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Abstract 

Natural habitats are exposed to an increasing number of environmental stressors that cause 

important ecological consequences. However, the multifarious nature of environmental 

change, the strength and the relative timing of each stressor largely limit our understanding of 

biological responses to environmental change. In particular early response to unpredictable 

environmental change, critical to survival and fitness in later life stages, is largely 

uncharacterized. Here, we characterize the early transcriptional response of the keystone 

species Daphnia magna to twelve environmental perturbations, including biotic and abiotic 
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stressors. We first perform a differential expression analysis aimed at identifying differential 

regulation of individual genes in response to stress. This preliminary analysis revealed that a 

few individual genes were responsive to environmental perturbations and they were 

modulated in a stressor and genotype-specific manner. Given the limited number of 

differentially regulated genes we were unable to identify pathways involved in stress 

response. Hence, to gain a better understanding of the genetic and functional foundation of 

tolerance to multiple environmental stressors we leveraged the correlative nature of networks 

and performed a weighted gene co-expression network analysis. We discovered that 

approximately one third of the Daphnia genes, enriched for metabolism, cell signalling and 

general stress response, drives transcriptional early response to environmental stress and it is 

shared among genetic backgrounds. This initial response is followed by a genotype and/or 

condition-specific transcriptional response with a strong genotype by environment 

interaction. Intriguingly, genotype and condition- specific transcriptional response is found in 

genes not conserved beyond crustaceans, suggesting niche-specific adaptation. 

 

Introduction 

Natural habitats are under increasing threat from human activity, with pronounced ecological 

consequences (Hoffmann & Sgro 2011; Hofmann & Todgham 2010). However, the 

multifarious nature of environmental change (Gunderson et al. 2016) as well as the relative 

timing of each stressor (Vincenzi 2014) represent major obstacles to our understanding of 

biological responses to environmental change. Traditionally, biological studies subject 

organisms to constant and severe experimental stress conditions (Hofmann & Todgham 2010; 

Somero 2012). However, environmental parameters fluctuate on multiple timescales, from 

hours to months and years. Moreover, the intensity of stress events may vary considerably, 

especially between biotic and abiotic perturbations. The evolutionary success of organisms 
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resides is their capacity to keep pace with environmental conditions that change over short as 

well as long periods (Vincenzi 2014), and in their ability to cope with multiple stressors, 

which depends on the magnitude and relative timing of each stressor. Understanding these 

complex dynamics is essential for assessing organismal performance under prevailing 

conditions and under human-induced environmental change (e.g. Boyd et al. 2015) 

To cope with changes in the environment, organisms must respond during and immediately 

after environmental perturbations (Wingfield 2013). Especially for short term responses 

ranging from hours to days, early response is critical to survival and fitness in later life stages 

(Brooks et al. 2011). Early response to environmental perturbations requires a fine tuning of 

the molecular machinery regulating physiological and behavioural responses. Early response 

genes maximize resource utilization while maintaining structural and genetic integrity by 

repairing and minimizing damage to cellular structure (Huisman & Kolter 1994; Ram et al. 

2005). Genes interacting with the environment generally return to their original expression 

level after an initial acclimation phase (Eng et al. 2010). Because a large proportion of 

studies does not focus on this early modulation phase (but see studies on temperature of 

maximum tolerance: Geerts et al. 2015; Hofmann & Todgham 2010; Somero 2010), the 

modulation of mRNA in early response to environmental stress is largely uncharacterized. 

Conversely, environmental perturbations are most commonly studied in the context of 

organisms life cycle [e.g. tadpoles (Leduc et al. 2015), mice (Jangiam et al. 2015), marine 

algae (Zou et al. 2015), and plants (Kim et al. 2015)] or to uncover the mode of action of 

lethal concentrations of toxicants [e.g. fish (Techer et al. 2015), frogs (Mardirosian et al. 

2015), bivalves (Larguinho et al. 2014), copepods (Overjordet et al. 2014), snails (Khalil 

2015) crustaceans (Tang et al. 2015), and plants (Keunen et al. 2015), (Fu et al. 2014)].  

Although the response to simultaneous stressors generally leads to more complex scenarios 

than responses to single stressors (Holmstrup et al. 2010; Rejeb et al. 2014), the analysis of a 
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wide range of single stressors is the first critical step in the identification of defence 

mechanisms pathways that may be shared among stressors, leading to a better understanding 

of cross-tolerance mechanisms (Perez & Brown 2014). In addition, stress responses can vary 

substantially between genotypes as plasticity in gene expression, i.e. variation in expression 

of a gene in response to stress, is known to be at least partly heritable and can be affected by 

natural selection (Whitehead & Crawford 2006). Understanding variation in stress response 

among genotypes is a prerequisite to our understanding of adaptive evolution in nature. 

