involving condi-
tional expectation w.r. t. a σ-algebra, (e.g., E [X | F] ≤ Y), hold almost surely.
The proof relies on martingale theory (see, e.g., [57]).

Proof of Theorem 3. We first show the upper bound statement. Define the
stopped process St := Zt∧Ta + ε(t ∧ Ta), where t ∧ Ta := min(t, Ta). By the
definition of this process, it holds for all t ∈ N almost surely that

|St| ≤ b+ εTa, (17)

and, hence by condition 2 and 3, that for all t ∈ N,

E [|St|] ≤ E [b+ εTa] <∞. (18)

26

Also, by the definition of the process, for all t ∈ N it holds in the case t ≥ Ta
that,

E [St+1 ; t ≥ Ta | Ft] = E [St ; t ≥ Ta | Ft] .

Furthermore, for all t ∈ N, it holds in the case t < Ta,

E [St+1 ; t < Ta | Ft]

= E [(Zt+1 − Zt + ε) + Zt + εt ; t < Ta | Ft]

≤ E [Zt + εt ; t < Ta | Ft] = E [St ; t < Ta | Ft] ,

where the inequality is due to condition 1.1. Combining both cases, we have for
all t ∈ N,

E [St+1 | Ft] ≤ E [St | Ft] = St. (19)

By (18) and (19), St is a super-martingale, thus for all t ∈ N,

E [St | F0] ≤ E [S0 | F0] = Z0. (20)

By (17) and (18), the dominated convergence theorem applies (see 9.7 (g) in [57]),
and by (20), Z0 ≥ limt→∞E [St | F0] = E [limt→∞ St | F0] = E [ZTa + εTa | F0] .
By noting that ZTa ≥ 0, the upper bound proof is complete.

The lower bound proof follows exactly the same steps, i. e. starting by defin-
ing the same stopped process St. However, because the directions of the in-
equalities are inverted, St is a sub-martingale, and in the end we overestimate
ZTa by a.

We also state the lemmas used in the proof of Theorem 1. Their proofs are
provided in the supplementary materials.

Lemma 18. The functions g1 and g2 defined below are level functions for any
c > 0, κ ∈ (0, 1), x ∈ [λ], y ∈ [m] and γj , qj ∈ (0, 1] for each j ∈ [m− 1].

g1(x, y) := ln

(
1 + cλ

1 + cmax{x, γyλ}

)
+

m−1∑
i=y+1

ln

(
1 + cλ

1 + cγiλ

)
,

g2(x, y) :=
(1− κ)x

qy
+

m−1∑
i=y+1

1

qi

for all y ∈ [m− 1], and g1(x, y) := g2(x, y) := 0 for y = m.

Lemma 19 (Improved version of Lemma 5 in [14]). If X ∼ Bin(λ, p) with
p ≥ (i/λ)(1 + δ) and i ≥ 1 for some δ ∈ (0, 1], then

E

[
ln

(
1 + δX/2

1 + δi/2

)]
≥ δ2

7
.

Lemma 20. Let {Xi}i∈[λ] be i.i.d. random variables, define Y (j) :=
∑λ
i=1 1{Xi≥j}

for any j ∈ R. It holds for any a, b, c, j ∈ R with c ≥ 0 and b ≤ λ that

(i) Pr (Y (j + c) ≥ a | Y (j) ≥ b) ≥ Pr (Y (j + c) ≥ a)

and for any non-decreasing function f

(ii) E [f(Y (j + c)) | Y (j) ≥ b] ≥ E [f(Y (j + c))]

provided that both expectations are well-defined.

27

Appendix B Proofs Omitted in the Paper

Proof of Lemma 6. Let f1 ≥ f2 ≥ · · · ≥ fλ be the f -values of the individuals in
the population P in decreasing order, and `1 ≥ `2 ≥ · · · ≥ `λ be the levels of
the individuals in the population P in decreasing order. Then, by the definition
of the functions β and ζ, it suffices to prove that for all j ∈ [λ], and all x ∈ P ,

[x ∈ A≥`j] ≥ [f(x) ≥ fj].

Assume by contradiction that there exists an individual x ∈ P ∩ Ak such
that fj ≤ f(x) and k < `j . Since by assumption x ∈ Ak where k < `j , the
definition of f -based partitions imply that

f(x) < min
y∈A`j

f(y) = min
y∈A≥`j

f(y). (21)

Since fj is the fitness of the j-th best individual ranked according to fitness

|{z ∈ P | f(z) > fj}| ≤ j − 1. (22)

Thus, the assumption fj ≤ f(x), inequality (21), and inequality (22) imply

|{z ∈ P | f(z) ≥ min
y∈A≥`j

f(y)}| ≤ j − 1. (23)

Since `j is the level of the j-th best individual ranked according to levels

|{z ∈ P | z ∈ A≥`j}| ≥ j. (24)

By the definition of f -based partitions, it holds

∀z ∈ A≥`j , f(z) ≥ min
y∈A≥`j

f(y). (25)

Now inequalities (24) and (25) imply that

|{z ∈ P | f(z) ≥ min
y∈A≥`j

f(y)}| ≥ j, (26)

which contradicts with inequality (23). Thus we conclude that for all individuals
x ∈ P with fitness f(x) ≥ fj , it holds x ∈ A≥`j , which is equivalent to the
statement [x ∈ A≥`j] ≥ [f(x) ≥ fj].

Proof of Lemma 9. Since (M3) only concerns the restricted subspace X \Am we
only need to focus on this subspace. Furthermore, since the partition is f -based
on this subspace, it suffices by Lemma 6 to prove the results for the β-function
instead of the ζ-function.

The results for k-tournament selection, (µ, λ)-selection, and linear ranking
selection follow by applying Lemma 13 in [14] (with its p0 being set as our
p0(1− pc)). For exponential ranking, we first note the following lower bound,

β(γ, P) ≥
∫ γ

0

ηeη(1−x)dx

eη − 1
=

(
eη

eη − 1

)(
1− 1

eηγ

)
≥ 1− 1

1 + ηγ
.

The rest of the proof is similar to that for k-tournament selection with η in
place of k.

28

Proof of Lemma 10. Similarly to the proof of Lemma 9, we only focus on the
subspace X \ Am where the partition is f -based. Using Lemma 6, we consider
the β-function instead of the ζ-function. First define ε′ := εp0.

