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Abstract: Measuring the performance of an algorithm for solving multi-objective optimization
problem has always been challenging simply due to two conflicting goals, i.e., convergence and
diversity of obtained trade-off solutions. There are a number of metrics for evaluating the perfor-
mance of a multi-objective optimizer that approximates the whole Pareto-optimal front. However,
for evaluating the quality of a preferred subset of the whole front, the existing metrics are inade-
quate. In this paper, we suggest a systematic way to adapt the existing metrics to quantitatively
evaluate the performance of a preference-based evolutionary multi-objective optimization algorithm
using reference points. The basic idea is to pre-process the preferred solution set according to a
multi-criterion decision making approach before using a regular metric for performance assessment.
Extensive experiments on several artificial scenarios and benchmark problems fully demonstrate
its effectiveness in evaluating the quality of different preferred solution sets with regard to various
reference points supplied by a decision maker.

Keywords: User-preference, performance assessment, reference point, multi-criterion decision
making, evolutionary multi-objective optimization.

1 Introduction

Most real-world problem solving tasks usually involve multiple incommensurable and conflicting ob-
jectives which need to be considered simultaneously. Such problems are termed as multi-objective
optimization problems (MOPs) that have earned considerable attention in engineering design, mod-
eling, and operations research. Instead of a single solution that optimizes all objectives simultane-
ously, in multi-objective optimization, we often look for a set of Pareto-optimal solutions none of
which can be considered better than another when all objectives are of importance.

Over the past two decades and beyond, evolutionary algorithms (EAs) have been widely accepted
as a major approach for multi-objective optimization. Many efforts have been devoted to devel-
oping evolutionary multi-objective optimization (EMO) algorithms, such as elitist non-dominated
sorting genetic algorithm (NSGA-II) [1–4], indicator-based EA (IBEA) [5–7] and multi-objective
EA based on decomposition (MOEA/D) [8–11]. These algorithms, without any additional pref-
erence information (or intervention) from a decision maker (DM), are usually designed to obtain
a set of solutions that approximate the whole Pareto-optimal set. However, the ultimate goal of
multi-objective optimization is to help the DM find solutions that meet his/her own preference in-
formation. To facilitate the decision making process, it is desirable to integrate the DM’s preference
information into the search process of EMO for the following reasons:

1. Supplying a DM with a large amount of trade-off points not only increases his/her workload,
but also provides many irrelevant or even noisy information to the decision making process.
Rather than the whole Pareto-optimal front (PF), the DM usually interests in only a small
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set of trade-off points most relevant to him/her. A biased search, according to the DM’s
preference information, is able to provide more acceptable solutions.

2. Due to the curse of dimensionality, the number of points used to accurately represent the whole
PF increases exponentially with the number of objectives. This not only severely increases the
computational burden of an EMO algorithm, but also causes extra difficulties for the DM to
comprehend the obtained solutions and then to make decisions. Therefore, it is more practical
to search for a fine-grained resolution of a preferred region of the PF by incorporating the
DM’s preference information.

3. In a high-dimensional space, the mushrooming of non-dominated solutions, even for a ran-
domly generated population, renders the traditional Pareto dominance based selection use-
less [12]. However, by considering the DM’s preference information, we can expect a necessary
selection pressure additional to Pareto dominance [13].

In the past decade, there have been a number of studies on the preference-based EMO. Generally
speaking, their ideas can be divided into four categories. The first one modifies the original Pareto
dominance by classifying objectives into different levels and priorities (e.g., [14–16]) or expresses
the DM’s preference information by fuzzy linguistic terms according to different aspiration levels
(e.g., [17–19]). The second sort modifies the diversity management module so that the density of
Pareto-optimal solutions can be biased towards the region of interest (ROI) (e.g., [20–22]). The
third approach combines the classical reference point based method [23] with EMO (e.g., [24–26]).
The last category, as a recent trend, combines the DM’s preference information with performance
metrics (e.g., weight hypervolume [27], R2-indicator [28] and averaged Hausdorff distance [29]) in
algorithm design. In this paper, our discussion focuses on the reference point based method, which
has been recognized as one of most popular methods in this literature [30].

Despite the progress in algorithm design, few have been done on evaluating the quality of pre-
ferred solutions obtained by a preference-based EMO algorithm. Although a number of performance
metrics have been suggested to evaluate the quality of solutions that approximate the whole PF,
including metrics for evaluating convergence (e.g., [31–33]) and diversity (e.g., [34–36]) separately,
and metrics that evaluate both aspects simultaneously (e.g., [37–39]), none of them can be directly
applicable when only a partial PF is considered. Some attempts to adapt the regular metrics to
serve the purpose of assessing the quality of a preferred solution set have been reported in [40]
and [41]. However, they are ad-hoc and oversimplified which could make the assessments mislead-
ing. Possibly due to the lack of reliable metrics, many studies, if not all, on the preference-based
EMO heavily rely on the visual plot in performance comparisons. These methods are rather sub-
jective, and how to visualize data in a high-dimensional space is itself an open problem. This paper
presents a systematic way, denoted as R-metric, to quantitatively evaluate the quality of preferred
solutions obtained by a preference-based EMO algorithm using reference points. Our basic idea is
to use a multi-criterion decision making (MCDM) approach to pre-process the obtained solutions,
according to their satisfaction to the DM’s preference information, before using a regular metric for
performance assessment. The proposed method is so simple and general that any existing metric
can be adapted with little modification.

The rest of this paper is organized as follows. Section 2 gives some preliminary concepts related
to this paper. In Section 3, the motivations of this paper are delineated and discussed. Section 4 is
devoted to the description of the proposed method. Section 5 and Section 6 present the empirical
studies on several artificial scenarios and a series of benchmark problems respectively. Finally,
Section 7 concludes this paper and provides some future directions.

2 Preliminary Concepts

This paper considers the following continuous MOP with box constraints:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
(1)
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Figure 1: Variations of IGD and HV values with respect to a DM specified reference point zr =
(0.16, 0.9).

where Ω =
∏n

i=1[ai, bi] ⊂ Rn is the decision (variable) space, x = (x1, . . . , xn)T ∈ Ω is a candidate
solution. F : Ω→ Rm

+ constitutes of m real-valued objective functions, and Rm
+ is called the objective

space. The attainable objective set is defined as Θ = {F(x)|x ∈ Ω}.

Definition 1. x1 is said to Pareto dominate x2, denoted as x1 � x2, if and only if: ∀i ∈ {1, · · · ,m},
fi(x

1) ≤ fi(x2); and ∃j ∈ {1, · · · ,m}, fj(x1) < fj(x
2).

Definition 2. x∗ ∈ Ω is said to be Pareto-optimal if there is no other x ∈ Ω such that x � x∗.

Definition 3. The set of all Pareto-optimal solutions is called the Pareto-optimal set (PS). The
set of all Pareto-optimal objective vectors, PF = {F(x)|x ∈ PS}, is called the PF.

For the ease of later discussion, we briefly introduce two widely used performance metrics in the
EMO literature.

1. Inverted Generational Distance (IGD) metric [37]: Let P ∗ be a set of points uniformly sampled
along the PF, and S be the set of solutions obtained by an EMO algorithm. The IGD value
of S is calculated as:

IGD(S, P ∗) =

∑
x∗∈P ∗ dist(x

∗, S)

|P ∗|
(2)

where dist(x∗, S) is the Euclidean distance between the point x∗ ∈ P ∗ and its nearest neighbor
of S in the objective space, and |P ∗| is the cardinality of P ∗.

2. Hypervolume (HV) metric [33]: Let zw = (zw1 , . . . , z
w
m)T be a worst point in the objective

space that is dominated by all Pareto-optimal objective vectors. HV metric measures the size
of the objective space dominated by solutions in S and bounded by zw.