 

Here, we investigate the early transcriptional response of three genotypes of the branchiopod 

crustacean Daphnia magna to a suite of environmental perturbations, including six biotic and 

six abiotic stressors. These stressors and their intensity represent either biotic ecologically 

relevant perturbations encountered in the natural environment or abiotic perturbations found 

in human-impacted environments.  

Daphnia are freshwater grazers renowned as ecotoxicological models (Colbourne et al. 2005; 

Miner et al. 2012) and central to virtually all inland lentic aquatic habitats (Miner et al. 

2012). As filter feeders these small crustaceans are exposed to numerous environmental 

insults to which they respond via physiological, microevolutionary or genetic mechanisms 

(e.g. Decaestecker et al. 2007; Latta et al. 2012; Orsini et al. 2012; Yampolsky et al. 2014). 

Daphnia has a parthenogenetic life cycle that allows the rearing of populations of genetically 

identical individuals (clones) from a single genotype, providing the advantages of isogenic 

model organisms while retaining the natural genetic variation (Miner et al. 2012). 

Capitalizing on the ability to maintain isoclonal lines in the laboratory, we exposed 

populations of three D. magna genotypes to twelve environmental perturbations lasting 

maximum 24 hours to capture the early transcriptional response to environmental 

perturbations via genome-wide transcriptional profiling.  
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We identified a few individual genes responsive to environmental perturbations and these 

were modulated in a genotype-specific manner. Leveraging a gene co-expression network 

analysis, we were able to link clusters of genes of unknown function to genes with known 

function and a range of environmental perturbations. Many of the identified clusters of genes 

were co-expressed across the environmental conditions surveyed and/or the genotypes 

analysed. With evidence of shared networks among conditions and/or genotypes we 

identified the biological roles of hundreds of genes in stress response of a key grazer of the 

aquatic community. Intriguingly, highly responsive networks of genes to environmental 

perturbations were less conserved beyond crustaceans than genes overall. This finding 

indicates that these genes may be broadly associated with crustacean-specific adaptation to 

environmental stress.  

 

Materials and Methods 

Study species  

The cladoceran D. magna is a keystone species present in virtually all lentic ecosystems. This 

species has a parthenogenetic life cycle that allows the rearing of populations of genetically 

identical individuals (clones) from a single genotype. For the present study we used two 

natural and a recombinant genotype obtained from the crossing of the first two. The two 

natural genotypes were collected from a system of ephemeral rock pools from the northern 

distributional range of the species (Xinb3, South west Finland 59.833183, 23.260387) and a 

fish-rearing pond in Southern Germany (Iinb1, Germany, 48.206375, 11.709727), 

respectively. The Xinb3 genotype was the result of three generations of selfing, and the Iinb1 

strain was selfed for one generation, leading to a predicted 87.5 and 50% reduction in their 

original level of heterozygosity, respectively. The recombinant line is an F2 laboratory strain 
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part of a mapping panel supporting research on the genetic basis of adaptive traits in D. 

magna (Routtu et al. 2014). The genotypes will be hereafter referred to as: X - Xinb3, I - 

Iinb1 and XI – recombinant. The X and I genotypes were previously used to generate ‘omics’ 

resources for D. magna. More specifically, the X genotype was used to generate a reference 

genome (NCBI accession number: LRGB00000000), whereas the X and I RNA-Seq data 

were previously used to generate a reference transcriptome (Orsini et al. 2016). Here, we use 

the available RNA-Seq data previously for X and I as well as the newly generated RNA-Seq 

data for the XI genotype to investigate transcriptional response across stressors and 

genotypes.   

 

Experimental design 

The three genotypes were distributed for environmental exposures between two laboratories 

of the Stressflea consortium (ESF EUROCORES Programme EuroEEFG, Grant 09-EEFGFP-

040) that studies mechanisms of adaptation to environmental stress using Daphnia as model 

species. X and I genotypes were exposed to five biotic and one abiotic perturbations: 

vertebrate (FI, 19 sticklebacks in 100L water) and invertebrate predation (TR, 1 adult Triops 

in 2L water), parasites (PA, 40,000 Pasteuria ramosa spores/mL), crowding (CR, 100 

individuals/250 mL), the methylcarbamate insecticide Carbaryl (CA, 8µg/L), microcystin-

producing (BX) and microcystin - free (BN) cyanobacteria. Perturbation from cyanobacteria 

was obtained by feeding Daphnia with a toxic (Cyanobacteria, strain MT50) and a non-toxic 

strain of Microcystis aeruginosa (strain CCAP 1450/1) (Lemaire et al. 2012). The 

recombinant genotype XI was exposed to five abiotic perturbations: Cadmium (CD, 6 µg/L), 

Lead (PB, 278 µg/L), low pH (5.5), Sodium Chloride (NaCl, 5g/L), and UV radiation (UV, 

30 W, 36-inch Reptisun 5.0 UV-B fluorescent light bulbs). Overall the exposures cover a 
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wide range of environmental perturbations that Daphnia is exposed to in the natural 

environment, including human-impacted habitats.  

