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Abstract—The measurements presented in this paper show 

that feature extraction can be used to identify objects of interest 

by making use of the scattering present and angular resolution 

available when using low TeraHertz (low-THz) (0.1 THz-1 THz) 

devices. The results shown were obtained by measuring two 

different types of overhead power cables of similar size but with 

different surface structure which causes the backscatter from 

each type of cable at 150GHz to be distinct. The measurements 

are supported by simulations made that incorporate Bragg mode 

theory.  

Index Terms— Low-THz, Rough surface, Radar imaging, 

Radar cross-section, Electromagnetic reflection 

I.  INTRODUCTION  

Interest in the millimetre wave (MMW) and TeraHertz 
(THz) band of frequencies is increasing due to the inherent 
advantages of such systems over devices that operate at longer 
wavelengths, including increased angular resolution for a given 
antenna size, more compact devices and higher range 
resolution  [1].  

A target that is of particular interest is the overhead (OH) 
power cable. These power cables were previously measured by 
using radar devices that make use of larger wavelengths but the 
backscatter amplitudes measured were deemed inadequate to 
allow a high enough probability of detection in practical 
situations [2]. 

The most common type of overhead conductor is the 
Aluminium Conductor Steel Reinforced type.(ACSR) which 
typically consists of exposed aluminium strands of cylindrical 
wire, helically wrapped around a steel core (top in Fig 1). The 
number of strands of wire present depends on the current 
capacity of the cable.  The Aluminium Conductor Composite 
Core (ACCC) type (bottom in Fig 1) of power cable is the 
modern, more efficient type of overhead cable that is becoming 
increasingly popular as it can carry higher currents for a given 
weight compared to the older ASCR type; meaning the ACCC 
type incurs less mechanical sag after installation. To the best of 
our knowledge the scattering measurements presented here are 
the first ever reported for the ACCC type of cable. 

The grating lobes of the ACSR cable surface are considered 
to be the most important feature in terms of its backscatter for 
low-THz remote sensing as the dimension of these features is 
comparable to a wavelength at low-THz frequencies.  

Several sets of measurements of ACSR cables at multiple 
microwave frequencies have been reported previously [3] [4]. 
Previous research show that below typically 30 GHz the 
scattering of this type of cable is very similar to that of a 
smooth metallic cylinder as the cable surface details do not 
significantly alter the scattering present at these wavelengths. 
The previous behaviour means the amplitude of the 
backscattered energy is only large for a narrow range of 
incident angles. The scattering behaviour at low frequencies 
makes the power cable hard to detect especially by a moving 
aircraft equipped with a monostatic radar device.  

In the frequency range 35 GHz to 94 GHz the physical 
helical features of typical OH power cables are comparable to 
the wavelength leading to the presence of additional reflection  
Bragg lobes with peaks at certain incident angles (θn) caused 
by Bragg mode scattering: 
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The position of these extra peaks thus depends on the ratio 
of the wavelength (λ) of the incident electromagnetic wave to 
the surface period (L) of the cable [2] (Fig 2). This feature 
depends on the type of ACSR cable. This behaviour broadens 
the range of angles at which strong backscatter occurs 
compared to operation at lower frequencies and helps the 
detection and identification of power cables. The previous 
Bragg scattering is still specular in nature at 35 GHz and 
94 GHz and previous research has shown that the scattered 
energy resides almost entirely in the Bragg lobes. These lobes 
extend out to an angle α either side of broadside as shown in 
[3], α depends on the cable size (D) and spacing between turns 
(P): 
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For typical cable geometries; α is around 15°.  

Measurements of OH power cable have also been reported 
at two different IR wavelengths (1.06 μm and 10.6 μm) [3] 
[5]. The Bragg mode peaks seen at lower frequencies were not 
distinguishable in all IR measurements but the majority of the 
backscatter is still found relatively close to normal incidence 
for the undamaged cables that were measured.   
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The motivation for performing measurements on ACSR 
cables at 150 GHz is to find out whether the pattern of Bragg 
modes persists at shorter wavelengths, but with a denser set of 
returns, and/or whether the shorter wavelength means that 
diffuse scattering becomes more significant. The further 
motivation for measuring the ACCC cables was to see whether 
the smoother surface still had sufficient structure to allow 
features to be extracted. 

The beam widths available at low-THz frequencies are 
expected to provide sufficient angular resolution at short ranges 
to allow the expected Bragg modes to be separable by imaging 
a cable along its length and this too is of interest in the 
research.  