1. Consider k-tournament selection and let γ ∈ (0, γ0]. By the definition
of f -based partitions, to select an individual from the γλ best individuals it is
sufficient that the randomly sampled tournament contains at least one of the
γλ best individuals. Hence,

β(γ, P) ≥ 1− (1− γ)k > 1− 1

1 + γk
,

because (1− γ)k < e−γk < 1
1+γk . So for k ≥ 4(1 + δ′)/ε′,

β(γ, P) ≥ 1− 1

1 + 4γ(1+δ′)
ε′

=
4γ(1+δ′)

ε′

1 + 4γ(1+δ′)
ε′

.

If γ0 := ε′/(4(1 + δ′)), then for all γ ∈ (0, γ0] it holds that 4(1 + δ′)/ε′ ≤ 1/γ
and

β(γ, P) ≥ γ4(1 + δ′)/ε′

γ(1/γ) + 1
=

2(1 + δ′)γ

ε′

=

√
(1 + δ′)

ε′(ε′/4(1 + δ′))
γ =

√
(1 + δ′)

ε′γ0
γ.

2. In (µ, λ)-selection, again by the f -based property of the partition, we
have β(γ, P) = λγ/µ if γλ ≤ µ, and β(γ, P) = 1 otherwise. It suffices to pick
γ0 := µ/λ so that with λ/µ ≥ (1 + δ′)/ε′, for all γ ∈ (0, γ0]. Then

β(γ, P) ≥ λγ

µ
=

√
λ2

µ2
γ =

√
λ

µγ0
γ ≥

√
1 + δ′

ε′γ0
γ.

3. Similarly to the proof of Lemma 9, we remark that β(γ, P) ≥ 1 − 1
1+ηγ ,

thus the rest of the proof is similar to k-tournament selection.

Proof of Theorem 11. We apply Corollary 7 with the canonical partition Aj :=
{j | f(x) = j} for all functions1, except for Linear, where the partition

from [14] is used: An := {1n}, Aj :=
{
x |
∑j
i=1 ci ≤ f(x) <

∑j+1
i=1 ci

}
for

j ∈ {0} ∪ [n− 1].
The choices of sj and s∗ to satisfy (M1) are the following.

• For OneMax, sj :=
(
n−j

1

) (
χ
n

) (
1− χ

n

)n−1
= Ω

(
n−j
n

)
, i. e. the probability

of flipping a 0-bit while keeping all the other bits unchanged, and s∗ :=
Ω
(

1
n

)
.

• For LeadingOnes, `-Unimodal and Linear, sj := χ
n

(
1− χ

n

)n−1
=

Ω
(

1
n

)
=: s∗, i. e. the probability of flipping a specific bit to create a Ham-

ming neighbour solution with better fitness while keeping all the other bits

1The first level can be A0 instead of A1 for some functions but that does not matter as far
as we compute the sums correctly later on.

29

unchanged. In `-Unimodal, the bit to flip must exist by the definition
of the function. In LeadingOnes, the 0-bit at position j + 1 should be
flipped. For Linear, the partition satisfies that among the first j+1 bits,
there must be at least a 0-bit, thus it suffices to flip the left most 0-bit
will produce a search point at a higher level.

• For Jumpr, similarly to OneMax for j ∈ [n− 1]

sj :=

(
n− j + 1

1

)(χ
n

)(
1− χ

n

)n−1

= Ω

(
n− j + 1

n

)
,

but sn :=
(
χ
n

)r (
1− χ

n

)n−r
= Ω

((
χ
n

)r)
, i. e. the probability of flipping the

r remained 0-bits, so s∗ := Ω
((

1
n

)r)
.

• For RoyalRoadr, sj :=
(
n/r−j

1

) (
χ
n

)r (
1− χ

n

)n−r
= Ω

((
χ
n

)r (n
r − j

))
,

i. e. the probability of flipping an entire unsolved block of length r (in the
worst case) while keeping the other bits unchanged, and s∗ := Ω

((
1
n

)r)
.

Lemma 29 with ε = δ/2
1+δ/2 implies that the probability of not flipping any bit

position by mutation is (1−χ/n)n ≥
(

1− δ/2
1+δ/2

)
e−χ = e−χ

1+δ/2 for n sufficiently

large. Thus choosing p0 := e−χ

1+δ/2 satisfies (M2).

We now look at (M3). For k-tournament selection, we have

k ≥ (1 + δ)eχ

1− pc
=

(
1 +

δ/2

1 + δ/2

)
1

(1− pc)p0

due to our choice of p0. Hence, it follows from Lemma 9 that (M3) is satisfied

with constant δ′ := δ/2
1+δ/2 . The same conclusion can be drawn for the other

three selection mechanisms.
In (M4), since γ0 and δ′ are constants, there should exist a constant c > 0 for

each function such that the condition is satisfied given the minimum requirement
on population size related to c.

Since all conditions are satisfied, Corollary 7 gives the desired result for each
function. For OneMax and Jumpr, optimisation time can be saved at early

levels, thus the evaluation of the sum
∑m−1
j=1 ln

(
6δλ

4+γ0sjδλ

)
has to be precise:

• For OneMax, bounding each term by ln
(

6
γ0sj

)
gives

O

(
ln

(
6nnn

γn0
∏n−1
j=0 (n− j)

))

and by Stirling’s formula
∏n−1
j=0 (n− j) = n! = Θ(nn+ 1

2 /en), so this sum is
no more than O (n).

• For Jumpr, using the upper bound ln
(

6
γ0sj

)
for the first m− 2 terms of

the sum, and the upper bound ln(3λ/2) for the last term gives the upper
bound O (n+ lnλ) for this sum.

30

For the other functions, we bound the sum by O (m lnλ). The evaluation of

the other sum
∑m−1
j=1 1/sj is standard to the fitness level technique [56]. Take

OneMax as an example,
∑m−1
j=1 1/sj = O

(∑n−1
j=0

n
n−j

)
= O (nHn) = O (n lnn)

where Hn is the n-th harmonic number. Thus combining the two sums gives that
E [T] = O (nλ+ n lnn) = O (nλ) (since λ = Ω(lnn)) for this function. This
can be done analogously for the other functions, and the results follow.

Proof of Theorem 12. This time we apply Corollary 8 , again using the canonical
partition of the search space for both functions. We also assume that n is large
enough so that by Lemma 29 the probability of not flipping any bit by mutation

is (1 − χ/n)n ≥
(

1− δ/2
1+δ/2

)
e−χ = e−χ

1+δ/2 =: p0, and so (C2) is satisfied with

this choice of p0. In addition, we use the same upgrade probabilities sj and their
smallest value s∗ for each of the two functions as in the proof of Theorem 11 to
satisfy (C1).