HV(S) = VOL(
⋃
x∈S

[f1(x), zw1 ]× . . . [fm(x), zwm]) (3)

where VOL(·) indicates the Lebesgue measure.

Both IGD and HV metrics are able to give a comprehensive information, including the conver-
gence and diversity, of S simultaneously. The lower is the IGD value (or the larger is the HV value),
the better is the quality of S for approximating the whole PF.

3 Motivation

This section first discusses the shortcomings of some existing metrics for evaluating the partial PF.
Then, we develop the motivation for our proposed R-metric from the perspective of the achievement
scalarization function (ASF), i.e., an MCDM-based scalarization approach.
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3.1 Shortcomings of Regular Metrics

Let us use two toy examples to illustrate some shortcomings of IGD and HV metrics for assessing
the partial PF. In particular, the example PF is a line (i.e., f2 = 1 − f1) having an intercept
of one with each objective axis. The DM’s preference information is specified as a reference point
zr = (0.16, 0.9)T in the objective space. Points focusing on the region closest to zr are most relevant
to the DM’s preference information. To calculate the IGD values, we sample 670 evenly distributed
points along the PF; and we set the worst point as zw = (1.1, 1.1)T for calculating the HV value.

1. In Fig. 1(a), two sets of points S1 and S2 have the same cardinality (|S1| = |S2| = 20), but are
with different spreads along the PF. S1 crowds around zr, while S2 evenly distributes along
the whole PF. From the DM’s perspective, S1 is preferable than S2. However, since S2 has a
wider spread over the PF, it obviously has better IGD and HV values than S1. Specifically,
IGD(S1) = 3.476E-1 and IGD(S2) = 4.610E-4; HV(S1) = 0.2910 and HV(S2) = 0.6837.

2. In Fig. 1(b), ten sets of points S1 to S10 are created along the PF. Each set contains 40 evenly
distributed points and has the same spread. Fig. 1(c) shows the IGD and HV values obtained
by each point set. Since S2 locates in the ROI, it was supposed to have the best metric values.
However, as shown in Fig. 1(c), S2 obtains the second worst metric values, whereas S5 and
S6, far away from the ROI, obtain the best metric values.

In summary, neither IGD nor HV metric is reliable for evaluating the quality of a preferred
solution set. A solution set with additional but unwanted points may obtain a better metric value,
thereby making the IGD and HV metrics unsuitable for performance assessment in the toy example
shown in Fig. 1(a). On the other hand, even for different point sets having the same spread along
the PF, their IGD and HV values depend on their positions and the PF’s geometric property. This
makes the IGD and HV metrics unsuitable for performance assessment in the toy example shown
in Fig. 1(b).

3.2 Shortcomings of Existing Preference-Based Metrics

To the best of our knowledge, there are two previous attempts, i.e., [40] and [41], to adapt the
regular HV metric for the preference-based EMO. Their basic ideas are similar. At first, they merge
solutions obtained by all considered algorithms into a composite set. Then, they specify a preferred
region within the composite set. Finally, only solutions falling within this preferred region are
considered for performance assessment. The major difference between [40] and [41] is the setting of
the preferred region. As shown in Fig. 2(a), [40] uses the closest point to the origin as the center
of the preferred region. In contrast, as shown in Fig. 2(b), [41] uses the closest point to the DM
supplied reference point as the center. Both these two metrics do not require any prior knowledge
of the PF, and they work for some simple examples. However, they have some flaws that make
them misleading:

1. It is obvious that [40] does not take the DM’s preference information into consideration. For
the example in Fig. 2(a), S1 is obviously preferable than S2 considering the given reference
point zr. However, S1 and S2 are distant from each other, and the origin is closer to the
points in S2. Therefore, S1 will be wrongly excluded from the preferred region for performance
assessment.

2. On the other hand, although [41] considers the DM’s preference information in computation,
it treats points outside the preferred region equally redundant, e.g., in Fig. 2(b), no point in
S2 will be considered in performance assessment. Considering the example in Fig. 1(b), all
ten point sets, except S2, cannot get any meaningful metric value. This gives the DM a wrong
information that S1 to S10, except S2, are equally bad.
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Figure 2: Illustration of two preference-based metrics.

3.3 Intuitions of MCDM Approach

In the MCDM literature, there exists a number of methods for finding a preferred solution set
according to the DM supplied reference point. In this subsection, we describe the basic idea of the
ASF method [42], which is the foundation of our proposed R-metric, in detail. In particular, The
ASF1 considered in this paper is formulated as follows:

minimize ASF(x|zr,w) = max
1≤i≤m

fi(x)−zri
wi

subject to x ∈ Ω.
(4)

where zr is the reference point that represents the DM’s aspiration level for each objective, and
w is the weight vector that implies the relative importance of objectives. Based on the ASF, each
objective vector has a projection, called iso-ASF point, on the reference line originated from zr and
along w, as shown in Fig. 3. Specifically, for a point a ∈ Θ, its corresponding iso-ASF point al is
calculated as:

al = zr + δw (5)

where δ = max
1≤i≤m

ai−zri
wi

. This iso-ASF point gives us an information about the closeness of a to zr

along the preferred direction w. Note that not all Pareto-optimal solutions are equally important
when considering the DM’s preference information. Based on the supplied reference point and a
preferred direction, ASF is able to rank all Pareto-optimal solutions. As shown in Fig. 3, for a, any
point on its ASF contour line (e.g., point b) has the same ASF value, i.e., they are equally good and
have the identical rank. For another point c, its iso-ASF point is cl. Comparing to al, cl is closer
to zr along the preferred direction. Thus, c should have a better rank than a and b. Another nice
property of this ASF-based ranking concept is promising scalability to many-objective problems.

4 R-metric Calculation Principle

The basic idea of our proposed method, denoted as R-metric, is to use an MCDM approach to pre-
process the preferred solution set according to the DM supplied preference information. Thereafter,
regular metrics, e.g., IGD and HV, can be applied for performance assessment. Note that the R-
metric is specifically designed for evaluating the performance of a preference-based EMO algorithm
using one or more reference points. In particular, we assume that the DM prefers the solutions
lying toward the preferred direction, represented as a direct objective-wise weighting information or
a worst point. In the R-metric calculation, the DM is required to provide three parameters relating
to his/her preference information: i) a reference point zr that represents his/her aspiration level or

1Here we use the classic weighted Chebyshev function for discussion. Without loss of generality, other ASF forms
can also be adapted accordingly.
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desired value for each objective, ii) a worst point zw or a weight vector w that specifies the relative
importance of each objective, and iii) a relative extent of the ROI, denoted as ∆ (0 < ∆ ≤ 1).
Note that most of these parameters are used to elicit the DM’s preference information and to
help the preference-based optimization procedure find a set of trade-off solutions in the ROI. Our
proposed R-metric calculation is simple in principle and its high level flowchart is given in Fig. 4.
In the following paragraphs, we first describe each step in detail. Then, we provide some further
comments followed by a time complexity analysis.

Prescreening Trimming
Solution

Transfer

Pivot Point

Identification

R-metric 

Calculation

Figure 4: The flowchart of R-metric calculation.

4.1 Descriptions of Each Step

4.1.1 Prescreening Procedure

In multi-objective optimization, only the non-dominated solutions are of interest to the DMs and
are meaningful for performance assessment. Assume that there are L (L ≥ 1) preferred solution sets
(denoted as S1, · · · , SL), obtained by L different preference-based EMO algorithms, at hand. We at
first merge these L preferred solution sets into a composite set Sc. For each Si, i ∈ {1, · · · , L}, only
the non-dominated solutions, comparing to those in Sc, are retained for the R-metric calculation.
The pseudo-code of this prescreening procedure is given in Algorithm 1.