 

The exposures of the X and I genotypes were completed over two days. For each day a 

control (no stress imposed) was run in parallel to the environmental perturbations. Each 

treatment, including controls, was performed on three biological replicates and for each 

replica we obtained genome-wide transcription profiling. The environmental perturbations for 

the X and I genotypes and the UV exposures for the XI genotype were 4-hours long, whereas 

the remaining exposures were 24 hours long. The length of exposure varied with the 

environmental stress tested driven by previous pilot experiments designed to identify realistic 

environmental perturbations encountered in the natural environment. Prior to the exposures to 

environmental perturbations, clonal populations of the three genotypes were synchronized in 

common garden conditions – controlled climate chambers with a fixed long day photoperiod 

(16h light/8h dark) at 20°C- for at least two generations to reduce interference from maternal 

effect. ADaM medium (Aachener Daphnien Medium: Klüttgen et al. 1994) was used as 

growth medium and for the environmental perturbations. The animals were fed daily with 

150,000 cells Scenedesmus obliquus/ml. The first generation was cultured at a density of 10 

individuals/L, and increased to 50 individuals/L in large aquaria in the second generation to 

enable the harvesting of enough animals for the environmental perturbation exposures. The 

second clutch of the second generation was used for exposures to environmental 

perturbations. Five-day old female juveniles randomly chosen from the offspring of the 

second generation of the synchronized animals at a density of 100 juveniles/L were exposed 

to the different environmental treatments. The animal density for the exposures was 

determined following prior literature studies on Daphnia exposures (e.g. Jansen et al. 2011). 
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Up to three investigators performed the environmental exposures and randomly distributed 

the animals from the aquaria to the experimental vials. Exposures to environmental 

perturbations for the two natural strains were conducted at the University of Leuven, 

Belgium. The sequencing for this experiment was performed at the Finnish Institute of 

Molecular Medicine (FIMM, Technology Centre, Sequencing unit) at the University of 

Helsinki. Exposures of the recombinant line were completed at the University of Notre 

Dame, IN, USA. The sequencing data from this experiment were obtained at the JP 

Sulzberger Columbia Genome Center (https://systemsbiology.columbia.edu/genome-center). 

RNA-Seq data were obtained for each treatment and control in triplicates. The quality 

assessment of the RNA-Seq data in terms of reproducibility across the biological replicates 

identified the sample I_BN_r3 (toxic Microcystis treatment for strain I) as an outlier (Orsini 

et al. 2016). I_BN_r3 was excluded from downstream analyses as it obscured any signal from 

both the genotype and the treatment. Once this treatment was excluded replicates per 

treatment clustered as expected (Orsini et al. 2016).  

 

RNA-Seq 

Library construction was performed on three biological replicates following Nextera 

workflow (Illumina) with minor modifications. TruSeq PE Cluster Kit v3 (Illumina, San 

Diego, CA, USA) was used for paired-end sequencing with 101 bp read length and sequenced 

on an Illumina HiSeq2000 platform (TruSeq SBS Kit v3 reagent kit).  

Read sequences were subjected to adapter trimming and quality filtering using Trimmomatic 

ver.0.33 (Bolger et al. 2014). RNA-Seq reads were checked for foreign RNA contamination. 

Human and mouse contaminant sequences were screened and removed by mapping D. magna 

reads onto ncbigno2014-human.rna and ncbigno2014-mouse.rna using bowtie2 ver.2.1.0 

(Langmead & Salzberg 2012). Finally, 80% of the reads for the inbred genotypes and 99% of 
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the reads for the recombinant genotype were retained (Q>20). The cleaned reads were 

mapped onto the reference transcriptome of D. magna obtained from de novo assembly of 

RNA-Seq data (Orsini et al. 2016). These data consisted mostly of the Xinb3 inbred genotype 

data, but also included a subset of data from the Iinb1 genotype and RNA-Seq available in 

public databases for D. magna at the time of the analysis (mostly, Labbe et al. 2009). Details 

on the generation of reference transcriptome and gene models are provided in (Orsini et al. 