It follows from Lemma 23 (see the next section) that (C3) is satisfied for
constant ε1 := 1/2. We now look at condition (C4). For k-tournament, we

get k ≥ 8(1 + δ)eχ = 4
(

1 + δ/2
1+δ/2

)
/(p0ε1). So condition (C4) is satisfied with

constant δ′ := δ/2
1+δ/2 for k-tournament by Lemma 10. The same reasoning can

be applied so that (C4) is also satisfied for the other selection mechanisms.
Since δ′ and γ0 are constants, thus condition (C5) is satisfied given λ ≥ c lnn

and for some constant c. Since all conditions are satisfied, the result follows from
Corollary 8.

Proof of Theorem 13. Define m :=
(
n
2

)
. We apply Corollary 7 with the canonical

partition, Aj := {π | Inv(π) = j} for j = {0} ∪ [m]. The probability that
mutation exchanges 0 pairs is 1/e. Hence, condition (M2) is satisfied for p0 :=
1/e.

To show that (M1) is satisfied, we first define sj := m−j
em for each j ∈

{0} ∪ [m − 1]. Since x ∈ Aj , then the probability that the exchange operator
exchanges exactly one pair is 1/e, and the probability that this pair is incorrectly
ordered in x, is (m− j)/m. Thus, (M1) is satisfied with the defined sj .

In (M3), for k-tournament we have that k ≥ (1+δ)e
1−pc =

(
1 + δ/2

1+δ/2

)
1

(1−pc)p0
,

thus the condition is satisfied for constant δ′ := δ/2
1+δ/2 and some constant γ0 ∈

(0, 1) by Lemma 9. The same conclusion can be drawn for the other selection
mechanisms. Finally, since γ0, δ

′ are constants, there exists a constant c > 0
such that (M4) is satisfied for any λ ≥ c ln(n).

It therefore follows by Corollary 7 that the expected runtime of the GA on
SortingInv is O

(
n2λ

)
, i. e. this is similar to OneMax except that we have

m = O(n2) levels.

Proof of Corollary 14. We use the following partition

Aj := {x ∈ X |f(x) = fj}\LO, j ∈ [m− 1], and

Am := LO.

We note that (A1, . . . , Am−1) is a fitness-based partition of X \ LO. Thus,
applications of Corollary 7 and Lemma 9 for the set of conditions (X1–2) and
(X4.2), or alternatively, Corollary 8 and Lemma 10 for the set of conditions
(X1–3) and (X4.1), yield the required result.

31

Proof of Theorem 16. Step 1: We use the canonical partition into m = n + 1
levels, where level j ∈ [m] is defined by

Aj := {x ∈ {0, 1}n | OneMax(x) = j − 1}.

We use the parameter γ0 := µ/λ and let Y be the number of one-bits in a
sampled solution from pt.

The choice m′ = µ/n and µ ≤ n implies that the margins for pt(i) are
simplified to 1/n and 1 − 1/n, and that these margins are only used when the
bit values at position i of the µ selected individuals are identical. We categorise
the probabilities pt(i) into three groups: those at the upper margin 1 − 1/n,
those at the lower margin 1/n, and intermediary values in the closed interval
[1/µ, 1−1/µ]. Due to linearity of the fitness function, the components of pt can
be rearranged without changing the distribution of Y . We assume w. l. o.g. a
rearrangement so that there exist integers k, ` ≥ 0 satisfying

1 ≤ Xi < µ and pt(i) = Xi/µ if 1 ≤ i ≤ k,
Xi = µ and pt(i) = 1− 1/n if k < i ≤ k + `, and

Xi = 0 and pt(i) = 1/n if k + ` < i ≤ n.

By these assumptions, it follows that

k+∑̀
i=k+1

Xi = µ` and

n∑
i=k+`+1

Xi = 0. (27)

In the following, we define Yi,k to be the number of sampled one-bits due to
(pt(i), . . . , pt(k)) in the rearranged pt.

For any population Pt and any γ ∈ [0, γ0], let j ∈ [n] be any integer such
that |Pt ∩A≥j | ≥ γ0λ = µ and |Pt ∩A≥j+1| ≥ γλ. This implies that among the
µ fittest individuals in the current population, there are at least γλ individuals
with at least j one-bits, and the remaining among the µ fittest individuals have
at least j − 1 one-bits. Hence, the total number of one-bits among the fittest µ
individuals must satisfy

n∑
i=1

Xi ≥ γλj + (µ− γλ)(j − 1) = γλ+ µ(j − 1). (28)

Combining Eqs. (27) and (28), when k ≥ 1, we get

E [Y1,k] =

k∑
i=1

pt(i) =
1

µ

k∑
i=1

Xi ≥
γλ

µ
+ j − 1− `. (29)

Step 2: We first verify condition (G2), i. e. checking if Pr (Y ≥ j) ≥ (1 + δ)γ
for any level j defined like above with γ > 0. We distinguish between two cases,
either k = 0 or k ≥ 1.

Case 1: If k ≥ 1, then Eq. (29) and Lemma 30 give

Pr (Y1,k ≥ j − `) = Pr

(
Y1,k > j − 1− `+

γλ

µ
− γλ

12µ

)
≥ Pr

(
Y1,k > E [Y1,k]− γλ

12µ

)

32

≥ min

{
1

13
,

γλ
12µ

γλ
12µ + 1

}

= min

{
1

13
,

γλ

γλ+ 12µ

}
≥ γλ

13µ
.

The probability of sampling an individual with at least j one-bits in the next
generation is therefore lower-bounded by

Pr (Y ≥ j) ≥ Pr (Y1,k ≥ j − `) Pr (Yk+1,k+` = `)

≥ γλ

13µ

(
1− 1

n

)`
≥ γλ

13µ

(
1− 1

n

)n−1

≥ γλ

13eµ
≥ (1 + δ)γ.

Case 2: If k = 0, then all the µ best individuals in the population must be
identical. By assumption, there are γλ ≥ 1 individuals with at least j 1-bits,
hence all the µ best individuals must have at least j 1-bits. In this case, there
are ` ≥ j probabilities at the upper margin, and we get

Pr (Y ≥ j) ≥ Pr
(
Y k+j
k+1 ≥ j

)
=

(
1− 1

n

)j
≥ 1

e
≥ 13γ0(1 + δ) > (1 + δ)γ,

and condition (G2) is therefore satisfied also in this case.
Step 3: We now consider condition (G1) for any j defined. Again we check

the two cases k = 0, and k ≥ 1.
Case 1: If k = 0, then with our assumption, the ` ≥ j − 1 first probabilities

are at the upper margin 1−1/n, and the last n−` ≤ n−j+1 probabilities are at
the lower margin 1/n. In order to obtain a search point with at least j one-bits,
it is sufficient to sample exactly ` ≥ j − 1 one-bits in the first ` positions and
exactly one 1-bit in the last n− ` ≤ n− j + 1 positions. Hence,

Pr (Y ≥ j) ≥ Pr (Y1,` ≥ `) Pr (Y`+1,n ≥ 1)

≥
(

1− 1

n

)`(
n− `
n

)
≥
(

1− 1

n

)n−1(
n− j + 1

n

)
≥
(
n− j + 1

en

)
.