4.1.2 Pivot Point Identification

As the name suggests, the pivot point (denoted as zp) of a given set of preferred solutions (denoted
as S) is used as the representative that reflects the overall satisfaction of S with respect to the DM
supplied preference information. In this paper, we use the best solution with respect to (4) to serve
this purpose and thus zp is:

zp = argmin
x∈S

ASF(x|zr,w) (6)

4.1.3 Trimming Procedure

Instead of the whole PF, the ROI is a bounded region, i.e., a part of the PF, given the DM’s
preference information. Only solutions located in the ROI are of interest to the DM. In this paper,
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Algorithm 1: Prescreening Procedure

Input: Preferred solution sets S1, · · · , SL

Output: Processed S1, · · · , SL

1 for i← 1 to L do

2 Sc ←
L⋃
l=1

Sl\Si;

3 for j ← 1 to |Si| do
4 for k ← 1 to |Sc| do
5 if Sc(k) � Si(j) then
6 Si = Si\{Si(j)};
7 break;

8 return S1, · · · , SL

we define the ROI approximated by S as the cubic centered at the pivot point and is with a side
length ∆. Only solutions located in this approximated ROI are valid for performance assessment.
The pseudo-code of this trimming procedure is given in Algorithm 2.

Algorithm 2: Trimming Procedure

Input: Preferred solution set S, ROI’s relative extent ∆
Output: Processed S

1 for i← 1 to |S| do
2 for j ← 1 to m do

3 if |fj(xi)− zpj | >
∆
2 then

4 S ← S\{xi};
5 break;

6 return S

4.1.4 Solution Transfer

This step is the main crux of our R-metric by which the trimmed points are transferred to a virtual
position. Then, we can assess their closeness to the ROI along the preferred direction. To this end,
we first compute the iso-ASF point of zp (denoted as zl) on the reference line connecting zr and
zw. According to equation (5), this requires to identify the objective k that contributes to the ASF
value:

k = argmax
1≤i≤m

zpi − zri
zwi − zri

(7)

Then, we can compute zl as:

zli = zri +
zpk − z

r
k

zwk − zrk
(zwi − zri ) (8)

where k ∈ {1, · · · ,m}. Thereafter, all trimmed points are transferred, along the direction vector
zl − zp with the distance ‖zl − zp‖, to a virtual position. The pseudo-code of this solution transfer
procedure is given in Algorithm 3.

4.1.5 R-metric Calculation

In this paper, we choose the IGD and HV as the baseline metrics to evaluate the quality of a
preferred solution set. The resulting R-metric is thus denoted as R-IGD or R-HV depending on
the chosen baseline. For the R-HV, we simply compute the hypervolume of the transferred points
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Algorithm 3: Solution Transfer

Input: Preferred solution set S
Output: Processed S

1 k ← argmax
1≤i≤m

(
zpi −z

r
i

zwi −zri
);

2 for i← 1 to m do

3 zli ← zri +
zpk−z

r
k

zwk −z
r
k
(zwi − zri );// iso-ASF point

4 for i← 1 to |S| do
5 Shift S(i) along the direction vector zl − zp;

6 return S

with respect to the worst point zw. For the R-IGD, we need to pre-process P ∗ beforehand. More
specifically, we first use the method developed in Section 4.1.2 to identify the pivot point of P ∗.
Then, we use the trimming procedure suggested in Section 4.1.3 to trim the points outside the ROI
along the PF. In the end, the remaining points form the new P ∗ for the R-IGD calculation.

4.2 Further Comments

1. In this paper, we set zw = zr+2.0×w for proof of principle studies, where w is an unit vector.
This setting implies that all objectives are equally important. However, in practice, different
objectives might have various importance to the DM. For example, if we set w = ( 2√

5
, 1√

5
)T ,

the first objective is assumed to be twice less important than the second one. In particular,
the importance is in the inverse order of the weights.

2. In practice, the DM has no idea about the range of the whole PF, not to mention the extent
of ROI. Thus, ∆ plays as an approximate expectation of the relative extent of ROI comparing
to the whole PF. Note that the objective space is assumed to be normalized to [0, 1].

3. The trimming procedure penalizes the solution set, in term of the diversity, for having an
excessive extent or deviating from the ROI. For example, in Fig. 5(a) and Fig. 5(b), both S1

and S2 have the same cardinality (|S1| = |S2| = 11), but S1 has a wider spread. From the
DM’s perspective (given ∆ = 0.3), S2 is preferable than S1. After the trimming procedure,
|S1| reduces to 5 while |S2| is still the same. Accordingly, S1 will sacrifice its diversity when
calculating the R-metric value. As for another example shown in Fig. 6(a) and Fig. 6(b), S1

and S2 again have the same cardinality. Since S2 deviates from the ROI, its pivot point is
identified as one of its extreme. After the trimming procedure, solutions far away from the
ROI are excluded from further consideration.
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Figure 5: Illustration of the trimming procedure.
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Figure 6: Illustration of the R-metric calculation principle. Note that the solution transfer is
according to iso-ASF lines for the ASF with zr as the reference point and zw − zr as the weight
vector.

4. Given the DM’s preference information, the convergence is not only the closeness to the PF,
but also the closeness of the transferred points to the ROI along the preferred direction. This
re-definition of convergence is fulfilled by transfering points to a virtual position along the
iso-ASF line between zp and its iso-ASF point zl. Let us consider the example shown in Fig. 6
again. The pivot point of S1 is exactly its iso-ASF point, since this pivot point lies exactly
on the reference line connecting zr and zw. In this case, solutions of S1 stay in their original
positions after the transfering procedure. In contrast, since the pivot point of S2 deviates
from zr, the remaining solutions of the processed S2 after the trimming procedure are shifted,
along the direction zl − zp, to a virtual position away from the PF, as shown in Fig. 6(c).

4.3 Time Complexity Analysis

We now analyze the time complexity of R-metric calculation. The prescreening procedure requires
at most O(L2N2) dominance comparisons. The identification of a pivot point zp from N trade-off
points requires O(N) computations. The trimming procedure can be achieved in O(N) computa-
tions. Transfering at most N points towards the reference line also requires O(N) computations.
The complexity of R-IGD or R-HV computation in last step is the same as the regular IGD or HV. In
summary, the time complexity of R-IGD is max{O(NM),O(L2N2)}, where M is size of the newly
formed P ∗ after the filtering procedure; the time complexity of R-HV is max{O(Nm−1),O(L2N2)}
by using the method developed in [33].

5 Empirical Studies on Artificial Scenarios

In this section, we verify the proposed R-metrics on several artificial scenarios. First of all, the effec-
tiveness of R-metrics is investigated on the two toy examples introduced in Section 3. Afterwards,
four popular benchmark problems with different population distributions and different reference
point settings are used to further examine R-metrics. Next, we investigate the applicability of R-
metrics on a problem with disconnected PFs. Finally, R-metrics are used to evaluate the quality of
a preferred solution set with respect to multiple reference points.

