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ABSTRACT  16 

Mantle hydration (serpentinisation) at magma-poor rifted margins is thought to play a key role in 17 

controlling the kinematics of low-angle faults and thus, hyperextension and crustal breakup. 18 

However, because geophysical data principally provide observations of the final structure of a margin, 19 

little is known about the evolution of serpentinisation and how this governs tectonics during 20 

hyperextension. Here we present new observational evidence on how crustal strain-dependent 21 

serpentinisation influences hyperextension from rifting to possible crustal breakup along the axis of 22 

the Porcupine Basin, offshore Ireland. We present three new P-wave seismic velocity models that 23 

show the seismic structure of the uppermost lithosphere and the geometry of the Moho across and 24 

along the basin axis. We use neighbouring seismic reflection lines to our tomographic models to 25 

estimate crustal stretching (βc) of ~2.5 in the north at 52.5o N and > 10 in the south at 51.7o N. These 26 

values suggest that no crustal embrittlement occurred in the northernmost region, and that rifting may 27 

have progressed to crustal breakup in the southern part of the study area. We observed a decrease in 28 

mantle velocities across the basin axis from east to west. These variations occur in a region where βc 29 

is within the range at which crustal embrittlement and serpentinisation are possible (βc 3-4). Across 30 

the basin axis, the lowest seismic velocity in the mantle spatially coincides with the maximum amount 31 
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of crustal faulting, indicating fault-controlled mantle hydration. Mantle velocities also suggest that 32 

the degree of serpentinisation, together with the amount of crustal faulting, increases southwards 33 

along the basin axis. Seismic reflection lines show a major detachment fault surface that grows 34 

southwards along the basin axis and is only visible where the inferred degree of serpentinisation is > 35 

15 %. This observation is consistent with laboratory measurements that show that at this degree of 36 

serpentinisation, mantle rocks are sufficiently weak to allow low-angle normal faulting. Based on 37 

these results, we propose two alternative formation models for the Porcupine Basin. The first involves 38 

a northward propagation of the hyperextension processes, while the second model suggests higher 39 

extension rates in the centre of the basin than in the north. Both scenarios postulate that the amount 40 

of crustal strain determines the extent and degree of serpentinisation, which eventually controls the 41 

development of detachments faults with advanced stretching. 42 

  43 
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1 Introduction 44 

Serpentinisation is a metasomatic reaction of ultramafic rocks that lowers both the seismic velocity 45 

and density of the original rock [e.g., Carlson and Miller, 2003; Christensen, 2004], causing 46 

volumetric expansion and cracking [O’Hanley, 1992; Tutolo et al, 2016]. At rifted margins, this 47 

process may occur when crustal-scale faulting takes place, allowing inflow of seawater into the 48 

mantle [e.g. O’Reilly et al., 1996]. Numerical simulations show that crustal-scale faulting and 49 

serpentinisation can occur when the entire crust becomes brittle at a critical stretching factor of 3-4 50 

as long as the rift retains low temperatures (< 600ºC) [Pérez-Gussinyé and Reston 2001; Guillot et 51 

al., 2015], which makes serpentinisation a widely recognised process of magma-poor rifted margins. 52 

As inferred from seismic velocity models [Bayrakci et al., 2016], serpentinisation at magma-poor 53 

rifted margins is not only controlled by the occurrence of crustal-scale faulting but also by total fault 54 

displacement. This observation suggests that water can only effectively infiltrate the mantle during 55 

the late syn-rift stage when normal faults are still active [O’Reilly et al., 1996]. Serpentinisation has 56 

important tectonic implications since it reduces the friction coefficient of mantle rocks [Escartín et 57 

al., 2001], and causes the formation of secondary minerals that, along with reaction-driven fracturing 58 

[Tutolo et al, 2016], causes high fluid pressure [Moore et al., 1996]. Weakening of mantle rocks and 59 

fluid overpressure are both proposed to have a critical role in the kinematics of low-angle faults like 60 

the S detachment along the Galicia Margin [Reston et al., 2007]. Additionally, thermo-mechanical 61 

simulations based on geophysical and geological observations suggest that the formation of weak 62 

regions in the lithosphere causes rift acceleration [Huismans and Beaumont, 2003; Brune et al., 63 

2016], which is critical in shaping rifted margins as it controls their asymmetry [Huismans and 64 

Beaumont, 2003; Brune et al., 2014]. Hence, understanding the evolution of serpentinisation and its 65 

role in controlling tectonic processes at magma-poor rifted margins will provide new insights into the 66 

formation of continental passive margins. However, very little is known regarding the evolution of 67 

mantle hydration with progressive lithospheric extension. This is because most of the observations 68 

are made along mature rifted margins, in which the mantle is already exhumed and seafloor spreading 69 

is established [e.g. Whitmarsh et al., 1996; Funk et al., 2003; Davy et al., 2016]. 70 

In this work, we focus on the Porcupine Basin, a north-south triangular-shaped basin located in the 71 