A parameter which becomes more important as the range 
increases is the scattering loss which is due to the presence of 
smoke or dust particles which can exist in rescue/hostile 
environments. This scattering loss caused by the presence of 
airborne particles is lower for THz devices compared to the 
loss present for Infrared (IR) and optical wavelengths [6] .The 
previous is expected to make low-THz devices more suitable 
for the detection of targets, such as overhead power cables, in 
outdoor environments even though these higher bands of 
frequencies have inherent advantages such as narrower beam 
widths and devices with smaller dimensions. 

The next section states the parameters of the radar device 
used in experiments and also the geometric characteristics of 
the cables measured. Section III puts across the experimental 
scenario realised, Section IV displays simulated results and the 
results obtained experimentally are then presented and 
discussed in Section IV. 

 

Figure 1.  a) ACSR and b) ACCC surface pattern and cable sag 

 

Figure 2.  Physical parameters of a helically wound cable 

II. EXPERIMENTAL SETUP 

The characteristics of the ACSR and ACCC types of 
overhead power cable measured are shown in Table 1. The 
expected values of θ1 and α for the ACSR cable were 2.9 ° and 
±15°, respectively and for the ACCC, 2.3° and 15°, 
respectively.  

All the measurements presented here were obtained by 
using a 150 GHz FMCW monostatic radar system [7].  The 
imaging experiments were performed by using lens horn 
antennas at the Receive and Transmit terminals. Table 2 shows 
the important parameters for the radar device and antennas 
used.  

TABLE I.  CABLE PARAMETERS FOR BOTH TYPES OF CABLES MEASURED 

Cable 

Parameter 

(ACSR) 

 

Value Cable 

Parameter 

(ACCC) 

 

Value 

Cable diameter 

(D) 

31.59 mm Cable 

diameter(D) 

33.4 mm 

Number of 

outer strands  

24 Number of 

outer strands 

16 

Outer surface 

period (L) 

20 mm Outer surface 

period (L) 

24.37 mm 

Length between 

turns (P) 

355.6 mm Length 

between 

turns (P) 

390 mm 

Cable length 2.05 m Cable length 2.23 m 

Outer strand 

diameter (d) 

3.51 mm Trapezoidal Outer Strand  

 

TABLE II.  PARAMETERS OF 150GHZ RADAR DEVICE & ANTENNAS USED 

Parameter Quantity  

Frequency Band 144-150 GHz 

Range Resolution 30 mm 

Transmit Power 11dBm 

Antenna Gain (RX/TX) 29dBi 

3dB beamwidth (E-plane) 15° 

3dB beamwidth (H-plane) 2.2° 

 

W=1.975m 

2.05m 

Cable sag 
h=0.154m 

 

a) 

 

W=2.2m 

h=0.06m 

2.23m 

Cable sag 
 

b) 

 

 

D 

d 

P 
L 

 

 

 

  

 

 

D: Outside diameter 
d: Strand diameter 
L: Spacing between surfaces 
P: Spacing between turns 

 

 



III. POWER CABLE IMAGING SETUP 

The imaging of both the ASCR and ACCC cables were 
performed in an indoor environment (Fig 3). The range of the 
background clutter in the scanning area was measured and 
range gating was possible to eliminate it. The illumination 
(3 dB beam width) of the cable with the lens horn antennas had 
a span of approximately 50 mm (H-plane) by 342 mm (E-
plane) as each target was located approximately 1.3m in range 
from the antenna configuration. The cable was imaged by 
mechanically scanning the radar system in the H-plane/azimuth 
plane with an increment angle of 1.1° and the total scanned 
angle was ±20° for two different scenarios (Fig 4 and Fig 5). 
Each measurement shown is the result of averaging over 5 
measurement samples. 

 

Figure 3.  Setup for overhead power cable imaging experiments - a) 

 ACSR b)ACCC 

IV. OVERHEAD POWER CABLE SIMULATIONS 

Bragg mode theory was used to simulate the 

behaviour that would be present when scanning a periodically 

structured power cable. 

Isotropic radiators with a RCS magnitude of unity 

were placed at the locations predicted by Bragg theory (Eq 1) 

with the monostatic radar located in the same location as in 

experiments; assuming perfect alignment. The antenna pattern 

was simulated using a Gaussian beam shape (Eq 3) [8] and the 

cable sag was introduced by using the equation for a parabola 

(Eq 4) [9] and the cable parameters shown in Fig 1 for both 

cables. The produced scenario is shown in Fig 6 for the ASCR 

cable.  

The received power was then calculated using the 

radar equation (Eq 5). The realised maximum power plots are 

shown in Fig 7-10 for both types of cables and for both 

imaging scenarios.  