5.1 Investigations on Toy Examples

For the first example discussed in Section 3, as shown in Fig. 7(b), S1 and S2 are rearranged
according to our proposed R-metric calculation procedure. Since S2 does not fully meet the DM’s
preference, points therein are penalized in terms of convergence and diversity. More specifically, after
the filtering procedure, only three points have been left in the processed S2. Then, the processed S2

has been shifted to an area away from the PF in the solution transfer step. Thereafter, the R-metric
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Figure 7: Illustration of R-IGD and R-HV values with respect to a DM supplied reference point
zr = (0.16, 0.9).

values of S1 should be better than that of S2, i.e., R-IGD(S1) = 0.0222 and R-IGD(S2) = 0.0452;
R-HV(S1) = 1.1550 and R-HV(S2) = 1.1108. As for the second example discussed in Section 3,
now shown in Fig. 7(c), all ten point sets have been shifted to their corresponding virtual positions
along the preferred direction (the dashed arrow denotes the transfer direction for each point set).
Now R-IGD and R-HV successfully figure out the best point set S2. This is because the processed
S2, denoted as P 2, is closest to the ROI. In addition, S1 and S3, which have a similar distance to
the ROI after data pre-processing, achieve similar R-IGD and R-HV values. As for S4 to S10, their
R-metric values become worse with their increasing distances to the ROI.

5.2 Investigations on Benchmark Problems

In this subsection, we investigate the effectiveness of R-metrics on four classic benchmark problems,
including two-objective ZDT1 and ZDT2 [43], and three-objective DTLZ1 and DTLZ2 [44]2. For
ZDT1 and ZDT2, ten sets of points, S1 to S10, are sampled from different regions of their PFs.
Each set contains 40 evenly distributed points. For DTLZ1 and DTLZ2, we sample 21 sets of points
from different regions of their PFs, where each set has 25 evenly distributed points. For R-IGD
calculation, we first sample 10,000 evenly distributed points from the corresponding PFs. Only
those located in the ROI (∆ is set as 0.2) are chosen to form P ∗ in the R-IGD calculation.

5.2.1 Two-objective Cases

As shown in Fig. 8(a), we investigate three kinds of reference points for ZDT1.

• Unattainable reference point zr1 = (0.2, 0.5)T : From the results shown in Fig. 8(b), we find
that both R-IGD and R-HV are able to make a reasonable assessment on the quality of a
point set with respect to the DM supplied preference information. For example, S3 resides in
the ROI with respect to zr1 . As shown in Fig. 8(b), the R-IGD and R-HV values obtained by
S3 are indeed the best. For the other point sets, the farther away from the ROI, the worse
the R-metric values are.

• Attainable reference point zr2 = (0.6, 0.3)T : Similar to the observations in the above scenario,
the point set closest to the reference point, i.e., S6, obtain the best R-IGD and R-HV values.
And the R-metric values also depend on the distance to the ROI.

• Extreme reference point zr3 = (1.1,−0.1)T : Since this reference point lies on one extreme, it
is expected that the point set at the respective extreme boundary, i.e., S10, is desirable. From
the results shown in Fig. 8(d), we find that our proposed R-metrics are able to capture this
fact and their trajectories show a monotone property.

2Due to the page limit, the results on ZDT2 and DTLZ2, which are similar to the observations on ZDT1 and DTLZ1,
are put in the supplementary file, which can be downloaded from http://coda-group.github.io/supp-rmetric.pdf.
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Figure 8: Variations of R-IGD and R-HV with respect to an unattainable reference point zr1 =
(0.2, 0.5)T , an attainable reference point zr2 = (0.6, 0.3)T and a outside reference point zr3 =
(1.1,−0.1)T on ZDT1 problem.

5.2.2 Three-objective Cases

As shown in Fig. 9, we investigate two kinds of reference points for DTLZ1.

• Unattainable reference point zr1 = (0.05, 0.05, 0.2)T : Different from the two-objective case, in
a three-dimensional space, points are distributed in an ambient space where the neighboring
points can be in various directions. This explains the significant fluctuations of R-IGD and
R-HV curves shown in Fig. 9(c). Nevertheless, the point set most relevant to the DM supplied
preference information, i.e., S17, obtains the best R-IGD and R-HV values. Furthermore, we
also notice that the point sets close to the reference point obtain similar R-metric values, e.g.,
S9, S13, S14, S16 and S18 in DTLZ1 get similar R-IGD and R-HV values as shown in Fig. 9(d).

• Attainable reference point zr2 = (0.3, 0.3, 0.2)T : From the results shown in Fig. 9(d), we find
that R-metrics are able to provide a reliable assessment on different point sets. S9, which is
closest to this reference point, obtains the best R-IGD and R-HV values.
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Figure 9: Variations of R-IGD and R-HV with respect to an unattainable reference point zr =
(0.05, 0.05, 0.2)T , an attainable reference point zr = (0.3, 0.3, 0.2)T on DTLZ1 problem.

5.3 Investigations on Problems with Disconnected PFs

Although the investigations in Section 5.2.1 and Section 5.2.2 are based on problems with continuous
PFs, our proposed R-metrics are also effective for problems with disconnected PFs. To validate this
issue, this section chooses ZDT3, whose PF consists of five disconnected segments, for investigation.
Five point sets, S1 to S5 as shown in Fig. 10(a), are respectively sampled from each segment and
zr = (0.5, 0.0)T . In addition, we also plot the transferred point sets, denoted as green circles, for
illustration (the dashed arrow denotes the transfer direction for each point set). From the results
shown in Fig. 10(b), we find that the R-metrics are able to provide a reasonable quality assessment
for problems with disconnected PFs. In particular, S3, which is closest to zr, obtains the best
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R-IGD and R-HV values. Note that the transferred points of S3 still lie on S3 and is indeed closest
to zr. From Fig. 10(a), we find that S4 is also very close to zr, the same for its transferred points.
This explains that its R-metric values are very similar to that of S3. On the other hand, S1, which
is farthest away from zr, obtains the worst R-metric values.

0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

1

z
r

S1

S2

S3

S4

S5

f1

f
2

(a) Population distribution.

1 2 3 4 5
0

0.24

0.48

0.72

0.96

index

R
-I
G
D

v
a
lu
e
s

R-IGD R-HV

0

0.9

1.8

2.7

3.6

4.5

index

R
-H

V
v
a
lu
e
s

(b) zr = (0.5, 0.0)T .

Figure 10: Variations of R-IGD and R-HV with respect to a reference point zr = (0.5, 0.0)T on
ZDT3 problem.

5.4 Investigations on Multiple Reference Points

In practice, the DM might not be sure about his/her exact preference beforehand. The DM would
like to simultaneously explore several ROIs by supplying T (1 < T ≤ |S|) reference points at the
same time. Accordingly, a small modification is required to adapt the R-metrics to this circumstance.
Generally speaking, when there are more than one reference point, the pre-processing procedure
should take each reference point into consideration separately. At first, we use the prescreening
procedure introduced in Section 4.1.1 to remove those dominated solutions from further R-metric
calculation. Afterwards, we apply the k-means [45] algorithm to divide the remaining solutions into
T clusters. Then, each cluster is associated with a reference point closest to its centroid. For each
cluster, we use Step 2 to Step 4 introduced in Section 4.1 to pre-process the points and transfer
them to a virtual position. Finally, we combine all pre-processed points together and evaluate
their R-metric values as a whole. In particular, the worst point for R-HV calculation is chosen as
the nadir point of the worst point for each reference point; for R-IGD calculation, P ∗ needs to be
pre-processed for each reference point separately according to the method introduced in Section 4.1.