Case 2: When k ≥ 1, we note from Eq. (29) that

E [Y2,k] = E [Y1,k]− pt(1) ≥ j − 1− `− pt(1)

Again, by Lemma 30, we get

Pr (Y2,k ≥ j − 1− `)
= Pr (Y2,k > j − 1− `− pt(1)− (1− pt(1)))

≥ Pr (Y2,k > E [Y2,k]− (1− pt(1)))

33

≥ min

{
1

13
,

1− pt(1)

2− pt(1)

}
>

1− pt(1)

13
.

The probability of sampling an individual with at least j one-bits in this con-
figuration is bounded from below as

Pr (Y ≥ j)
> Pr (Y1 = 1) Pr (Y2,k ≥ j − 1− `) Pr (Yk+1,k+` = `)

≥
(
pt(1)(1− pt(1))

13

)(
1− 1

n

)`
≥
(

(1/µ)(1− 1/µ)

13

)(
1− 1

n

)`
≥ 1

14eµ
.

The last inequality holds for µ ≥ 14, which in turn only requires n to be larger
than some constant. Hence, combining the cases k = 0 and k > 0, we get for
all j ∈ [n],

Pr (Y ≥ j) ≥ min

{
1

14eµ
,
n− j + 1

en

}
≥ n− j + 1

14eµ(n− j + 1) + en
=: zj .

Clearly, there exists a z∗ with 1/z∗ ∈ poly(n) such that Pr (Y ≥ j) ≥ z∗ for all
j ∈ [n] and condition (G1) is satisfied.

Step 4: We consider condition (G3) regarding the population size. The
parameters δ and γ0 = µ/λ are constants with respect to n, therefore the
variables a, ε and c in condition (G3) are also constants, and 1/z∗ ∈ poly(n).
Hence, there must exist a constant b > 0 such that condition (G3) is satisfied
when λ ≥ b log(n).

Step 5: To conclude, the expected optimisation time is

O

nλ ln(λ) +

n∑
j=1

1

zj


= O

(
nλ ln(λ) + 14eµn+

n−1∑
i=0

en

n− i

)
= O (nλ lnλ) .

Proof of Theorem 17. We construct an operator D which leads to the claimed
lower bound. Choose any sequence of search points (x1, . . . , xm) ∈ A1×· · ·×Am,
and let the initial population of Algorithm 1 be P0 := (x1, . . . , x1), i. e., λ copies
of the search point x1 belonging to the first level.

For any population P ∈ X λ, let the current level be the largest i ∈ [m] such
that |P ∩ A≥i| ≥ γ0λ. For any population P with current level i < m, define
the operator D for all u ∈ X by

Pr
y∼D(P)

(y = u) :=


1−max{(1 + δ)γ, zi} if u = xi

max{(1 + δ)γ, zi} if u = xi+1,

0 otherwise,

(30)

34

where γ := (1/λ)|P ∩A≥i+1| < γ0.
For all t ∈ N, define

Tj := min{t | |Pt ∩A≥j | > 0}, for all j ∈ [m], and

Sj := Tj+1 − Tj for all j ∈ [m− 1].

Then we have
∑m−1
j=1 Sj = Tm − T1 = T because T1 = 0. The random variable

Sj , for j ∈ [m−1], describes the number of generations from the time the process
has discovered the search point xj until it has discovered the search point xj+1,
and we call this phase j. We divide each phase j into two sub-phases. Let S1

j

be the number of generations, where

1 ≤ |Pt ∩A≥j | < γ0λ,

and call this the first sub-phase, and let S2
j be the number of generations, where

γ0λ ≤ |Pt ∩A≥j | and 0 = |Pt ∩A≥j+1|,

and call this the second sub-phase. The duration of the j-th phase is the sum
Sj = S1

j + S2
j . Remark that S1

1 = 0 due to the choice of the initial population
P0.

Note also that by the definition of operator D, as long as the process is in
sub-phase 1 of phase j, the probability of generating the search point xj+1 is
0. Furthermore, the process never returns to sub-phase 1 once the process has
entered sub-phase 2. To estimate the duration of sub-phase 1, we consider the
stochastic process (Xt)t∈N, where Xt := |PTj+t ∩ A≥j |, and a corresponding
filtration (Ft)t∈N, where Ft := σ

(
P1, . . . , PTj+t

)
.

During sub-phase 1 of phase j > 1, it holds that Xt+1 ∼ Bin(λ, pt+1), where
pt+1 = max

{
(1 + δ)Xtλ , zj−1

}
.

To lower bound the expected duration of sub-phase 1, we apply drift analysis
(Theorem 3) with respect to the process (Zt)t∈N defined by Zt := ln(λ/Rt),
where Rt := max{Xt, yj} and yj := max{λzj−1, 1/δ

2} > 1. Note that since
zj < γ0 by assumption, and 1/δ2 < γ0λ by condition (G3), it holds that yj <
γ0λ. It is therefore clear that sub-phase 1 is only complete if

Zt ≤ ln

(
λ

γ0λ

)
= − ln(γ0) =: a.

By Jensen’s inequality, the drift of this process can be bounded by

E [Zt − Zt+1 | Ft] = E

[
ln

(
Rt+1

Rt

)
| Ft

]
≤ ln

(
E [Rt+1 | Ft]

Rt

)
and by Lemma 24

≤ ln

(
max(λpt+1, yj) + (1

2)
√
λpt+1

Rt

)
.

35

We consider two sub-cases. Either λpt+1 ≥ yj , in which case we use that

Rt = max{Xt, yj}
= max{Xt, λzj−1, 1/δ

2}
≥ λpt+1/(1 + δ)

because pt+1 = max{Xt(1 + δ)/λ, zj−1}, so

E [Zt − Zt+1 | Ft] ≤ ln

(
λpt+1 + (1/2)

√
λpt+1

λpt+1/(1 + δ)

)

= ln

(
(1 + δ)

(
1 +

1

2
√
λpt+1

))
.