North Atlantic margin southwest of Ireland (Fig. 1a). The Porcupine Basin is a failed rift in which 72 

extension increases dramatically from north to south along the basin axis [Tate et al., 1993; Watremez 73 

et al., 2016]. This increase makes the Porcupine Basin an ideal natural laboratory to assess the 74 

variations of formation processes related to progressive lithospheric stretching. We present a set of 75 

P-wave seismic velocity (Vp) models derived from travel time tomography of wide-angle seismic 76 

(WAS) data acquired in the Porcupine Basin (Fig. 1a). The models reveal the seismic structure of the 77 



4 
 

 

crust and uppermost mantle, as well as the geometry of the Moho across and along the basin axis 78 

from the northern (~52.5o N) and less extended region of the basin, to the central region (~51.5o N), 79 

where hyperextension occurred due to advanced tectonic stretching [e.g. Reston et al., 2001, 2004]. 80 

Careful analysis of uppermost mantle Vp from our models suggest along- and across-axis variations 81 

in mantle hydration. We use gravity data and seismic reflection profiles near our Vp models to explore 82 

potential reasons for such variations, and assess their implications for the formation of the Porcupine 83 

Basin. 84 

2 Tectonic setting 85 

The Porcupine Basin was formed in response to several rift and subsidence phases during the Late 86 

Paleozoic and Cenozoic, with the most pronounced rift phase occurring in Late Jurassic–Early 87 

Cretaceous times [Tate et al., 1993; Naylor and Shannon, 2011]. Subsidence curves [Tate et al., 88 

1993] suggest that axial stretching factors (i.e., βc=T0/T1; T 0 is initial crustal thickness before 89 

extension, and T1 the current crustal thickness) increase from 1.5-2 in the north to 3-4 in the central 90 

region. However, WAS data [Watremez et al., 2016] and seismic reflection data [Reston et al., 2004] 91 

both show that maximum βc are at least 3 and 2 times greater than these estimates in the northern and 92 

central parts of the basin, respectively. This discrepancy can be explained by mantle serpentinisation, 93 

which reduces the density of mantle rocks, and therefore reduces the effect of thermal subsidence. A 94 

similar effect is inferred from seismic data in the Rockall Basin, northwest of the Porcupine Basin in 95 

the North Atlantic [O’Reilly et al., 1996]. 96 

Mantle hydration in the Porcupine has been proposed by many authors based on geophysical data 97 

[Reston et al., 2001, Readman et al., 2005; O’Reilly et al., 2006; Watremez et al., 2016]. Gravity data 98 

reveal a major positive free air gravity anomaly between 51.5º-52.5ºN (Fig. 1b) that suggests the 99 

presence of extremely thin crust and a low density uppermost mantle (i.e., < 3.3 g/cm3). This anomaly 100 

is also associated with a major tectonic feature known as the Porcupine Arch [Naylor et al., 2002], 101 

recognised on seismic reflection profiles as a deep, bright and continuous package of high-amplitude 102 

reflectivity [Johnson et al., 2001; Reston et al., 2001; Naylor et al., 2002]. The Porcupine Arch was 103 

previously interpreted either as the top of the crystalline crust [Johnson et al., 2001; Naylor et al., 104 

2002], or as a detachment surface (i.e., the P-detachment) representing the Moho (i.e. crust-mantle 105 

boundary) [Reston et al., 2001, 2004]. WAS data modelling has revealed Vp between 7.5 and 8 km/s 106 

below the Porcupine Arch [O’Reilly et al., 2006; Watremez et al., 2016], which is too high for 107 

continental crust but not for serpentinised mantle rocks [Carlson and Miller, 2003]. This result not 108 

only supports the hypothesis that the Porcupine Arch is the Moho, but also suggests that the mantle 109 

below is partially serpentinised [i.e. ~ 10-20%; O’Reilly et al., 2006]. Interestingly, Reston et al. 110 
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[2001, 2004] noted the presence of major faults crosscutting the entire syn- and pre-rift section up to 111 

the top of the Arch, implying that crustal embrittlement has occurred in the Porcupine Basin, further 112 

supporting the hypothesis of a serpentinised mantle. 113 

3 Wide-angle seismic data analysis and modelling 114 

In 2004, three WAS profiles were collected along pre-existing reflection profiles across the Porcupine 115 

Basin [Reston et al., 2001, 2004] (Fig. 1a). Up to 24 four-component ocean-bottom seismometers 116 

(OBS) and ocean-bottom hydrophones (OBH) were used to acquire the data along each of the three 117 

lines presented here (Fig. 1a). The receivers were spaced every ~8 km along each line and the seismic 118 

source was generated by 2-3 32 litre (2000 in3) airguns fired every 60 s (~120 m). 119 

Seismic refraction data processing involved a predictive deconvolution and a bandpass filter defined 120 

by frequencies of 1-5-15-25 Hz. The data show clear refraction and reflection travel times 121 

corresponding to the sedimentary section, the crystalline basement and the uppermost mantle (Fig. 122 