The simulated results show periodic peaks with the 

ACSR cable being more pronounced with the peaks and 

troughs having a larger variation compared to the ACCC type. 

The cut-off angle for strong backscatter is around 16° for all 

simulations. The largest Bragg lobe peak for both cables is 

located at 0° in the case of scenario 1 and then shifts to the 

negative cut-off angle for scenario 2.  

 

Figure 4.  Scenario 1 in overhead power cable imaging experiments 

 

Figure 5.  Scenario 2 in overhead power cable imaging experiments 
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Figure 6.  Simulation scenario with isotropic radiators at the expected 

 Bragg mode angles and the location of the monostic radar 

 transeiver   

 
Figure 7.  The maximum power in simulations for each scan angle 

 [ASCR]  (Scenario 1) 

 
 

Figure 8.  The maximum power in simulations for each scan angle 

 [ACCC] (Scenario 1)  

 

Figure 9.  The maximum power in simulations for each scan angle 

 [ACCC] (Scenario 2)  

 

Figure 10.  The maximum power in simulations for each scan angle 

 [ACCC] (Scenario 2) 

V. OVERHEAD POWER CABLE MEASUREMENTS 

The images obtained from scanning the ACSR type of cable 

are visible in Fig 11 and Fig 12 whilst the images obtained by 

imaging the ACCC type are visible in Fig 13 and Fig 14. The 

plots of the maximum power return for each angle measured 

for each cable type and scenario are shown in Fig 15-18. 

The Bragg mode behaviour was qualitatively as expected 

for the ACSR cable, with periodic peaks being present at 

certain angles although some peaks seem to be missing. 

Theory predicted 11 Bragg lobe peaks with an angular 

separation of 2.9°, as in Fig 7 and Fig 8, although in Fig 10 

only 6 peaks are present which are separated by an angle in 

the range of 4.4° to 6.6°. The absence of Bragg lobes is 

currently under investigation although the illumination 

properties, effect of range resolution and cable imperfections 

in the realised experiment are all expected to cause a deviation 
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from theory. The shift in the largest Bragg mode peak 

observed in simulations was also seen in measurements for the 

two different scenarios. 

The flatter trapezoidal strands present for the ACCC type 

seem to have suppressed most of the higher order Bragg mode 

peaks and the measured results deviate significantly from Fig 

8.  

Measurements at lower frequencies [4] showed essentially 

no diffuse scattering, but these measurements show a 

„background‟ RCS level which is what would be expected 

from diffuse scattering. 

Until further investigations are conducted we postpone 

making definitive statements about the apparent deviation 

from Bragg theory or about the possible diffuse scattering 

present because both effects may also be associated with the 

very short range at which these measurements were made. 

The presence of scattering over relatively wide angles 

shows that the use of low-THz frequencies, used to build 

compact systems, would still allow cable detection and 

classification by scanning mechanically with a narrow-beam 

antenna without the need for excessively complex post 

processing. 

VI. CONCLUSION 

Results have been presented of the backscatter from 

overhead power cables at frequencies that have not been 

measured before. As well as measurements on the traditional 

standard (ACSR) cables, results have also been shown of the 

newer ACCC type of cables. 

The results for the ACSR are broadly in agreement with 

what would be predicted from the models which have proved 

successful at lower, millimetre-wave and centimetre-wave 

frequencies, but there is some evidence of more complex 

behaviour. Some of the expected Bragg peaks seem to be 

missing and this merits further investigation. 

For the ACCC cables the same models are probably still the 

best starting point for predicting the performance, but the 

deviations are now very significant – many expected modes 

seem to be of low amplitude or missing. Some are also much 

wider than would have expected, which is compatible with the 

effective length of the illuminated section of the wire being 

lower than expected. 
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Figure 11.  Image obtained by imaging ACSR cable [scenario 1] 

 

Figure 12.  Image obtained by imaging ACSR cable [scenario 2] 

 



 

Figure 13.  Image obtained by imaging ACCC cable [scenario 1] 

 

Figure 14.  Image obtained by imaging ACCC cable [scenario 2] 

 
Figure 15.  Maximum power at each angle by imaging ACSR cable 

 [scenario 1]    

 
Figure 16.  Maximum power at each angle by imaging ACSR cable 

 [scenario 2]   

 

Figure 17.  Maximum power return at each angle by imaging ACCC cable 

 [scenario 1]  

 

Figure 18.  Maximum power return at each angle by imaging ACCC cable 

 [scenario 2]    
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