To validate the effectiveness of our strategy, we take the example in Fig. 11(a) for investigation.
Here we set two reference points zr1 = (0.2, 0.5)T and zr2 = (0.6, 0.3)T , simultaneously, in the
objective space. Five point set combinations, i.e., (S3, S6), (S1, S2), (S4, S5), (S3, S4), (S6, S7), are
chosen as the candidates for performance assessment. From the results shown in Fig. 11(b), we
find that (S3, S6) obtains the best R-IGD and R-HV values. From Fig. 11(a), we can see that S3

and S6 are in the corresponding ROI of zr1 and zr2 , respectively. In contrast, (S1, S2) obtains the
worst R-metric values. From Fig. 11(a), we find that both S1 and S2 are close to zr1 , but are far
away from zr2 . Therefore, the R-metric values with respect to zr1 can be acceptable, whereas the
R-metric values with respect to zr2 should be significantly bad. This makes its final R-metric values
become the worst. Notice that sometimes DMs tend to use multiple reference points to discretely
approximate the ROI. Therefore, the regions between these supplied reference points are also very
important. From Fig. 11(b), we found that the R-IGD and R-HV values obtained by (S4, S5) and
(S3, S4) are similar and are only inferior to (S3, S6). In contrast, although (S6, S7) has some part
locating in the ROI of zr2 , S7 is far away from zr1 . This makes its R-metric values not as good as
(S4, S5) and (S3, S4). In summary, due to the existence of multiple reference points, a good point
set should have a promising satisfaction for every reference point.
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Figure 11: Variations of R-IGD and R-HV with respect to two different reference point zr1 =
(0.2, 0.5)T and zr2 = (0.6, 0.3)T simultaneously. Index 1 indicates (S3, S6), 2 indicates (S1, S2), 3
indicates (S4, S5), 4 indicates (S3, S4) and 5 indicates (S6, S7).

6 Empirical Studies on Preference-based EMO Algorithms

In this section, we apply our proposed R-metrics to evaluate the performance of the following four
preference-based EMO algorithms. Notice that all multi-objective optimizers use reference points
to articulate the DM’s preference information, and all of them, except g-NSGA-II, are capable of
handling more than one reference point. Here we choose the classic ZDT and DTLZ test suites
as benchmark problems. For R-IGD computation, similar to Section 5, we at first sample 10,000
points from the corresponding PF. Then, points located in the ROI (∆ is set as 0.2) are used to
form P ∗.

1. r-MOEA/D-STM [46]: It is an extension of our recently proposed MOEA/D variant based on
stable matching model [47]. Different from the original MOEA/D, where the selection of next
parents is merely determined by the ASF value of a solution, MOEA/D-STM treats subprob-
lems and solutions as two sets of agents and considers their mutual-preferences simultaneously.
In particular, the preference of a subproblem over a solution measures the convergence issue,
while the preference of a solution over a subproblem measures the diversity issue. Since the
stable matching achieves an equilibrium between the mutual-preferences between subprob-
lems and solutions, MOEA/D-STM strikes a balance between convergence and diversity of
the search process. In order to incorporate the DM’s preference information into the search
process, we need to specify a population of weight vectors spread around reference points.

2. R-NSGA-II [24]: It is a variant of NSGA-II which modifies the crowding operator based on
the idea of classic reference point based method. More specifically, solutions close to reference
points have a larger chance to survive in the selection procedure. In addition, R-NSGA-II
employs an ε-clearing idea to control the spread of the final obtained solutions in the ROI.

3. g-NSGA-II [48]: It modifies NSGA-II by replacing the Pareto dominance with a new domi-
nance relation, called g-dominance. More specifically, g-dominance uses a reference vector to
represent DM’s desired value for each objective, i.e., aspiration levels. Solutions either satis-
fying all aspiration levels or fulfilling none of the aspiration levels are preferable than those
merely satisfying some aspiration levels.

4. r-NSGA-II [25]: It uses a new dominance relation, called r-dominance, to replace the Pareto
dominance in NSGA-II. When two solutions are non-dominated in terms of Pareto dominance,
the one closer to the reference point is preferable. Moreover, its search behavior is adjusted
by two parameters: one is the non-r-dominance threshold δ that controls the spread of the
obtained solutions; the other is the ASF weight vector that controls the relative importance
of different objectives.
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All multi-objective optimizers use simulated binary crossover (SBX) [49] and polynomial muta-
tion [50] as the reproduction operators. For proof of principle purpose, all four algorithms assume
all objectives are equally important in our empirical studies. Note that although r-MOEA/D-STM,
R-NSGA-II and r-NSGA-II are able to control the spread of obtained solutions, there is no spe-
cific guideline to set the corresponding parameter. Due to the page limit, the parameter settings
and the specifications of reference points for different test instances are given in Section II of the
supplementary file.

6.1 Empirical Studies on Benchmark Problems

Table 1: Comparison results of R-IGD and R-HV values on unattainable reference point.

R-metric Test Instance r-MOEA/D-STM R-NSGA-II g-NSGA-II r-NSGA-II

R-IGD

ZDT1 2.497E-2(3.51E-4) 3.266E-2(2.01E-2)† 3.289E-2(1.27E-4)† 1.103E-1(2.72E-2)†

ZDT2 3.164E-2(7.04E-6)† 4.065E-2(1.86E-2)† 1.633E-3(4.83E-4) 1.229E-1(1.37E-2)†

ZDT3 2.231E-2(9.07E-4)† 4.908E-2(3.50E-2)† 5.814E-3(5.19E-4) 2.580E-1(1.98E-1)†

ZDT4 2.462E-2(5.85E-6) 5.572E-2(3.50E-2)† 3.587E-2(4.07E-3)† 2.961E-1(1.01E-1)†

ZDT6 3.701E-2(2.24E-2) 1.583E-2(1.18E-2) 1.879E-2(8.60E-3)† 1.084E-1(2.75E-2)†

DTLZ1 4.242E-2(2.00E-3) 1.033E-1(1.65E-2)† 1.456E+2(1.59E+2)† 2.890E+1(1.31E+1)†

DTLZ2 3.517E-2(3.47E-4) 8.163E-2(2.25E-3)† 3.959E-2(1.02E-2) 5.481E-2(1.03E-2)†

DTLZ3 3.724E-2(1.72E-3) 8.465E-2(4.36E-3)† 2.047E+2(7.25E+1)† 1.755E+2(5.79E+1)†

DTLZ4 5.285E-2(7.93E-2) 1.209E-1(1.00E-1)† 3.583E-2(8.61E-3) 1.189E+0(2.28E-16)†

DTLZ5 1.712E-1(2.15E-5)† 1.863E-1(1.02E-2)† 1.699E-1(1.38E-3) 2.957E-1(5.76E-2)†

DTLZ6 2.669E-1(5.89E-3) 4.395E-1(2.54E-2)† 2.819E+0(5.43E-1)† 6.450E+0(9.43E-1)†

DTLZ7 1.915E+0(5.19E-4)† 1.894E+0(1.56E-1)† 1.874E+0(6.52E-5) 2.095E+0(1.24E-1)†

R-HV

ZDT1 4.0304(2.62E-3) 4.0317(1.00E-1) 3.9972(6.79E-4) 3.6857(1.02E-1)†

ZDT2 3.7614(1.03E-4)† 3.6432(1.05E-1)† 3.8954(3.38E-3) 3.3403(6.85E-2)†

ZDT3 3.7994(3.34E-3)† 3.7314(1.41E-1)† 3.8945(4.68E-3) 3.1460(5.22E-1)†

ZDT4 4.0329(4.10E-5) 3.9258(1.64E-1) 3.9846(1.77E-2)† 3.1770(2.56E-1)†

ZDT6 4.2267(1.03E-1)† 4.3625(6.18E-2) 4.3317(2.27E-2)† 4.0107(1.27E-1)†

DTLZ1 7.8684(2.18E-2) 6.5847(6.00E-2)† 0† 0†

DTLZ2 7.4370(1.09E-2) 6.6173(3.30E-2)† 7.4063(1.21E-1) 7.1551(1.68E-1)†

DTLZ3 7.4226(1.72E-2) 6.5847(6.00E-2)† 0† 0†

DTLZ4 7.3139(5.42E-1) 6.3934(6.23E-1)† 7.4486(9.56E-2) 1.7280(4.56E-16)†

DTLZ5 5.3916(2.73E-4)† 5.1611(1.33E-1)† 5.5771(2.12E-2) 4.3066(3.43E-1)†

DTLZ6 4.5685(5.87E-2) 3.6037(1.22E-1)† 0.0417(6.83E-2)† 0†

DTLZ7 7.6506(4.36E-3)† 7.8907(1.04E+0)† 7.9993(3.93E-4) 6.3770(8.25E-1)†

† denotes the best mean metric value is significantly better than the others according to the Wilcoxon’s rank sum test at a
0.05 significance level. – indicates all obtained solutions are dominated by the other counterparts, and thus no useful solution
can be used for R-metric computation.