2). In particular, the data show a prominent phase at large offsets with apparent velocity of 8 km/s 123 

that has been interpreted as a refracted phase through the uppermost mantle or Pn (e.g., >40 km model 124 

offset in Figs. 2 and 3d). A high-amplitude reflection identified at shorter offset than Pn arrivals has 125 

been interpreted as the critical reflection at the Moho or PmP (Figs. 2 and 3). Overall, we manually 126 

picked a total of 28,995 travel times of refracted and reflected phases for line P02, 31,676 for line 127 

P03, and 35,708 for line P04. Picking uncertainties were automatically assigned between 20 and 125 128 

ms based on the signal to noise ratio of the trace 250 ms before and after the picked arrival time, 129 

following the empirical relationship of Zelt & Forsyth (1994).  130 

The data were inverted for Vp structure and geometry of seismic interfaces (e.g., Moho) using the 131 

method of Korenaga et al. [2000]. This method computes the travel time residuals by calculating the 132 

shortest ray-path for each travel time, and solves a linearised inversion problem to minimise the travel 133 

time residuals. The Vp models were obtained following a layer stripping strategy [e.g. Sallarès et al., 134 

2011], so that refracted and reflected travel times of each layer were inverted sequentially from near 135 

to far offset, resolving at each step the velocity and depth of each layer of the model from the shallow 136 

sediments to the uppermost mantle. Travel times of critical reflections at sedimentary interfaces were 137 

identified in all the lines (Figs. 2 and A1), and included in the layer stripping (see Fig. A2 for layer 138 

stripping sequence of each model). However, given that the main goal of the study relies on the deep 139 

structure of the basin, we only show the geometry of the Moho interface (blue thick lines in Fig. 4). 140 

The grid spacing for P04 was optimally set at 0.25 x 0.25 km, whereas for P03 and P02 it varies 141 

vertically from 0.1 km at the top to 0.5 km at the bottom, and it was held constant horizontally along 142 

the grid at 0.3 km. The finer grid spacing at shallow levels along dip lines P03 and P02 was designed 143 
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to allow for seismic heterogeneity caused by sedimentary structures associated to the margins of the 144 

basin. The grid spacings chosen are much smaller than the anomaly size (i.e. >10 km wide) that we 145 

can retrieve at the depths of interest (i.e. ~15 depth). Thus, these grids are optimum for the purpose 146 

of the study. 147 

Regularisation parameters are defined by a set of horizontal and vertical correlation lengths that vary 148 

from top to bottom in the grid. Horizontal correlation lengths (HCL) were 3 km at the top of all 149 

models and increased to 10-12 km at the bottom of the grid. Vertical correlation length (VCL) was 150 

0.2-0.5 km at the top of the grid and 5-8 km at the bottom of the grid. Reflector correlation lengths 151 

(RCL) were set at 4 km and the depth kernel-scaling factor (W) was 0.1-0.5. Overall, tomographic 152 

models in Fig. 4 have a good data fit as root mean square of residual travel times are around half of 153 

the dominant wavelength (i.e. 20-30 ms for sediment phases, and ~50ms and ~80ms for crustal and 154 

mantle phases, respectively; see Tables A1 to A3 for further details of root mean square values). 155 

3.1 Model	parameter	uncertainty	156 

The range of uncertainty values of Vp and depth of the Moho was assessed by means of a Monte-157 

Carlo analysis. The approach was performed for each of the different layers following the same layer-158 

stripping strategy applied for the inversion of the preferred models in Fig. 4. In this case, for each 159 

layer, we produced 100 realisations (120 for line P04). Each realisation consisted in a travel-time 160 

dataset with added random noise (up to ±125 ms), an input model for the corresponding layer with a 161 

random 1D velocity-depth distribution (±10% and ±6% for crustal and mantle velocities, 162 

respectively), and a flat reflector with a random depth (±4 km for the Moho). HCL, VCL, RCL and 163 

W were also randomised during the Monte-Carlo analysis (HCL 5±2 km and 15±5 km and VCL 164 

0.5±0.2 km and 6±2 km at the top and bottom of the model, respectively; RCL 5±1 km; W between 165 

~0.1 and ~1). This process allowed us to assess the optimum range of regularisation parameters, 166 

which resembles the range used to obtain the preferred models of Fig. 4. The standard deviation of 167 

the inverted 100 models (120 for line P04) was computed and taken as a statistical measure of the 168 

uncertainty of the model parameters [Tarantola, 1987; Korenaga et al., 2000] (Fig. 5). 169 

Overall, the Vp structure of the three models is well constrained in areas with a good ray coverage 170 

(see Fig. A3 for ray coverage information). The standard deviation (i.e., statistical uncertainty) of 171 

velocities in lines P02 and P03 ranges between 0.1 and 0.3 km/s (Fig. 5), whereas it is < 0.2 km/s for 172 

line P04 (Fig. 5). In particular, uppermost mantle velocities are generally well constrained with values 173 