From the assumption λpt+1 ≥ yj and yj > 1, it follows that
√

1/(λpt+1) ≤√
1/yj ≤ δ and

E [Zt − Zt+1 | Ft] ≤ ln(1 + δ) + ln(1 + δ/2) < (3/2)δ.

In the other sub-case, when yj > λpt+1, we use that Rt ≥ yj and get

E [Zt − Zt+1 | Ft] ≤ ln

(
yj + (1/2)

√
λpt+1

yj

)

< ln

(
1 +

√
yj

2yj

)
= ln

(
1 +

1

2
√
yj

)
≤ ln

(
1 +

δ

2

)
< δ/2.

Hence, condition 1 in Theorem 3 can be satisfied with the parameter ε := (3/2)δ.
We therefore get the bound

E
[
S1
j | F0

]
≥Z0 − a

ε
=

(
2

3δ

)
ln

(
γ0λ

max{X0, λzj−1,
1
δ2 }

)
.

By the definition of the process, for 1 < j ≤ m, we have X0 ∼ (Y | Y ≥ 1),
where Y ∼ Bin(λ, zj−1), i. e., X0 is random variable with distribution equal to
a binomial distribution conditioned on taking value at least 1. By the tower
property of expectation,

E
[
S1
j

]
= E

[
E
[
S1
j | F0

]]
≥ E

[(
2

3δ

)
ln

(
γ0λ

max{X0, λzj−1, 1/δ2}

)]
> E

[(
2

3δ

)
ln

(
γ0λ

X0 + λzj−1 + 1/δ2

)]
,

= E

[(
2

3δ

)
ln

(
γ0λ

Y + λzj−1 + 1/δ2

)
| Y ≥ 1

]
,

since the function f(x) = ln(1/x) is convex, Jensen’s inequality and Lemma 25
give

>

(
2

3δ

)
ln

(
γ0λ

E [Y | Y ≥ 1] + λzj−1 + 1/δ2

)

36

≥
(

2

3δ

)
ln

(
γ0λ

1 + 2λzj−1 + 1/δ2

)
.

During sub-phase 2, it holds that

Pr
y∼D(Pt)

(y = xj) = 1− zj , and Pr
y∼D(Pt)

(y = xj+1) = zj .

In each generation of sub-phase 2, the phase ends with probability qj := 1 −
(1− zj)λ < λzj , i. e., the probability that at least one individual is produced in
A≥j+1. The duration of sub-phase 2 is therefore geometrically distributed with
parameter qj and has expectation E

[
S2
j

]
= 1/qj ≥ 1/(λzj).

Hence, we get

E [T] =

m−1∑
j=1

E
[
S1
j

]
+ E

[
S2
j

]

≥

 2

3δ

m−2∑
j=1

ln

(
γ0λ

1 + 2λzj + 1/δ2

)+

m−1∑
j=1

1

λzj
.

Appendix C Proofs Omitted from the Appendix

Proof of Lemma 18. Both g1 and g2 are non-increasing functions in x and y,
hence properties 1 and 2 of Definition 4 are satisfied. Property 3 is satisfied
because for all y ∈ [m− 1]

g1(λ, y) =

m−1∑
i=y+1

ln

(
1 + cλ

1 + cγiλ

)

= ln

(
1 + cλ

1 + cγy+1λ

)
+

m−1∑
i=y+2

ln

(
1 + cλ

1 + cγiλ

)
= g1(0, y + 1)

and

g2(λ, y) =
(1− κ)λ

qy
+

m−1∑
i=y+1

1

qi
>

m−1∑
i=y+1

1

qi

=
(1− κ)0

qy+1
+

m−1∑
i=y+2

1

qi
= g2(0, y + 1).

Proof of Lemma 19. Let Y ∼ Bin(λ, (1 + δ)i/λ), then Y � X. Therefore,

E

[
ln

(
1 + δX/2

1 + δi/2

)]
≥ E

[
ln

(
1 + δY/2

1 + δi/2

)]

and it is sufficient to show that E

[
ln

(
1 + δY/2

1 + δi/2

)]
> δ2/7 to complete the

proof.

37

It follows from Corollary 22 (see the next section, and choose c = δ/2) that

E

[
ln

(
1 + δY/2

1 + δi/2

)]
≥ ln

(
1 + (1 + δ)δi/2

1 + δi/2

)
− δ

4
· (1 + δ)δi/2

1 + (1 + δ)δi/2

= ln

(
1 +

iδ2

2 + iδ

)
− δ

4
· (1 + δ)δi

2 + (1 + δ)δi
=: h(i).

For all δ > 0 and i ≥ 1, it holds that

h′(i) =
1

2
· (6 + δ(3i− 2) + 3iδ2)δ2

(2 + iδ + iδ2)2(2 + iδ)
> 0,

or h(i) monotonically increases in i.
Define r(δ) := 12 + 8δ + 3δ2 + δ3 − 2δ4 and s(δ) := (2 + δ)2(2 + δ + δ2) > 0,

we get

h(i) ≥ h(1) = ln

(
1 +

δ2

2 + δ

)
− δ

4
· (1 + δ)δ

2 + (1 + δ)δ

≥ δ2

2 + δ

(
1− δ2

2(2 + δ)

)
− δ

4
· (1 + δ)δ

2 + (1 + δ)δ
=
δ2r(δ)

4s(δ)
.

The last inequality is due to Lemma 27. We notice that 18r(δ) − 11s(δ) =
(1− δ)(128 + 140δ + 84δ2 + 47δ3) ≥ 0 for all δ ∈ (0, 1], thus r(δ)/s(δ) ≥ 11/18
and h(i) ≥ (δ2/4)(11/18) > δ2/7.

Proof of Lemma 20. Define p := Pr (Xi ≥ j) and q := Pr (Xi ≥ j + c). For
b ≤ 0 or p = 0, the result trivially holds. For b ∈ (0, λ] and p ∈ (0, 1], we
have that q′ := Pr (Xi ≥ j + c | Xi ≥ j) = q/p ≥ q. Event Y (j) ≥ b implies the
existence of a set A ⊆ [λ] such that |A| ≥ dbe and Xi ≥ j for all i ∈ A. Define
Y1 :=

∑
i∈A 1{Xi≥j+c} and Y2 :=

∑
i∈[λ]\A 1{Xi≥j+c}, so Y (j + c) = Y1 + Y2.