Each algorithm is performed 31 independent runs, and the R-metric values for two different
reference point settings are respectively given in Table 1 and Table 2. In particular, the best mean
metric values are highlighted in bold face with gray background, and the Wilcoxon’s rank sum test
at a 0.05 significance level is used to compare the statistical significance of the difference between the
best mean metric value and the others. To have a visual comparison, we also plot the final solutions
obtained by different algorithms having the best R-IGD value. Due to the page limit, they are
presented in Section III of the supplementary file. In the following paragraphs, we will separately
discuss the effectiveness of the R-metrics for evaluating the performance of different algorithms on
problems with continuous and disconnected PFs.

6.1.1 Problems with continuous PFs

ZDT1 and ZDT2 are two relatively simple test instances, where all four algorithms do not have too
much difficulty in finding solutions around the DM supplied reference points. However, as shown in
Fig. 3(d) and Fig. 4(d) of the supplementary file, the convergence of solutions found by r-NSGA-II is
not satisfied enough. This makes most of its obtained solutions be trimmed during the prescreening
step of the R-metric calculation. Accordingly, its R-IGD and R-HV values are the worst among all
four algorithms. As for r-MOEA/D-STM and g-NSGA-II, their performance is visually similar on
finding preferred solutions for ZDT1 and ZDT2. However, the R-IGD and R-HV values obtained
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Table 2: Comparison results of R-IGD values on attainable reference point.

R-metric Test Instance r-MOEA/D-STM R-NSGA-II g-NSGA-II r-NSGA-II

R-IGD

ZDT1 1.930E-2(3.08E-4)† 3.340E-2(1.39E-2)† 4.294E-3(1.81E-4) 1.408E-1(3.22E-2)†

ZDT2 1.839E-2(2.66E-3)† 3.389E-2(1.59E-2)† 2.540E-3(2.18E-4) 1.650E-1(3.41E-2)†

ZDT3 3.062E-2(1.28E-4)† 5.188E-2(2.51E-2)† 2.013E-2(1.25E-3) 1.604E-1(3.15E-1)†

ZDT4 1.921E-2(1.55E-5) 4.171E-2(1.96E-2)† 4.904E-2(3.34E-2)† 6.080E-1(1.64E-1)†

ZDT6 4.181E-2(9.61E-3)† 2.570E-2(1.17E-2) 3.761E-2(2.56E-4)† 1.458E-1(9.44E-2)†

DTLZ1 2.650E-2(1.46E-3) 7.121E-2(8.65E-3)† – 2.430E+1(1.28E+1)†

DTLZ2 3.452E-2(2.69E-4) 6.454E-2(2.74E-3)† 4.052E-2(1.23E-2) 1.127E-1(0.00E+0)
DTLZ3 3.528E-2(6.55E-4) 9.186E-2(6.09E-3)† – 1.711E+2(6.58E+1)†

DTLZ4 3.442E-2(2.96E-4) 9.879E-2(9.02E-2)† 4.411E-2(1.14E-2)† 7.090E-1(0.00E+0)†

DTLZ5 9.413E-2(1.07E-5) 1.030E-1(3.37E-3)† – 2.356E-1(5.88E-3)†

DTLZ6 2.034E-1(1.22E-2) 2.145E-1(9.18E-3)† – 6.795E+0(1.61E+0)†

DTLZ7 2.966E+0(3.02E-5)† 2.943E+0(5.65E-2)† 2.889E+0(2.30E-2) –

R-HV

ZDT1 4.4556(1.45E-3)† 4.3811(8.22E-2)† 4.5390(1.13E-3) 3.9142(9.69E-2)†

ZDT2 4.4803(1.30E-2)† 4.4341(1.03E-1)† 4.6128(2.60E-3) 3.9003(1.13E-1)†

ZDT3 3.9489(9.07E-4)† 3.8572(1.10E-1)† 3.9523(5.21E-3) 3.6101(7.44E-1)†

ZDT4 4.4578(7.99E-5) 4.3182(1.02E-1)† 4.3038(1.90E-1)† 2.7377(3.82E-1)†

ZDT6 4.0521(2.73E-2) 4.0679(7.44E-2) 3.9975(1.23E-3)† 3.6650(3.00E-1)†

DTLZ1 10.0644(8.30E-3) 9.3869(1.81E-1)† – 0†

DTLZ2 10.3015(1.18E-1) 9.4999(6.15E-2)† 10.2106(3.66E-3)† 8.8212(0.00E+0)†

DTLZ3 10.2039(7.15E-3) 9.1023(8.38E-2)† – 0†

DTLZ4 10.2343(1.33E-1) 9.2082(6.68E-1)† 10.2119(3.49E-3) 4.9130(9.11E-16)†

DTLZ5 8.6172(2.11E-4) 8.4080(5.82E-2)† – 6.9070(4.12E-2)†

DTLZ6 7.9238(1.12E-1) 7.1421(7.99E-2)† – 0†

DTLZ7 9.9382(3.03E-4)† 10.0296(4.71E-1)† 10.6224(1.90E-1) –

† denotes the best mean metric value is significantly better than the others according to the Wilcoxon’s rank sum test at a
0.05 significance level. – indicates all obtained solutions are dominated by the other counterparts, and thus no useful solution
can be used for R-metric computation.

by g-NSGA-II are better than r-MOEA/D-STM in 6 out of 8 comparisons. Let us look at Fig. 3(a)
and Fig. 3(c) of the supplementary file, for the unattainable reference point, all solutions found
by r-MOEA/D-STM well converge to the PF whereas some solutions found by g-NSGA-II are not
fully converged. In this case, the R-metric values obtained by r-MOEA/D-STM are better than
g-NSGA-II. For the other three cases (i.e., ZDT1 with an attainable reference point and ZDT2
with both unattainable and attainable reference points), although solutions found by r-MOEA/D-
STM well converge to the PF, their overall distributions deviate from the ROI a bit. In contrast,
solutions found by g-NSGA-II not only converge to the PF, but also have a well concentration on
the ROI. Therefore, it should be preferable and our proposed R-metrics also make a reasonable
assessment. ZDT4 has the same PF shape as ZDT1, but it is more difficult due to the presence of
many local optima. All algorithms, except r-MOEA/D-STM, cannot find solution fully converge to
the PF. Accordingly, r-MOEA/D-STM obtains the best R-metric values among all four algorithms.
r-NSGA-II obtains the worst R-metric values since it only finds solutions close to the unattainable
reference point. ZDT6 has a concave PF shape and a biased distribution in the search space. It is
interesting to note that although the solutions found by r-MOEA/D-STM not only well converge
to the PF but also have a uniform distribution, the R-metric values obtained by r-MOEA/D-STM
are not as good as R-NSGA-II and g-NSGA-II. This might be explained as the representative point
found by r-MOEA/D-STM is inferior to that found by R-NSGA-II and g-NGSA-II. In this case, the
solution transfer step of the R-metric calculation can transfer the solutions found by r-MOEA/D-
STM to a farther position. Due to the poor convergence property, the R-metric values obtained by
r-NSGA-II is still the worst.