< ±0.2 km/s, except along line P02 where locally they reach ~±0.3 km/s (Fig. 5). Higher uncertainties 174 

along P02 are the result of combining a high pick uncertainty (i.e. ~125 ms) of Pn phases with a lower 175 

ray coverage in that particular area of the model (i.e. between 120 and 140 along P02 Figs. 5 and A3). 176 

The Moho depth is well constrained in the centre of the models with uncertainties < ±0.2 km (Fig. 5), 177 
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whereas it is less constrained towards the edges of the model given the lack of PmP arrivals (see Fig. 178 

A4 for ray tracing of PmP arrivals). 179 

4 Results 180 

The northernmost W-E profile P03 runs across the northern Porcupine Basin and shows a sedimentary 181 

basin fill displaying Vp between 1.5 and 4.0-4.5 km/s that thickens towards the centre of the basin, 182 

reaching 8-9 km thick [Watremez et al., 2016]. Syn-rift sediments are represented by Vp between 4.5 183 

and 5.0 km/s and basement velocities range from 5.0-5.5 to 6.6-6.8 km/s, that is typical for crystalline 184 

continental crust [Christensen & Mooney, 1995] (Fig. 4). The Moho obtained from inversion of PmP 185 

arrivals shallows to 15 km depth at ~ 130 km of profile distance (Fig. 4a). Below this thinnest section 186 

of the crust (km 115-145), the uppermost mantle Vp is not only slower than unaltered peridotite (i.e., 187 

8.0 km/s), in agreement with previous studies [O’Reilly et al., 2006], but also decreases by 0.4 km/s 188 

from east to west, from ~8.0 to ~7.6 km/s (Fig. 6a). 189 

The southernmost dip line P02 is located in the southern region of the study area (Fig. 1), and shows 190 

a similar sedimentary cover with Vp between 1.5 and 4.0-4.5km/s that can be up to ~8 km thick. 191 

Basement velocities in the margins are similar to P03, ranging from 5.0-5.5 to 6.6-6.8 km/s, but they 192 

barely exceed 6.0 km/s in the basin centre, where the crust is thinnest (e.g. between 120 and 150 km 193 

of profile distance in Fig. 4c). From the neighbouring reflection line 106 (Fig. 7), we observe that 194 

crustal Vp < 6.0 km/s spatially coincides with a pervasively faulted sequence (e.g. between 120-150 195 

km of profile distance in Fig. 7a), which appears to comprise both basement and highly rotated syn-196 

rift sediments [Reston et al., 2004]. The PmP-derived Moho along P02 shallows up to ~11 km depth 197 

(Fig. 4c), that is 2 km shallower than the Moho along P03, indicating that extension increases 198 

southwards along the basin axis. Mantle velocities are slower than those of pristine mantle rock and 199 

are characterised by strong lateral variations, similar to P03. In this case, however, Vp decreases up 200 

to 1 km/s from east to west, from 8.0-8.2 to 7.0-7.2 km/s (Fig 6b). 201 

The N-S line P04 runs along the basin axis crossing profiles P03 and P02 (Fig 1 and 4). The 202 

sedimentary cover with Vp between 1.5 and 4.0-4.5 km/s, previously imaged by P03 and P02 across 203 

the basin axis, is also imaged along the basin axis thinning subtly from north to south ~1-2 km (Fig. 204 

4a). Beneath this, crustal Vp increases with depth from 5.0-5.5 to 6.4-6.6 km/s (Fig. 4a). The resolved 205 

Moho shallows from 20 km deep in the north to ~11 km in the south, which denotes again a significant 206 

crustal thinning from north to south along the basin axis (Fig. 4a). In agreement with the rest of the 207 

profiles, velocities in the uppermost mantle are slower than 8.0 km/s. However, no significant 208 

variations of mantle velocities are observed along the profile except at km 110, where mantle Vp 209 

increases gently in the uppermost section of the mantle, from north to south (Fig. 4a). 210 
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5 Discussion 211 

5.1 Variations	of	mantle	hydration	across	the	basin	axis	212 

The tomographic results along dip lines show across-axis variations in uppermost mantle Vp (Figs. 6a 213 

and 6b). In both cases, seismic velocities increase towards the east where seismic velocity can be up 214 

to 1 km/s faster (i.e., case for P02, Fig. 6b). Comparing the vertical seismic structure of W-E lines 215 

P03 and P02 with N-S line P04 at the corresponding intersection points (Figs. 6c and 6d), we observe 216 

small differences that are within the velocity error (i.e. up to 0.2 km/s in Figs. 6c and 6d). Hence, we 217 

cannot conclude whether these small variations are due to variations in model parametrisation, to data 218 

uncertainties, or to anisotropy. If anisotropy was the main contributor to such variations, its effect is 219 

still too small to explain across-axis velocity variations in the uppermost mantle (i.e. Figs.6a and 6b). 220 