2016).  

 

Differential expression analysis 

Reads mapping uniquely to primary gene transcripts were used to measure differential 

expression of individual genes. This approach is suitable also for genes with no location or 

poor match to the D. magna draft chromosome assembly (NCBI accession number: 

LRGB00000000). Differential gene expression was calculated on normalized read counts per 

treatment as compared to a control (no stress) using DEseq2.0 by use of negative binomial 

generalized linear models (Padj=0.01; Love et al. 2014).   

We assessed the conservation beyond crustaceans of genes differentially expressed in 

response to environmental perturbation by quantifying the correlation between fold change - 

no differential expression, 2-fold, 4-fold and 16 - fold expression- and the percentage of 

orthologous genes found in other model species for each category. By partitioning genes in 

categories based on their magnitude of expression after environmental perturbations, we 

separated genes that showed basal expression - no differential expression after any 

perturbation - from genes showing different magnitude of expression under at least one 

environmental perturbation. For each category we identified orthologs in six other model 

species -Daphnia pulex (dpul), Danio rerio (drer), Caenorhabditis elegans (cele), Drosophila 

melanogaster (dmel), Mus musculus (mmus), and Homo sapiens (hsap). This was done using 
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To better contextualize genes of unknown function, we conducted gene modules 

differential analysis on weighted gene co-expression networks using MODA 

(https://bioconductor.org/packages/release/bioc/html/MODA.html; Li et al. 2016) which 

enables the association of individual genes in co-responsive modules (gene clusters). Using 

this approach we identified numerous unannotated genes tightly linked to our differentially 

expressed genes and gained insights into the pathways and the regulatory mechanisms in 

which novel genes participate. This association points to the power of exposure biology for 

the annotation of unknown genes in an ecological context. 

Across all genotypes we discovered 62 modules (Table S2). Of these, 5 (6.45%) are shared 

among the three genotypes whereas the remainder is found uniquely in one of the genotypes 

(Fig. 2). The shared modules include overall 11,698 genes, approximately a third of the total 

genes in D. magna (Orsini et al. 2016), with shared Module #58 (Table S2) including 11,537 

genes. This module is enriched for morphogenesis, cell signalling, development and 

metabolic genes as well as by defence response genes, including oxidative response (Table 

S3). There are in total 47 genotype-specific modules; of these 28 are unique to XI, 11 to I and 

8 to X (Fig. 2). The genotype-specific modules are generally small (< 100 genes) and include 

many unannotated genes (Table S4). Finally, 11 modules (17.7%) are shared between pairs of 

genotypes as follows: Modules #144 and #157 are shared between X and I; Modules #1, #79, 

#106 and #158 are shared between X and XI; Modules #8, #45, #62, #81 and #119 are shared 

between I and XI (Fig. 2). These findings suggest that there may be a hierarchical activation 

of stress response with general mechanisms of response at metabolic and cellular level 

activated as first defence regardless of the genetic background, followed by more specific 

responses that is genotype or treatment specific. We discuss below about the treatment-

specific responses. This implies that whereas a proportion of the transcriptome is shared 

among genotypes, there is an important component of the transcriptome displaying a 
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genotype-by environment (GxE) interaction. Previous studies on Daphnia spp identified a 

large number of responsive genes to environmental perturbations with a significant GxE 

interaction (Colbourne et al. 2011; Yampolsky et al. 2014). Remarkably, more than 60% of 

these ecoresponsive genes were lineage specific and over-represented in the transcriptome of 

the congeneric species D. pulex (Colbourne et al. 2011). With the rapid growth of sequencing 

technology overrepresentation of lineage specific genes has been reported in other species. 

For example, it is found in Caenorhabditis elegans in response to extreme environments 

(Zhou et al. 2015). In general, lineage specific genes have been suggested to be one of the 

principal means of adaptation and one of the most important sources of organizational and 

regulatory diversity in eukaryotes (Lespinet et al. 2002). Intriguingly, we find that responsive 

genes to ecologically relevant environmental perturbations are systematically less conserved 

than genes in general. Around half the genes with strong early transcriptional responses to 

one or more stressors are specific to crustaceans (Fig. 3), and are as-yet functionally 

uncharacterized (Table S4). Of the 1,396 differentially expressed genes identified in our 

study, only 612 (44%) were conserved outside of the Daphnia lineage and possibly 

crustaceans (Fig. 3). This is a small number compared to other metazoans where up to 67% of 

genes have known orthologs in other species (Brown et al. 2014). Hence, our findings 

represent an overall 17 standard deviations from expectation based on other metazoan 