The PF of DTLZ1 is a simplex having an intercept of 0.5 at each coordinate. Due to the presence
of 115−1 local PFs, DTLZ1 causes difficulties for an EMO algorithm in reaching the global PF. From
Fig. 7 of the supplementary file, only r-MOEA/D-STM well approximates the ROIs. Accordingly,
it obtains the best R-metric values. It is interesting to note that solutions found by R-NSGA-II
seem to have a nice concentration on the DM supplied reference points, but their spreads are too
narrow. In contrast, neither g-NSGA-II nor r-NSGA-II finds any reasonable solution. DTLZ2 is
a relatively simple test instance, where all four algorithms do not have much difficulty in finding
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solutions close to the ROIs. As shown in Fig. 8 of the supplementary file, it is clear that solutions
found by r-MOEA/D-STM are preferable than the other candidates. Accordingly, its obtained R-
metric values are also the best. Although solutions found by R-NSGA-II well converge to the PF,
their spreads are too narrow. This explains its unsatisfied R-metric values. DTLZ3 has the same PF
shape as DTLZ2, but is with 310− 1 local PFs. From Fig. 9 of the supplementary file, it is obvious
that g-NSGA-II and r-NSGA-II have some difficulties in converging to the PF. Thus their R-metric
values are extremely poor. In contrast, solutions found by r-MOEA/D-STM and R-NSGA-II are
similar to those in DTLZ2. DTLZ4 also has the same PF shape as DTLZ2, but it has a strong
bias towards f3 − f1 plane. From Fig. 10 of the supplementary file, we can see that solutions
found by r-MOEA/D-STM are significantly better than the other three algorithms. Accordingly,
its R-IGD and R-HV values are the best. DTLZ5 and DTLZ6 are two degenerate problems, where
the latter one has a strong bias away from the PF. From Fig. 11 of the supplementary file, we
find that solutions obtained by r-MOEA/D-STM are preferable since they converge well to the PF
and have a good approximation to the ROIs. Accordingly, its obtained R-metric values are also
the best among four algorithms. Although solutions found by R-NSGA-II converge well to the PF,
their spreads are too narrow. For DTLZ6, all four algorithms have difficulties in converging to the
PF. Solutions found by r-MOEA/D-STM seem to be closer to the PF and have a wide spread.
Accordingly, it obtains the best R-metric values.

Table 3: Comparisons of R-IGD and R-HV values on DTLZ2 with 5 and 10 objectives.

R-metric # of objectives r-MOEA/D-STM R-NSGA-II g-NSGA-II r-NSGA-II

R-IGD
m = 5 2.155E-1(9.61E-3) 3.861E-1(3.39E-3)† 4.012E+0(6.72E-1)† 2.995E+0(5.65E-1)†

m = 10 5.924E-1(2.44E-2)† 4.609E-1(4.44E-3) – 3.731E+0(8.41E-1)†

R-HV
m = 5 27.4088(6.58E-1) 15.1592(1.25E-1)† 0.0058(1.53E-2)† 0.1646(3.64E-1)†

m = 10 1054.1653(5.41E+1) 1105.4065(4.61E+1)† – 3.9650(1.03E+1)†

† denotes the best mean metric value is significantly better than the others according to the Wilcoxon’s rank sum test at a
0.05 significance level.

6.1.2 Problems with disconnected PFs

After the empirical studies on problems with continuous PFs, this subsection investigates the effec-
tiveness of our proposed R-metrics on two problems with disconnected PFs. For ZDT3, as shown in
Fig. 13 of the supplementary file, all four algorithms are able to find solutions close to the reference
points, but those found by g-NSGA-II are visually better where most solutions converge to the
PF and the spread is satisfactory. Accordingly, the R-metric values obtained by g-NSGA-II are
better than the other three algorithms. For DTLZ7, as shown in Fig. 14 of the supplementary file,
although solutions found by r-NSGA-II have a well focus on the ROIs, they are away from the PF.
This explains its poorest R-metric values. All the other three algorithms find some solutions on
the PF segments outside the ROIs. In particular, solutions found by r-MOEA/D-STM spread over
all four PF segments, while those found by g-NSGA-II are the visual best as shown in Fig. 14 of
the supplementary file. Accordingly, g-NSGA-II obtains the best R-IGD and R-HV values on both
unattainable and attainable reference points.

6.2 Empirical Studies on Many-objective Problems

Recently, problems with more than three objectives have become one of the hottest topics in EMO.
Due to the expansion of the objective space in size, many-objective problems cause several chal-
lenges to the traditional EMO algorithm design. For example, the mushrooming of non-dominated
solutions in a population significantly weaken the selection pressure of Pareto-based EMO methods,
and the sparse distribution of a limited number of solutions in a high-dimensional space makes
the density estimation and diversity management become even more difficult than the two- and
three-objective cases. As discussed in [51], instead of searching for the whole PF, finding a pre-
ferred subregion satisfying the DM’s preference information is more practical in many-objective
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optimization.
In this section, we investigate the scalability of R-metrics for quantitatively assessing the quality

of a preferred solution set in a high-dimensional space. DTLZ2 with 5 and 10 objectives are chosen
as the test instances. The reference point is set as zr = (0.1, 0.3, 0.2, 0.4, 0.2)T for the 5-objective
test instance, and zr = (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45)T for the 10-objective case.
For the R-IGD calculation, we employ the method suggested in [51] to sample 101,270 points from
DTLZ2’s PF in the 5-objective case, and 3,124,550 points in the 10-objective case. Moreover, ∆
is increased to 0.5 in the R-metric computation due to the sparse distribution of solutions in a
high-dimensional space. For preference-based EMO algorithms, all parameters are kept the same
as Section 6, except the number of function evaluations. Specifically, it is set as 80,000 and 150,000
for the 5- and 10-objective case respectively. Table 3 shows the comparisons of R-metric values and
the parallel coordinates of the populations with the medium R-IGD value are plotted in Fig. 15
and Fig. 16 of the supplementary file. In particular, the red dotted line represents the reference
point. From the results shown in these two figures, it is clear that g-NSGA-II and r-NSGA-II are the
worst optimizers. This observation is also confirmed by their worst R-IGD and R-HV values. Both
r-MOEA/D-STM and R-NSGA-II are able to find solutions around the ROIs. However, solutions
found by R-NSGA-II almost concentrate on the reference point, while those found by r-MOEA/D-
STM have a wider spread. This explains the better R-HV values obtained by r-MOEA/D-STM in
these two test instances.

6.3 Further Investigations

In this section, we further investigate some other interesting properties of R-metrics. ZDT1 and
DTLZ2 are chosen as the test instances, since all four EMO algorithms have no difficulty on solving
them. For each test instance, we keep a record of R-IGD and R-HV values of an intermediate
population every 10 consecutive generations. Fig. 17 of the supplementary file plots the variations
of R-IGD and R-HV values versus the number of generations on ZDT1 with zr = (0.3, 0.4)T .
From this figure, we find that all algorithms, except r-NSGA-II, converge to their optimal R-IGD
and R-HV values within a few generations. In contrast, the R-metric trajectories of r-NSGA-
II grow slowly with the number of generations. Fig. 18 of the supplementary file plots some
intermediate populations for different algorithms. From these four subfigures, we find that r-NSGA-
II approximates the preferred region in a layer-wise manner while the other three algorithms converge
to the preferred region rapidly (with around 100 generations). These observations are in accord with
the corresponding R-metric trajectories. For DTLZ2, we have a similar observation. As shown in
Fig. 19 of the supplementary file, the R-metric trajectories of r-MOEA/D-STM and R-NSGA-
II converge to a stable value within a few generations. These observations are also validated by
the plots of intermediate populations in Fig. 20(a) and Fig. 20(b) of the supplementary file. As
for g-NSGA-II, we also notice some fluctuations in its R-metric trajectories. This observation is
also in line with the fluctuations of the evolutionary population as shown in Fig. 20(c) of the
supplementary file. The R-metric trajectories of r-NSGA-II are rather rugged. From Fig. 20(d) of
the supplementary file, we find that the intermediate populations of r-NSGA-II vibrate significantly
during the search process.