Anisotropy is suggested to be caused by alignment of cracks, damage zones and serpentinisation 221 

within fault zones in the outer rise of subduction zones (with the slowest propagation perpendicular 222 

to fault zone) [Miller and Lizarralde, 2016]. However, the faulting responsible for mantle hydration 223 

in this setting [i.e. bending-related faulting; Ranero et al., 2003] is closer to the vertical than that 224 

responsible for extension in the Porcupine [Reston et al., 2004]. Hence, the small discrepancy of 225 

seismic wave speed between W-E and N-S propagation in the Porcupine Basin may be explained by 226 

the low-angle orientation of damage zones in the W-E direction (the approximate direction of 227 

extension). This orientation would result in a similar propagation of refracted seismic waves (i.e. 228 

subhorizontal propagation) in both W-E and N-S directions, and reduce azimuthal anisotropy caused 229 

by alignment of damage zones. Hence, variations of mantle Vp across the basin axis potentially reflect 230 

petrological variations, which in this case may indicate differences in the degree of magmatic 231 

intrusion and/or serpentinisation.  232 

Geological observations from boreholes [Tate & Dobson, 1988], coupled with seismic stratigraphic 233 

interpretation [Reston et al., 2004], suggest that there was little syn-rift magmatism in the northern 234 

and southern region of the study area (i.e. 51.5º to ~53º N; Fig. 1). Sills intruded in the post-rift 235 

sequence at ~60-61 Ma (i.e., early Paleocene) indicate the first major magmatic activity [Tate & 236 

Dobson, 1988]. As observed in other regions in the North Atlantic [e.g., Archer et al., 2005] the 237 

intrusion of magmatic bodies after the deposition of post-rift sediments drives significant uplift and 238 

consequent deformation of the older post-rift sequence (mostly Cretaceous in our case). However, 239 

seismic reflection lines reveal no domal deformation in the Cretaceous unit (Fig. 7a) that could be 240 

attributed to such effects. Instead, a flat and undeformed post-rift sequence is observed, suggesting 241 

that early Cenozoic magmatism (crustal intrusion and underplating) is an unlikely explanation for 242 

low subcrustal velocity variations. 243 
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Alternatively, mantle serpentinisation has been proposed during the formation of the basin [Reston et 244 

al., 2001, 2004; Readman et al., 2005; O’Reilly et al., 2006]. Numerical modelling of evolving 245 

rheology and temperature [Pérez-Gussinyé and Reston 2001] predicts that at stretching factors of 3-246 

4 the crust becomes entirely brittle and the subcrustal mantle cools enough (<600ºC) to serpentinise 247 

at rifting rates appropriate for the Porcupine Basin [Reston et al., 2004], especially in the absence of 248 

voluminous syn-rift magmatism [Tate & Dobson, 1988] to advect heat. 249 

The degree of extension in the northern region of the basin has been assessed in Watremez et al. 250 

[2016] by combining velocity model P03 with its coincident seismic line Wire2 (Fig. 1). The result 251 

of this combination reveals that the minimum crustal thickness along P03 is ~5 km, corresponding to 252 

a βc of ~6 (at ~120 km of profile distance; Fig. 4b), assuming an original crustal thickness of ~30 km 253 

SW of Ireland [Lowe & Jacob, 1989; O’Reilly et al., 2010]. This amount of extension is well within 254 

the range at which crustal embrittlement is expected [i.e. 3-4 in Pérez-Gussinyé and Reston 2001]. 255 

In the south, the comparison between the seismic reflection line 106 and the velocity model along 256 

P02 shows that the geometry of the P-detachment resembles that of the WAS-derived Moho (Fig 7b). 257 

Particularly, between km 140 and 155 the WAS-derived Moho follows the base of reflections 258 

associated with the Moho according to Reston et al [2001]. However, some discrepancies exist 259 

between these two seismic interfaces. Towards the east, between km 155 and 165 (Fig. 7b), the WAS-260 

derived Moho is slightly shallower (i.e. < 0.5 s two-way time) than the eastward-dipping reflections 261 

interpreted by Reston et al [2001] as the Moho (Fig. 7). Given that the fault plane of the detachment 262 

and the eastward-dipping reflections associated with the Moho are close to each other in this particular 263 

area, such discrepancy could be attributed partly by cycle-skipping in PmP arrival times. Further 264 

discrepancy is observed towards the west, between km 135 and 140 (Fig. 7b), where the P-detachment 265 

in the reflection is steeper than the tomographically resolved Moho (Fig. 7b). In this case, a single 266 

strong impedance contrast is observed in the reflection line, which makes cycle-skipping unlikely. 267 