(normal approximation to binomial p-value < 1e-100). We cannot definitively conclude that 

these genes are newly evolved or niche specific as it is likely that any error in the 

transcriptome assembly enriches for the appearance of unconserved genes. However, if we 

condition on genes that are detectably conserved between D. pulex and D. magna using 

information available from the assembled D. magna transcriptome (Orsini et al. 2016) to 

mitigate this source of statistical confounding, we see a striking pattern: the degree of 

induction or suppression of transcript abundance in response to environmental perturbations 
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is inversely correlated with the likelihood of conservation beyond crustaceans (Fig. 3). That 

is, more strongly induced or suppressed genes are systematically less conserved. Remarkably, 

72% of genes that respond 16 fold to at least one assayed perturbation have no orthologues 

outside crustaceans – a dramatic difference compared to the 25% of genes overall having 

known orthologues in other species (p-value < 1e-100; Fig. 3). In summary, our analysis of 

transcriptional response in multiple genotypes of the same species provides insights into 

stress response in different genetic backgrounds, critical to our understanding of tolerance 

and performance in nature (Hofmann & Todgham 2010; Latta et al. 2012; Ramu et al. 2016). 

Our results also confirm previous findings about the overrepresentation of lineage specific 

genes in crustaceans as a potential mechanisms of adaptive response to changing 

environments (Colbourne et al. 2011).  

 

Predictable networks of stress-response genes 

Our first approach to identify stress-specific early transcriptional response was an 

analysis of differential gene regulation. This analysis revealed that only a few individual 

genes were differentially expressed, many of which under abiotic perturbations (Table S1). In 

the following, we first discuss the results of this analysis and then present the results obtained 

leveraging the correlative structure of networks that allowed us to identify co-responsive gene 

clusters shared among and unique to environmental perturbations.   

In total, 1,396 genes were differentially expressed across all treatments and genotypes 

(Table S1). Generally, very few of these genes were shared among environmental 

perturbations (Table S5). More specifically, 75 genes (5.4%) were differentially expressed in 

more than one abiotic treatment (Table S5), whereas only 10 genes (0.7%) were differentially 

expressed in at least one biotic and one abiotic treatment (Table S5). Genes that were 

differentially expressed in multiple treatments did not necessarily change in the same 
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direction across abiotic treatments but consistently changed in the same direction in biotic 

treatments (Table S5).  

 

Under sublethal heavy metal exposure (Pb and Cd) and UV treatments, genes involved in 

nucleotide excision and transcriptionally coupled DNA repair pathways were strongly down-

regulated, and germ cell proliferation was pervasively shut down (Table S1). The most 

strongly induced genes under heavy metal exposure and low pH include glutathione S-

transferases and synthases. Interestingly, the glutathione S-transferases are upregulated 

under heavy metals but appear to be both up and down-regulated under osmotic stress 

(Dapma7bEVm002921t1, Dapma7bEVm010893t1; Table S1). In addition to the well-known 

chitin remodelling response to heavy metals (Bekesiova et al. 2008; Lanfranco et al. 2004; 

Poynton et al. 2007; Wang et al. 2015), mediated by strong up-regulation of genes encoding 

chitinases, cuticle proteins, and cuticle binding proteins (Table S1), we see the activation and 

repression of numerous trypsins and trypsin inhibitors under heavy metals and UV 

treatments. These differentially expressed genes indicate regulation of digestive enzymes and 

associated processes, similarly to reported response in Drosophila melanogaster under heavy 

metal exposure (Brown et al. 2014).  

 

Under metal stress we also observe the down-regulation of early developmental factors: 

several transcription factors and RNA binding proteins. These include the Daphnia ortholog 

of paired (prd) (Dapma7bEVm010730t1, Dapma7bEVm023055t1, Table S1, XI genotype), 

also down-regulated under UV treatment, and the nuclear receptor coactivator, homologous 

to the splicing factor Neosin (Neos) in Drosophila (Dapma7bEVm029191t1, Table S1), 

indicating that both transcriptional and post-transcriptional regulation play a role in 

adaptation to heavy metal exposure. Further, the gene homologous to steroid dehydrogenase 
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(Dapma7bEVm002436t1) linked to the production of 20-Hydroxyecdysone (20E or ecdysone) 

in arthropods (Masuoka & Maekawa 2016) also responds, possibly preceding cuticle 

remodelling, and hence playing a potentially important role in moulting and growth. The 

activation of larval cuticle proteins in insects, including the model organism D. melanogaster, 

has been reported in response to environmental perturbations (Brown et al. 2014). In 

Daphnia spp, body remodelling is a known response to predator cues, in the presence of 

which they become bulkier or produce neck teeth (Laforsch & Tollrian 2004; Stoks et al. 