Clearly, conditioned on Y (j) ≥ b, Y1 ∼ Bin(|A|, q′) � Bin(|A|, q) and Y2 ∼
Bin(λ− |A|, q). Therefore, the distribution of Y (j + c) conditioned on Y (j) ≥ b
stochastically dominates Bin(|A|, q) + Bin(λ − |A|, q) = Bin(λ, q), which is the
(unconditional or original) distribution of Y (j + c), and part (i) follows.

For part (ii), let F1(x) := Pr (f(Y (j + c)) < x | Y (j) ≥ b) and F2(x) :=
Pr (f(Y (j + c)) < x) , i. e. F1 and F2 are the conditional and the unconditional
distribution functions of f(Y (j + c)) respectively. Then from part (i), we con-
clude that F1(x) ≤ F2(x) for any x ∈ R, and by the properties of expectation,

E [f(Y (j + c)) | Y (j) ≥ b] = −
∫ 0

−∞
F1(x)dx+

∫ ∞
0

(1− F1(x))dx

≥ −
∫ 0

−∞
F2(x)dx+

∫ ∞
0

(1− F2(x))dx

= E [f(Y (j + c))] .

38

Appendix D Lemmas Used in the Preceeding
Proofs

The improvement achieved in Lemma 19 is due to the following generalisation
of the lower bound of Lemma 33 in [14] (or Lemma 27 in this document).

Lemma 21. For any z > 0, and all x ≥ 0, we have that

ln(1 + x) ≥ x(b(z) + a(z)x),

where a(z) :=
1

z(z + 1)
− ln(1 + z)

z2
,

and b(z) :=
2 ln(1 + z)

z
− 1

1 + z
.

Proof. For x = 0, the result trivially holds. It then suffices to show that for all
x ∈ (0,∞)

h(x) :=
ln(1 + x)

x
− b(z)− a(z)x ≥ 0.

Note that h(z) = 0 and h′(x) = a(x) − a(z). It follows from ln(1 + x) >
2x/(x+ 2) for x > 0 (see (3) in [53]) that

a′(x) =
2 ln(1 + x)

x3
− 2

x2(1 + x)
− 1

x(1 + x)2

≥ 4

x2(2 + x)
− 2

x2(1 + x)
− 1

x(1 + x)2

=
1

(2 + x)(1 + x)2
> 0,

thus a(x) is an increasing function.
We separate two cases: for x ∈ (0, z], we have a(x) ≤ a(z) and h′(x) ≤ 0,

thus h(x) is decreasing on (0, z] and h(x) ≥ h(z) = 0; for x ∈ [z,∞), we have
h′(x) = a(x)− a(z) ≥ 0, h(x) is increasing on [z,∞) and h(x) ≥ h(z) = 0. We
have shown that h(x) ≥ 0 for x > 0.

Note that the bound is tight at both x = 0 and x = z. The lemma does
not cover the case z = 0, however, at the limit, we get limz→0+ b(z) = 1 and
limz→0+ a(z) = −1/2, which corresponds to the bound given by Lemma 27.

Corollary 22. Let X ∼ Bin(n, p) and µ := E [X], then it holds for all c > 0
that

E [ln(1 + cX)] ≥ ln(1 + cµ)− c

2
· cµ

1 + cµ
.

Proof. For p = 0 (or µ = 0), the bound is trivial. Otherwise, for p > 0, applying
Lemma 21 with z = cµ gives ln(1 + cX) ≥ b(cµ)cX + a(cµ)(cX)2, hence

E [ln(1 + cX)]

≥ b(cµ)cµ+ a(cµ)c2µ(1− p+ µ)

39

= ln(1 + cµ)− c(1− p)
(

ln(1 + cµ)

cµ
− 1

1 + cµ

)
> ln(1 + cµ)− c

(
1

2
· 2 + cµ

1 + cµ
− 1

1 + cµ

)
= ln(1 + cµ)− c

2
· cµ

1 + cµ
.

The last inequality is due to 1− p < 1 and ln(1 + x)/x < (1/2)(x+ 2)/(x+ 1)
for x > 0 (see (3) in [53]).

The following lemma shows that all mask-based crossover operators sat-
isfy (C3) with ε = 1/2 for Om and Lo functions.

Lemma 23. If x ∼ pxor(u, v), where pxor is a mask-based crossover, then:

1. If Lo(u) = Lo(v) = j, then Pr (Lo(x) ≥ j) = 1,
otherwise Pr (Lo(x) > min{Lo(u),Lo(v)}) ≥ 1/2.

2. Pr (Om(x) ≥ d(Om(u) + Om(v))/2e) ≥ 1/2.

Proof. 1) When Lo(u) = Lo(v) = j, in mask-based crossover operators, the
two bitstrings x′, x′′ have j leading ones. So does the returned bitstring, i. e.
with probability 1.

If Lo(u) 6= Lo(v), we can assume w. l. o.g. that Lo(v) = j and Lo(u) >
Lo(v). Then v has a 0 while u has a 1 at position j + 1. So, one of the
bitstrings x′, x′′ in the mask-based crossover will inherit the 1 at that position
and the other will inherit the 0. This implies that one of them has fitness at
least j + 1 and with probability 1/2 it is returned as output.

2) Each bit of u and v is copied either to x′ or to x′′, therefore |x′|1 + |x′′|1 =
|u|1 + |v|1, which means that max{|x′|1, |x′′|1} ≥ d(|u|1 + |v|1)/2e. The output
is chosen with probabilities 1/2 to be copied either from x′ or x′′, and the result
follows.

The following two lemmas are used in the proof of Theorem 17.

Lemma 24. If X ∼ Bin(n, p), where p > 0, then for all y ∈ R it holds that

E [max(X, y)] < max(np, y) + (1/2)
√
np.

Proof. By Jensen’s inequality w. r. t. the square root, we have

E [|X − y|] = E
[√

(X − y)2
]
≤
√
E [(X − y)2]

=
√
np(1− p) + (np− y)2

≤
√
np(1− p) + |np− y|,

where the last inequality uses
√
a+ b ≤

√
a +
√
b for a, b ≥ 0. Therefore, it

holds that

E [max(X, y)] = E [(1/2)(X + y + |X − y|)]

≤ (1/2)(np+ y + |np− y|+
√
np(1− p))

< max(np, y) + (1/2)
√
np.

40

Lemma 25. If X ∼ Bin(n, p), where p > 0, then it holds that E [X | X > 0] ≤
np+ 1.