Alternatively, seismic reflection lines (Fig. 7) reveal that the P-detachment flattens rapidly along the 268 

basin axis from north to south. Hence, given that line P02 was acquired 5 km south of 106 it is likely 269 

that the geometry of the P-detachment varies from line 106 to P02 farther south. Also, the smoothing 270 

inherent in the inversion might have contributed to this difference. Regardless of these discrepancies, 271 

the wide-angle reflection modelled as the Moho is defined by a significant velocity contrast (> 1.5 s-272 
1) and it overlies material with Vp ~8 km/s, making this interface an ideal candidate for the Moho. 273 

Our results thus support the hypothesis of Reston et al. [2001] that most of the P-detachment forms 274 

a tectonic boundary between the crust and the mantle, and that crustal faulting associated with the P-275 

detachment would have facilitated mantle serpentinisation. 276 
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The combination of the reflection line 106 and model P02 also allows us to provide some estimates 277 

of crustal thickness. We infer that the crystalline basement, if any, in the most extended region along 278 

line P02 could be as thin as 2 km (i.e., between 140 and 155 km of line P02, Fig. 7), which implies a 279 

βc > 10. At this degree of extension, rifting could have reached breakup, which means that syn-rift 280 

sediments (now exhibiting crustal velocities) could be deposited directly on the mantle in this region 281 

of the central Porcupine Basin. This configuration would imply that a substantial part of the rift 282 

process has been accompanied by ongoing serpentinisation, which is in agreement with low mantle 283 

Vp observed along model P02 (i.e. ~ 7.0-7.5 km/s in Fig. 6b ). 284 

To test Vp from our models and explore the hypothesis of variations in mantle hydration across the 285 

Porcupine Basin axis we performed gravity modelling following the method of Korenaga et al. 286 

[2001]. We tested two possible scenarios: a model with homogeneous unaltered mantle, and a model 287 

with lateral variations of density in accordance with seismic velocities. This way, Vp from our models 288 

was converted to density (ρ) using the Vp-ρ relationships of Hughes et al. [1998] for sediments and 289 

Christensen & Mooney [1995] for the crystalline continental crust. For the mantle, a ρ of 3.3 g/cm3 290 

was assumed for the first scenario, while Carlson and Miller’s [2003] relationship for serpentinised 291 

mantle rocks was used to test the second scenario. The results show that for both lines P02 and P03 292 

the best-fitting gravity anomaly is that derived from ρ models of the second scenario, in which 293 

densities in the uppermost mantle vary across the basin axis (Fig. 8). These results support Vp 294 

obtained from travel time tomography and a heterogeneous hydration of the mantle.  295 

We compare the tectonic structure with the velocity field (Fig. 7b) to explore for potential reasons for 296 

such variations in mantle hydration. This comparison reveals that crustal faulting in the Porcupine 297 

Basin is spatially denser above the lowest mantle Vp (i.e., highest degree of serpentinisation), whereas 298 

it is less intense above areas where mantle Vp is higher (i.e., lower degree of serpentinisation) (Fig. 299 

7b). This correlation suggests that crustal-scale faulting has controlled mantle hydration in the 300 

Porcupine Basin, similar to the Galicia margin, where it has been suggested that water supply to the 301 

mantle occurred when faults were active [Bayrakci et al., 2016].  302 

5.2 Along‐axis	variations	of	mantle	hydration:	implications	for	the	formation	of	the	303 

Porcupine	Basin	304 

The comparison between dip lines P03 and P02 shows that mantle Vp decreases from north to south 305 

in those areas where the inferred degree of mantle hydration is higher along both models (Fig. 9b). 306 

This observation suggests a southward increase in the degree of serpentinisation along the basin axis, 307 

from 15-20 % to 25-35% (Fig. 9b). Interestingly, seismic reflection lines show that the P-detachment 308 

is only visible south of line Wire2 (Fig. 9c) [Klemper and Hobbs 1991], where the inferred degree of 309 

hydration is higher than 15% (Fig. 9b). This correlation is consistent with laboratory measurements, 310 
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which indicate that a 10-15% degree of serpentinisation is needed to reduce significantly the friction 311 

coefficient of the original mantle rock, allowing the development of low-angle normal faults 312 

[Escartín et al., 2001; Reston et al., 2007].  313 

Given the relevance of crustal faulting in controlling mantle hydration, we looked for along-axis 314 

variations in crustal faulting. Seismic reflection line Wire2 (Figs. 1 and 9), coincident with line P03, 315 

displays the lowest quality at depth of the four seismic reflection lines shown in Fig. 9c as it was 316 

acquired with the shortest streamer [i.e. 4 km; Klemper and Hobbs 1991]. Hence, crustal faults are 317 

poorly imaged in depth compared to line PAD (10 km long streamer), 103 and 106 (6 km long 318 

streamer), all acquired with a longer streamer than Wire2 (4 km long streamer). Despite this quality 319 

issue, Wire2 clearly images one crustal fault (Fig. 9c) reaching the WAS-derived Moho (blue dashed 320 

line in Fig. 9c). Southwards from Wire2, seismic lines PAD, 103 and 106 show the surface of the P 321 

detachment (white dots in Fig. 9c), which becomes larger southwards together with the number of 322 

seismically resolved crustal faults (red dashed lines in Fig 9c). In particular, the syn-rift section along 323 

the southernmost seismic line 106 contains at least seven faults that crosscut the entire section down 324 

to the P-detachment. Velocities along P02 are < 6km/s in the lower crust (i.e. between km 130 and 325 