2016). The pervasive activation of cuticle protein precursors in arthropods in response to 

environmental perturbations prompted us to further examine similarities between genes 

responsive under environmental perturbations in D. magna (present study) and those in D. 

melanogaster (Brown et al. 2014; Stoiber et al. 2016). The fly studies involved chronic 

exposures (48 hours) generally at much higher (highly toxic) doses; hence a large overlap 

was not expected. Consistently, we find a small, but intriguing overlap between the fly 

studies and the present study, including Amylase proximal (Amy-p) and PAR-domain protein 

1 (Pdp1), which were repressed in both species under heavy metal treatments (Table S6). The 

steroid dehydrogenase, repressed in Drosophila, was either repressed under microcystin-

producing cyanobacteria or induced under heavy metals and UV treatment in Daphnia (Table 

S6, CG32369). The overlap in gene expression between Drosophila and Daphnia is 

suggestive of similarity in mechanisms of response to stress. However, functional studies are 

needed to validate these findings and confirm similarities between the two species.  

We found strong down-regulation of SOD1-vtg fusion in response to osmotic (NaCl) and 

oxidative stress (UV-B light), whereas we observed up-regulation of SOD-vtg under Cd, 

carbaryl and both microcystin treatments (Table S1). SOD-vtg is generally expressed in 

diapausing insects (Bi et al. 2014) and crustaceans (Acton 2012 ); hence, the regulation of 

this gene under environmental perturbation indicates a potential alteration of the diapause 
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process by environmental perturbations (e.g. Slusarczyk & Rybicka 2011). In summary, early 

response to abiotic perturbations (UV-B, acidification and osmotic stress) was characterized 

by strong down-regulation of germ cell proliferation and activation of genes regulating either 

cuticle formation involved in moulting and growth or egg formation. These responses 

indicate that, despite the sub-lethal concentrations used reflecting current or realistic 

contamination of human-impacted inland waters, the environmental perturbations are severe 

enough to potentially affect growth, moulting and reproduction. The observation that 

chitinase and cuticle protein synthesis is upregulated under heavy metals suggest that short 

term exposures to metals affect animal fitness via their ability to moult. Further, the silencing 

of SOD1-vtg under osmotic and oxidative stress might indicate that the production of resting 

eggs is impaired or that maturation of the animals is severely delayed, as the production of 

eggs in Daphnia is tightly linked to moulting (Raborn et al. 2016). Further experimental work 

is needed to validate these hypotheses. 

 

As opposed to the abiotic perturbations that provided a number of differentially 

expressed genes with homology in other species, the biotic responses were challenging to 

interpret, as the vast majority of responsive genes to biotic stress lack known conserved 

functional domains (Table S1, X genotype, I genotype). Among the biotic treatments, an 

interesting response was the one to microcystin treatment. Under this treatment, the 

suppression of germ cell proliferation and activation of heat shock factors and antioxidant 

transporters, expected in presence of cell toxicity, was not observed (Table S1). In our 

environmental exposures to microcystin - producing and microcystin - free cyanobacteria, we 

observe a typical stress response caused by poor food quality rather than by the presence of 

toxins; we observe the activation of digestive enzymes (Table S1). The absence of a toxic 

response is corroborated by the absence of signatures of germ cell suppression and stress 
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proteins in the presence of cyanobacteria coupled with the activation of metabolic stress 

response genes (e.g. glucose metabolism, trehalose transporter and cellular response to 

starvation). Recent studies have shown genotype-based resistance of Daphnia to microcystin 

(Jiang et al. 2013; Lemaire et al. 2012). In line with previous studies (Lemaire et al. 2012), 

our results point to different response to mycrocystin dependent on genetic background 

(genotype) and/or prior environmental exposures, as the transcriptional response to 

cyanobacteria treatments was more severe in the X than in the I genotype. Indeed, the X 

genotype was sampled from a temporary rock pool system in which cyanobacteria blooms 

were never reported. Conversely, the I genotype was sampled from a typical eutrophic lake in 

central Europe that has likely experienced cyanobacteria blooms (O'Neil et al. 2012). The 

accumulation of cyanotoxins in freshwater environments due to harmful algal blooms is an 

increasing concern for environmental and governmental agencies because of the potent 

adverse effect they can have on human health and livestock (Backer et al. 2015; Hudnell 

2008). The use of Daphnia to remediate watersheds and drinking water supplies affected by 

toxic algal blooms is an intriguing possibility for freshwater restoration (see Peretyatko et al. 