Proof. By definition,

E [X | X > 0] =

n∑
i=1

iPr (X = i | X > 0)

=
1

Pr (X > 0)

n∑
i=1

iPr (X = i ∩X > 0)

=
1

Pr (X > 0)

n∑
i=0

iPr (X = i)

=
E [X]

Pr (X > 0)
=

np

1− (1− p)n
≤ np+ 1,

where the last inequality follows from Lemma 28.

Appendix E Other results

The following well-known results are included for completeness.

Lemma 26 (Lemma 6 in [14]). If X ∼ Bin(λ, p) with p ≥ (i/λ)(1 + δ), then
E
[
e−κX

]
≤ e−κi for any κ ∈ (0, δ).

Lemma 27 (Lemma 33 in [14]). For all x ≥ 0, x ≥ ln(1 + x) ≥ x(1− x/2).

Lemma 28 (Lemma 31 in [14]). For n ∈ N and x ≥ 0, we have 1− (1− x)n ≥
1− e−xn ≥ xn

1+xn .

Lemma 29 (Lemma 3 in [15]). For any ε ∈ (0, 1) and χ > 0, if n ≥ (χ+ ε)χε
then (1− ε)e−χ ≤

(
1− χ

n

)n ≤ e−χ.
Lemma 30 (Corollary 3 in [13]). Let Y1, . . . , Yn be n independent random vari-
ables with support in [0, 1] and finite expectations and Y :=

∑n
i=1 Yi. It holds

for every δ > 0 that

Pr (Y > E [Y]− δ) ≥ min

{
1

13
,

δ

1 + δ

}
.

References

[1] G. Ausiello and M. Protasi, “Local search, reducibility and approximability
of NP-optimization problems,” Inform. Process. Lett., vol. 54, pp. 73–79,
1995.

[2] G. Badkobeh, P. K. Lehre, and D. Sudholt, “Unbiased black-box complexity
of parallel search,” in Proc. of PPSN XIII. Springer, 2014, pp. 892–901.

[3] H.-G. Beyer, H.-P. Schwefel, and I. Wegener, “How to analyse evolutionary
algorithms,” Theor. Comput. Sci., vol. 287, pp. 101–130, 2002.

41

[4] T. Chen, J. He, G. Sun, G. Chen, and X. Yao, “A new approach for analyz-
ing average time complexity of population-based evolutionary algorithms
on unimodal problems,” IEEE Trans. Syst. Man. Cybern. B, vol. 39, no. 5,
pp. 1092–1106, 2009.

[5] T. Chen, P. K. Lehre, K. Tang, and X. Yao, “When is an estimation of
distribution algorithm better than an evolutionary algorithm?” in Proc. of
CEC ’09. IEEE, 2009, pp. 1470–1477.

[6] T. Chen, K. Tang, G. Chen, and X. Yao, “On the analysis of average time
complexity of estimation of distribution algorithms,” in Proc. of CEC ’07.
IEEE, 2007, pp. 453–460.

[7] ——, “Rigorous time complexity analysis of univariate marginal distribu-
tion algorithm with margins,” in Proc. of CEC ’09. IEEE, 2009, pp.
2157–2164.

[8] ——, “Analysis of computational time of simple estimation of distribution
algorithms,” IEEE Trans. Evol. Comput., vol. 14, no. 1, pp. 1–22, 2010.

[9] D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre, “Level-based
analysis of genetic algorithms and other search processes,” in Proc. of
PPSN XIII. Springer, 2014, pp. 912–921.

[10] D.-C. Dang, T. Friedrich, T. Koetzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton, “Emergence of diversity and its ben-
efits for crossover in genetic algorithms,” in Proc. of PPSN XIV. Springer,
2016, pp. 890–900.

[11] D.-C. Dang, T. Jansen, and P. K. Lehre, “Populations can be essential in
tracking dynamic optima,” Algorithmica, vol. 78, no. 2, pp. 660–680, 2017.

[12] D.-C. Dang and P. K. Lehre, “Efficient optimisation of noisy fitness
functions with population-based evolutionary algorithms,” in Proc. of
FOGA XIII. ACM, 2015, pp. 62–68.

[13] ——, “Simplified runtime analysis of estimation of distribution algo-
rithms,” in Proc. of GECCO ’15. ACM, 2015, pp. 513–518.

[14] ——, “Runtime analysis of non-elitist populations: From classical optimi-
sation to partial information,” Algorithmica, vol. 75, no. 3, pp. 428–461,
2016.

[15] ——, “Self-adaptation of mutation rates in non-elitist populations,” in
Proc. of PPSN XIV. Springer, 2016, pp. 803–813, (arXiv:1606.05551).

[16] B. Doerr and C. Doerr, “Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings,” in Proc. of
GECCO ’15. ACM, 2015, pp. 1335–1342.

[17] ——, “A tight runtime analysis of the (1+(λ, λ)) genetic algorithm on
OneMax,” in Proc. of GECCO ’15. ACM, 2015, pp. 1423–1430.

42

[18] B. Doerr and M. Künnemann, “How the (1+λ) evolutionary algorithm
optimizes linear functions,” in Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, ser. GECCO ’13. New York,
NY, USA: ACM, 2013, pp. 1589–1596.

[19] S. Droste, “A rigorous analysis of the compact genetic algorithm for linear
functions,” Nat. Comput., vol. 5, no. 3, pp. 257–283, 2006.

[20] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1) Evo-
lutionary Algorithm,” Theor. Comput. Sci., vol. 276, pp. 51–81, 2002.

[21] ——, “Upper and Lower Bounds for Randomized Search Heuristics in
Black-Box Optimization,” Theor. Comput. Syst., vol. 39, no. 4, pp. 525–
544, 2006.

[22] A. Eremeev, “Hitting times of local and global optima in genetic algorithms
with very high selection pressure,” Yugosl. J. Oper. Res., vol. 27, no. 4,
2017, (To appear, arXiv:1606.05784).

[23] A. Eremeev and J. Kovalenko, “Optimal recombination in genetic algo-
rithms for combinatorial optimization problems: Part I,” Yugosl. J. Oper.
Res., vol. 24, no. 1, pp. 1–20, 2014.

[24] U. Feige, “On sums of independent random variables with unbounded vari-
ance, and estimating the average degree in a graph,” in Proc. of 36th STOC,
2004, pp. 594–603.

[25] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton, “The benefit
of recombination in noisy evolutionary search,” in Proc. of 26th ISAAC.
Springer, 2015, pp. 140–150.

[26] D. E. Goldberg, Genetic Algorithms in search, optimization and machine
learning. Addison-Wesley, MA, USA, 1989.