145 of Fig. 7), which is in agreement with the highest concentration of faulting. Overall, the seismic 326 

reflection lines in Fig. 9c show that crustal faulting in the Porcupine Basin increases southwards in 327 

agreement with the degree of extension, and mantle hydration. 328 

We have compared the Vp-derived degree of serpentinisation from those areas of models P02 and 329 

P03 where mantle Vp is lowest and ray coverage is satisfactory (Fig. 10), with the amount of 330 

seismically-resolved crustal faulting along their corresponding neighbouring seismic reflection lines 331 

(i.e., Wire2 for P03, and 106 for P02). This comparison illustrates the good correlation between the 332 

degree of mantle hydration and the number of crust-penetrating normal faults along the basin axis 333 

(Fig. 10). However, there is no apparent impedance contrast between the syn- and pre-rift section 334 

within half-grabens (Fig. 9c), and no well has been drilled that deep (i.e. > 8 km), so we cannot 335 

reliably estimate fault displacements. Thus, we cannot assess whether the number of faults or the fault 336 

displacement [Bayrakci et al., 2016] is more important in controlling access of water to the uppermost 337 

mantle in the Porcupine Basin.  338 

Regardless of the displacement of faults, our results provide observational evidence of the 339 

development of tectonic features related to progressive stretching and serpentinisation along the axis 340 

of the Porcupine Basin. As shown by dip lines P03 and P02, the degree of extension increases 341 

southwards. This is better illustrated by model P04 (Fig. 4a), in which a βc of ~2.5 can be estimated 342 

in the northernmost section of the basin - assuming a Vp of ~5.5 km/s as the top of the crystalline 343 

basement - increasing to βc > 10 in the southern part of the study area (~ 51.7oN). The low degree of 344 



12 
 

 

extension in the northernmost section of the basin suggests that crustal embrittlement may not have 345 

occurred in this region [βc < 3; Pérez-Gussinyé and Reston 2001]. Thus, based on line P04, the along-346 

axis transition between rifting and potential crustal breakup occurs over a distance of 80 km. Within 347 

this transition, the degree of serpentinisation increases towards the south, where it reaches maximum 348 

values of ~35-40% (Fig. 10). In addition, as the degree of serpentinisation increases the P-detachment 349 

becomes more important as its surface grows southwards (Fig. 7b).  350 

Based on these observations, one possible formation model of the basin is that crustal embrittlement 351 

and mantle serpentinisation started in the south of our study area. Increased serpentinisation (> 15%) 352 

and extension then caused the formation of the P-detachment in the same region, creating a weak spot 353 

in the rift. Then, progressive lithospheric stretching allowed the propagation of crustal deformation 354 

to the north along the basin axis. As long as crustal faults remained permeable enough to percolate 355 

water to the mantle and rift temperatures were <~600oC, serpentinisation and the development of the 356 

P-detachment would have also propagated along the basin axis in agreement with the degree of 357 

stretching. This scenario implies that hyperextension occurred first in the southern region of our study 358 

area and propagated to the north of the basin later. 359 

Alternatively, crustal embrittlement, serpentinisation and development of low-angle faults might have 360 

occurred contemporaneously along the basin axis. Since the amount of extension increases 361 

southwards, more crustal faults would have developed in the centre of the basin than in the north. 362 

Thus, more water would have accessed the mantle in the central region than in the north favouring 363 

faster serpentinisation and development of detachment faults. This scenario implies that the central 364 

region has opened at higher rates than the northern basin. Given the importance of extension rates in 365 

controlling partial decompression melting during lithospheric stretching [Reid and Jackson 1981; 366 

Pérez-Gussinyé et al., 2006], this latter scenario could explain the presence of voluminous 367 

magmatism in the south Porcupine Basin [Calves et al., 2012; Watremez et al., 2016]. Thus, we 368 

consider this second scenario as our preferred model of the basin formation, as it is compatible with 369 

tectonic and inferred magmatic events further south in the Porcupine Basin. However, our data do not 370 

allow us to distinguish between both models, as they fail to provide chronological information of the 371 

syn-rift sequence related to crustal faulting along the basin axis. Further data (i.e. well and 3D seismic 372 

data) are needed in the centre and southern region of the Porcupine Basin to more fully understand 373 

the formation of the basin. 374 

Overall, despite of their different assumptions regarding the timing of tectonic events, in both models 375 

the initial distribution of crustal deformation during rifting controls the location and extent of 376 

serpentinisation, which together with the amount of extension, governs the onset and growth of 377 

detachment faults, and hence of hyperextension in the Porcupine Basin. 378 
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6 Conclusions 379 