2012; Sarnelle 2007 for applications) and may be envisioned considering the observed 

response to the toxic cyanobacteria treatment we observed. 

 

The differential expression analysis enabled us to identify key genes regulated in 

specific environmental perturbations, in particular in abiotic ones. However, given the limited 

number of differentially regulated genes, we were unable to identify shared pathways among 

treatments leading to the identification of predictive pathways activated by the environmental 

stressors studied here. To gain a better understanding of the genetic and functional foundation 

of tolerance to multiple environmental stressors we leveraged the correlative nature of 

networks using MODA (Li et al. 2016) and identifying modules shared among environmental 
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perturbations. The discovery of gene networks predictive of stress-response in the keystone 

species Daphnia could be used as a monitoring tool of freshwater ecosystems health and 

eventually lead to an anticipation strategy of response to stress.  

We discovered 33 co-expression modules across biotic and 25 across abiotic 

treatments (Fig. 4 and Table S7 for all genes co-expressed in each module). Intriguingly, only 

two modules are shared across all conditions – biotic and abiotic (Table S7, bio_abio). One 

contains essentially all housekeeping genes (ca. 9,000 genes, Module #54). The other 

(Module #154) includes 531 genes (Table S7, bio_abio), 280 of which have no conserved 

domain, no known orthologues outside crustaceans, and no known functions. This module is 

strongly enriched for a variety of P450 cytochromes (40 genes, GO terms: 0004497, 

0020037, 0009055, 0005506, max Fisher’s exact test FDR-corrected p-value = 8e-24, Table 

8), cell membrane and structural components (84 genes, GO terms: 0042598, 0005792, 

0005624, 0005626, 0000267, 0019898, 0016020, 0005783, max FDR-corrected p-value = 1e-

9, Table S8), and genes involved in cuticle formation, which is critical for growth and 

moulting (17 genes, GO terms: 0005214, 0042302, max FDR-corrected p-value = 5e-9, Table 

S8). Collectively (141 genes), these enrichments indicate that detoxification and cell 

proliferation are common features of Daphnia’s early response to stress. Whether cytochrome 

expression or proliferating cells are localized to a single physiological compartment, e.g. the 

haemolymph (inferred from the respiration signal) or epithelia (from the cuticle signal), or 

more broadly distributed across multiple organs will require additional transcriptomics 

analysis in dissected tissues or isolated cells. The association of this large collection of genes 

of unknown function with genes involved in respiration and cell proliferation may help to 

focus targeted studies to uncover their functions. For now, all we know about these 280 genes 

is that they are co-responsive with the genes of known function (see Table S7 for all genes in 

each module).  
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Co-expression Module #70 is shared among abiotic conditions (Fig. 4). This module 

includes ca. 6,800 genes (Table S7) and is enriched for membrane and transporter activity, 

cell signalling, morphogenesis and redox activity genes; it also contains developmental and 

growth genes (Table S9). Module #107 shared among UV, pH and osmotic stress contains 45 

genes (Table S7) enriched for ion transport activity and metabolic processes as it can be 

predicted under these stress conditions, suggesting that our unbiased approach reveals 

biological relevant mechanisms of response to environmental stress.  

Module #25 is shared across all biotic conditions. It contains 37 genes (Table S7), 18 

of which have no known function, and 10 encode vitellogenin lipoproteins (FDR-corrected p-

value < 1e-9). Notably, these vitellogenins are fused to a superoxide dismutase domain 

(SOD1-vtg). The remaining seven genes of known function are likely lipid or lipoprotein 

transporters, including Dapma7bEVm010067t1 and Dapma7bEVm019273t1, two 

CRAL/TRIO-domain containing proteins and yeast Sec14p orthologs; two probable 

haemolymph coagulation co-factors, one encoding a von Willebrand factor (vWF, 

Dapma7bEVm022355t1) and a BTB/POZ domain containing gene (Dapma7bEVm022613t1); 

and one uncharacterized, but conserved peptide (Dapma7bEVm020225t1) which encodes the 

conserved domain of unknown function pfam09172, DUF1943. While changes in 

vitellogenins are not statistically significant in each treatment, the pervasive presence of these 

genes across treatments indicates that their modulation is linked to numerous environmental 

perturbations.   

Four modules were shared between the vertebrate and invertebrate predator treatments 

(Modules #25, #102, #123, and #148) and enriched for canonical signatures of body 

remodelling (chitinase activation) and activation of cuticle proteins, including larval cuticle 

proteins (Table S10). Discussing each of the modules in turn is beyond the scope of this 
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manuscript, and hence all modules (Table S7), as well as their GO term analyses (Tables S8, 

S9, and S10), are provided in Supplementary material as a community resource. 