[27] C. González, J. A. Lozano, and P. Larrañaga, “Analyzing the PBIL algo-
rithm by means of discrete dynamical systems,” Complex Syst., vol. 12, pp.
465–479, 2000.

[28] B. Hajek, “Hitting-time and occupation-time bounds implied by drift anal-
ysis with applications,” Adv. Appl. Probab., vol. 14, no. 3, pp. 502–525,
1982.

[29] J. He and X. Yao, “Drift analysis and average time complexity of evolu-
tionary algorithms,” Artif. Intell., vol. 127, no. 1, pp. 57–85, 2001.

[30] ——, “From an individual to a population: an analysis of the first hit-
ting time of population-based evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 6, no. 5, pp. 495–511, 2002.

[31] T. Jansen and I. Wegener, “The analysis of evolutionary algorithms – a
proof that crossover really can help,” Algorithmica, vol. 34, no. 1, pp. 47–
66, 2002.

[32] T. Kötzing, D. Sudholt, and M. Theile, “How crossover helps in pseudo-
Boolean optimization,” in Proc. of GECCO ’11. ACM, 2011, pp. 989–996.

43

[33] M. S. Krejca and C. Witt, “Lower bounds on the run time of the univariate
marginal distribution algorithm on onemax,” in Foundations of Genetic
Algorithms (FOGA). ACM Press, 2017.

[34] P. Larrañaga and J. A. Lozano, Eds., Estimation of Distribution Algo-
rithms: A New Tool for Evolutionary Computation, ser. Genetic Algorithms
and Evolutionary Computation. Springer, 2002, vol. 2.

[35] J. Lässig and D. Sudholt, “General upper bounds on the runtime of parallel
evolutionary algorithms,” Evol. Comput., vol. 22, no. 3, pp. 405–437, 2014.

[36] P. K. Lehre, “Fitness-levels for non-elitist populations,” in Proc. of
GECCO ’11. ACM, 2011, pp. 2075–2082.

[37] P. K. Lehre and P. T. H. Nguyen, “Improved Runtime Bounds for the
Univariate Marginal Distribution Algorithm via Anti-Concentration,” in
Proc. of GECCO ’17. ACM Press, 2017.

[38] P. K. Lehre and C. Witt, “Black-box search by unbiased variation,” Algo-
rithmica, pp. 1–20, 2012.

[39] P. K. Lehre and X. Yao, “Crossover can be constructive when computing
unique input-output sequences,” Soft Comput., vol. 15, no. 9, pp. 1675–
1687, 2011.

[40] ——, “On the impact of mutation-selection balance on the runtime of evo-
lutionary algorithms,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 225–
241, April 2012.

[41] A. Moraglio and D. Sudholt, “Principled design and runtime analysis of
abstract convex evolutionary search,” Evol. Comput., 2015, posted Online.

[42] H. Mühlenbein and G. Paaß, “From recombination of genes to the estima-
tion of distributions i. binary parameters,” in Proc. of PPSN IV. Springer
Berlin Heidelberg, 1996, pp. 178–187.

[43] H. Mühlenbein, “The equation for response to selection and its use for
prediction,” Evolutionary Computation, vol. 5, no. 3, pp. 303–346, 1997.

[44] F. Neumann, P. S. Oliveto, and C. Witt, “Theoretical analysis of fitness-
proportional selection: landscapes and efficiency,” in Proc. of GECCO ’09.
ACM, 2009, pp. 835–842.

[45] P. S. Oliveto and C. Witt, “Improved time complexity analysis of the simple
genetic algorithm,” Theor. Comput. Sci., vol. 605, pp. 21–41, 2015.

[46] M. Pelikan, K. Sastry, and D. E. Goldberg, “Scalability of the bayesian
optimization algorithm,” Intl Jour. on Approx. Reasoning, vol. 31, no. 3,
pp. 221–258, 2002.

[47] A. Prügel-Bennett, J. E. Rowe, and J. Shapiro, “Run-time analysis of
population-based evolutionary algorithm in noisy environments,” in Proc.
of FOGA XIII. ACM, 2015, pp. 69–75.

44

[48] J. Rowe and D. Sudholt, “The choice of the offspring population size in the
(1,λ) evolutionary algorithm,” Theor. Comput. Sci., vol. 545, pp. 20 – 38,
2014.

[49] J. Scharnow, K. Tinnefeld, and I. Wegener, “The analysis of evolution-
ary algorithms on sorting and shortest paths problems,” J. Math. Model.
Algorithm., vol. 3, no. 4, pp. 349–366, 2004.

[50] J. L. Shapiro, “Drift and scaling in estimation of distribution algorithms,”
Evol. Comput., vol. 13, no. 1, pp. 99–123, 2005.

[51] D. Sudholt, “How crossover speeds up building block assembly in genetic
algorithms,” Evol. Comput., 2015, posted Online.

[52] D. Sudholt and C. Witt, “Update strength in EDAs and ACO: How to
avoid genetic drift,” in Proc. of GECCO ’16, 2016, pp. 61–68.

[53] F. Topsøe, “Some bounds for the logarithmic function,” in Inequality The-
ory and Applications, Y. J. Cho, J. K. Kim, and S. S. Dragomir, Eds. Nova
Science Publishers, Incorporated, 2007, vol. 4, pp. 137–151.

[54] M. D. Vose, The Simple Genetic Algorithm: Foundations and Theory. MIT
Press, Cambridge, MA, 1999.

[55] M. D. Vose and A. H. Wright, “Stability of vertex fixed points and appli-
cations,” in Proc. of FOGA III. Morgan Kaufmann, 1995, pp. 103–113.

[56] I. Wegener, “Methods for the analysis of evolutionary algorithms on pseudo-
Boolean functions,” in Evolutionary Optimization. Springer US, 2002,
vol. 48, pp. 349–369.

[57] D. Williams, Probability with Martingales. Cambridge University Press,
1991.

[58] C. Witt, “Runtime analysis of the (µ+1) EA on simple pseudo-Boolean
functions,” Evol. Comput., vol. 14, no. 1, pp. 65–86, 2006.

[59] ——, “Upper Bounds on the Runtime of the Univariate Marginal Distri-
bution Algorithm on OneMax,” in Proc. of GECCO ’17. ACM Press,
2017.

[60] Y. Yu, C. Qian, and Z.-H. Zhou, “Switch analysis for running time analysis
of evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 19, no. 6, pp.
777–792, dec 2015.

[61] Q. Zhang and H. Mühlenbein, “On the convergence of a class of estimation
of distribution algorithms,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp.
127–136, 2004.

45