From the above experiments, we have another interesting observation that some algorithms do
not need the predefined number of generations to find preferred solutions. For example, as shown
in Fig. 18(a) and Fig. 20(a) of the supplementary file, r-MOEA/D-STM only uses around 100
generations to converge to the preferred region for ZDT1 and around 80 generations for DTLZ2.
Furthermore, an algorithm almost converges to the preferred region when the R-metric trajectories
become stable. Based on these observations, we keep a record of the standard deviations of the R-
IGD and R-HV values obtained by different algorithms for every 10 and 25 consecutive generations.
In addition, we set two thresholds τ = 0.1 and τ = 0.01 and to see how many generations an
algorithm needs to have a R-metric’s standard deviation less than τ . From the empirical results
shown in Table III of the supplementary file, we observe that the standard deviation of R-IGD
can be reduced to the given thresholds when the time window is set to 10 generations. More
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interestingly, the number of generations that makes the standard deviation of R-IGD reduce to 0.01
is similar to the required budgets of the corresponding algorithm converges to the preferred region.
Moreover, we also notice that the standard deviation of R-HV cannot always be reduced to the
given thresholds on DTLZ2. However, if we extend the time window to 25 generations, even the
standard deviation of R-IGD cannot drop down to the expected thresholds in many cases. From
this experiment, we find that our proposed R-metrics are not only reliable metrics to evaluate the
performance of a preference-based EMO algorithm, more interestingly, the variation of a certain
R-metric (e.g., R-IGD with a time window of 10 generations and standard deviation’s threshold
τ = 0.1) can be used as a stopping criterion in searching for a preferred solution set.

6.4 Influence of ∆
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Figure 12: Variations of R-metric values for different ∆.

As described in Section 4, ∆ represents the DM’s expectation of the ROI’s relative extent com-
paring to the whole PF. It is also used to trim the irrelevant solutions for the R-metric calculation.
A large ∆ means that the DM prefers solutions having a wide spread, while a small ∆ indicates that
the the DM prefers solutions having a good concentration on the ROI. This section takes ZDT1
as an example to investigate the influence of ∆ on R-metric values, where ∆ varies from 0.1 to
1.0 with an increment of 0.1. Fig. 12 shows the variations of R-metric values obtained by four
preference-based EMO algorithms for different ∆.

Let us start from zr = (0.3, 0.4)T . As shown in Fig. 12(a), the R-IGD value obtained by R-
NSGA-II is worse than r-MOEA/D-STM and g-NSGA-II when ∆ is small. But it becomes the best
in case ∆ is larger than 0.2. Moreover, the R-IGD value obtained by r-NSGA-II is the worst when
∆ is small. However, when ∆ is larger than 0.4, the R-IGD values obtained by r-MOEA/D-STM,
g-NSGA-II and r-NSGA-II are almost the same. Let us refer to Fig. 3 of the supplementary file, as
for zr = (0.3, 0.4)T , solutions found by R-NSGA-II and r-NSGA-II have a wider spread than those
of r-MOEA/D-STM and g-NSGA-II. If the DM expects the ROI to be concentrated on his/her
provided reference point, i.e., ∆ is set to be small, solutions found by r-MOEA/D-STM and g-
NSGA-II are preferable. Accordingly, the R-metric values obtained by the previous two algorithms
should be better. On the flip side, if the DM expects the ROI to be widely spread, i.e., ∆ is set
to be large, solutions found by r-MOEA/D-STM and g-NSGA-II are not satisfactory any longer.
Even though the solutions found by R-NSGA-II and r-NSGA-II are not well converged, their wide
spread meet the DM’s expectation and provide him/her more choices. This explains their better
R-metric values when ∆ becomes large. As for zr = (0.65, 0.3), since solutions found by g-NSGA-II
not only well converge to the PF, but also have a wide spread around the DM supplied reference
point, its R-metric values are constantly better than the other competitors. In contrast, although
solutions obtained by R-NSGA-II still have a wide spread along the PF, their convergence is poor.
Therefore, the R-metric values of R-NSGA-II are worse than g-NSGA-II.

It is worth noting that although some preference-based EMO algorithms (e.g., [24], [25] and [46])
claim to be able to control the ROI’s extent by setting an appropriate parameter, to the best of
our knowledge, there is no rule-of-thumb to set the corresponding parameter. We believe that ∆,
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used in the R-metric calculation, is able to provide a general guideline to tune the corresponding
parameters in a posterior manner.

7 Conclusions and Future Works

Given the DM’s preference information, approximating a partial and preferred PF, rather than
the whole PF, has been one of the most important topics in the modern EMO research. Besides
developing effective algorithms that drive solutions towards the ROI, how to evaluate the quality
of a set of preferred trade-off solutions is of the same importance but has rarely been studied in
this literature. In this paper, we presented a systematic way to evaluate the quality of a set of
preferred solutions obtained by a preference-based EMO using reference points. More specifically,
we pre-process the preferred solutions, according to a MCDM approach, before using a regular
metrics for performance assessment. In particular, according to the DM’s expectation of the ROI’s
extent, our proposed R-metric has a trimming procedure that penalizes the population diversity of a
preferred solution set having an excessive extent. Furthermore, inspired by the ASF-based ranking
from the MCDM literature, our proposed R-metric has a transferring procedure that transfers
the preferred trade-off solutions to a virtual position according to their satisfaction degree to the
DM supplied preference information. Extensive experiments on several artificial scenarios and
benchmark problems fully demonstrate the efficacy of our proposed R-metrics for evaluating the
quality of a preferred solution set according to the DM supplied preference information.

This work is a very first attempt to systematically and quantitatively evaluating the quality of a
preferred solution set. Much more attention and effort should be required on this topic. In future,
we want to explore the following issues:

1. Note that there is no single way of expressing the DM’s preference information, so we may
not be able to expect a universal way for performance assessment. This paper assumes that
the DM’s preference information is expressed in terms of a reference point. However, there
exist other types of preferences to which our proposed R-metric may not be directly useful.
To solve this drawback, one may consider the method presented in [52] to adapt the R-metric
to other types of preferences.

2. As described in Section 4.2, the setting of ∆ assumes the objective space is normalized to [0, 1].
However, in practice, this assumption might not always hold. It is interesting to investigate
other method to specify the DM’s expectation of the relative extent of ROI with respect to
objectives in different scales.

3. To avoid wasting computational resources and to examine the formal convergence and opti-
mality achieved by an EMO algorithm, the research on the online stopping criteria (OSC) has
obtained increasing popularity. Empirical studies in Section 6.3 shows a simple application
of our proposed R-metrics for designing OSC. Nevertheless, more sophisticated and advanced
techniques [53] are worth being studied in future.

4. In addition to the empirical studies, it is of importance to have a rigorous analysis of the
optimal archive with respect to the R-metric. This is not only useful for better understanding
the behavior of R-metric itself, but also for providing foundations in the case of using the
R-metric to design an indicator-based algorithm in future.
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