 

Conclusions 

We discovered that approximately one third of the Daphnia genes, enriched for metabolism, 

cell signalling and general stress response, is responsible for early transcriptional response to 

environmental stress and it is shared among genotypes. We also discovered that a large 

proportion of the transcriptome responds to environmental perturbations with a strong GxE 

component. This suggests a sequential activation of transcriptional response to environmental 

stress, which first involves a general stress response, and then activates a genotype and/or 

condition-specific transcriptional response. The latter is driven by smaller modules of genes 

enriched for more specific functions - e.g. body remodelling to predator cues or ion 

transporter for oxidative and osmotic stress. Intriguingly, genotype and condition- specific 

transcriptional response is found in genes not conserved beyond crustaceans. These genes 

may be associated with niche-specific adaptation. Finally, our study associated hundreds of 

uncharacterized genes within co-responsive modules to genes of known function and to 

specific environmental perturbations. This link represents a fundamental basis for our 

understanding of the genetic and functional foundation of tolerance to multiple environmental 

stressors. Establishing these associations is generally challenging, even in the best studied 

model species [e.g. yeast, (Pena-Castillo & Hughes 2007) and fly, (Brown & Celniker 2015)].  
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(2015): http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA284518  
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deposited in OrthoDB (Zdobnov et al. 2017). The scripts used to combine methods of 

ortholog detection are provided in supplementary material (Appendix 1).   

NCBI accession numbers to RNASeq data across the 12 environmental conditions and 
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Figure legends  

Figure 1. Genome-wide differential expression analysis. 

Heat map of the most genome-wide scale differentially expressed genes (DEseq p-adj < 0.01) 

in the three genotypes: X, I and XI. The data are obtained from three biological replicates per 

genotype. Yellow indicates high similarity whereas blue indicates low similarity. The 

abbreviations for the environmental perturbations are as follows: FI: Vertebrate predation; 

TR: Invertebrate predation; PA: exposure to the parasite Pasteuria ramosa; CR: crowding; 

BX: microcystin-producing cyanobacteria; BN: microcystin-free cyanobacteria; CA: 
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insecticide Carbaryl; CO: control. The environmental perturbations imposed on the 

recombinant genotype are as follows: CD: Cadmium; PB: Lead; pH 5.5: low pH; UV: UV-B 

light; NaCl: osmotic stress. The treatment BN for the I strain was not included in this 

analysis as a PCA plot inclusive of all data identified this treatment as an outlier (Orsini et al. 

2016) . 

 
Figure 2. Co-expressed gene networks identified in the genotype analysis 

Significantly co-expressed gene networks (numbered on y-axis) shared among genotypes: X, 

I and XI. From top to bottom the networks are ordered starting from shared among all 

genotypes, shared between two genotypes and genotype-specific. The genotypes are color-

coded as follows: X - black; I - grey; XI - red. Numbers on the y-axis refer to the module 

number listed in Supplementary Table S2 

Figure 3. Conservation of genes responsive to environmental perturbations. 

Genes responsive to environmental perturbations (N = 1,396 genes) are partitioned based on 

their magnitude of differential expression, ranging from basal expression (no differential 

expression under any perturbation) to 16-fold differential expression under at least one 

assayed environmental perturbation. For each category of differentially expressed genes the 

percentage of non-orthologous genes to other model species outside crustaceans is shown. 

The following model species were used for orthology searches: Danio rerio, Caenorhabditis 

elegans, Drosophila melanogaster, Mus musculus, and Homo sapiens. The two crustacean 

species Daphnia magna and Daphnia pulex were used in orthology searches to identify genes 

conserved within crustaceans. The percentage of genes with no orthology beyond crustaceans 

is indicated as percentage for each category of differentially expresses genes. 
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Figure 4. Co-expression networks under environmental perturbations. 

Significantly co-expressed gene networks (numbered on x-axis) shared among the biotic (N = 

6 treatments) and abiotic treatments (N = 6 treatments). Abbreviations for environmental 

perturbations are as in Figure 1. Colours and cluster numbers in the bar plots are randomly 

generated, hence identical colours and numbers in the two plots do not indicate the same 

network. Numbers on the x-axis refer to the module number listed in Supplementary Table 

S7. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

0.25

0.355
0.417

0.72

basal 
expression

2-fold 4-fold 16-fold

Magnitude of gene expression 

G
en

es
 w

ith
 n

o 
or

th
ol

og
y 

be
yo

nd
 c

ru
st

ac
ea

ns
   

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Module ID

T
re

at
m

en
t

 