The Vp models presented in this study show the uppermost lithospheric seismic structure and the 380 

geometry of the Moho, across and along the Porcupine Basin axis with unprecedented detail. The 381 

velocity structure shows an 8-9 km thick post-rift sedimentary blanket with Vp between 1.5 and 4.5 382 

km/s. The underlying basement displays Vp between 5.0-5.5 to 6.6-6.8 km/s, except for some areas 383 

along P02 where lower crustal velocities are < 6.0 km/s. The combination of seismic reflection line 384 

106 and model P02 reveals that Vp < 6.0 km/s are associated to a high degree of fracturing. 385 

The combination of Vp models with the tectonic structure allows us to estimate βc along each 386 

tomographic model. Our results confirm that the degree of extension increases dramatically 387 

southward from βc ~ 2.5 in the north of the basin to > 10 in the southern part of the study area (~ 51.5o 388 

N). Low βc values in the north imply that no crustal embrittlement occurred in this region of the 389 

Porcupine Basin. Based on these results, the along-axis transition between rifting and potential crustal 390 

breakup occurs over an 80 km region in the Porcupine Basin axis. 391 

Velocity models also reveal that mantle velocities decrease from east to west up to 1 km/s across the 392 

basin axis. These velocities can be explained either by variations in the presence of subcrustal 393 

magmatic rocks or mantle serpentinisation. The lack of voluminous syn-rift magmatism in this area 394 

of the Porcupine Basin is difficult to reconcile with the first hypothesis, and the presence of major 395 

crustal faults spatially coinciding with the lowest subcrustal Vp suggests that faults controlled mantle 396 

hydration in the Porcupine Basin. 397 

The comparison between P03 in the north and P02 in the south reveals that the degree of 398 

serpentinisation increases southwards from 15-20 % to 25-35%. This is consistent with the fact that 399 

the P-detachment is only visible south of P03, where the degree of alteration is > 15 %, and hence 400 

sufficient for low-angle faulting [Escartín et al., 2001; Reston et al., 2007]. Our results show that 401 

along-axis variations in the degree of serpentinisation correlate linearly with the number of crustal 402 

faults identified along seismic reflection lines.  403 

Based on the seismic and tectonic structure of the basin presented here we suggest two likely scenarios 404 

of basin formation. The first one postulates that crustal embrittlement, serpentinisation and 405 

hyperextension occurred first in the southern region of the study area and then propagated northward. 406 

The second scenario proposes that serpentinisation and crustal deformation occurred 407 

contemporaneously along the basin axis implying faster rates of extension in the south than in the 408 

north. In both scenarios, the original distribution of crustal faulting determines the location and extent 409 

of serpentinisation, which eventually governs the kinematics of detachment faults.  410 
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Overall, our work presents for the first time observational evidence of crustal strain-dependent 411 

serpentinisation in the Porcupine Basin and its implications for the development of tectonic processes 412 

related to hyperextension. 413 
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Figures 556 

 557 

Figure 1.- (a) Bathymetry of the Porcupine Basin, southwest of Ireland (see inset), depicting the 558 

location of wide-angle seismic lines (red lines) and seismic reflection lines (black lines) used in this 559 

study. Wire2 was presented by Klemper and Hobbs [1991]. Seismic reflection lines 103 and 106 were 560 

previously presented by Reston et al. [2001, 2004]. Red circles are ocean-bottom receivers used to 561 

acquire wide-angle seismic data. Bathymetry data set is from Weatherall et al. [2015]. (b) Free air 562 

gravity anomaly map of the Porcupine Basin obtained from satellite data [Sandwell et al., 2014]. The 563 

red rectangle highlights the area of the gravity anomaly related to the Porcupine Arch. 564 
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 565 

Figure 2.- Record sections of the vertical component of OBS 35 (a, b) and 48 (c, d) along P02, and 566 

OBS 51 (e, f) and hydrophone 61 (g, h) along P03. Panels b, d f, and h show observed seismic phases 567 

(coloured error bars), and calculated travel times (red dots). Record sections are reduced at 8 km/s. 568 
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Reflected sedimentary seismic phases were used to invert for those sedimentary interfaces shown in 569 

Fig. A1. 570 

 571 

Figure 3.- Close up of record sections from hydrophone 33 (a), 39 (b), 36 (c) and 42 (d) along P02, 572 

showing critical reflected phases interpreted as PmP. Note that all record sections are reduced in time 573 

using a velocity of 8 km/s. 574 
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 575 

Figure 4.- (a) P-wave velocity (Vp) model P04 (strike line), (b) P03 and (c) P02 (dip lines). Seismic 576 

velocities are shown where the derivative weight sum is > 0 (see Fig. A3 for more information on the 577 

derivative weight sum). Note that the uppermost mantle is well covered by rays in the area of interest 578 

for the study (i.e. the basin centre). Blue line is the PmP-derived Moho (see Fig. A4 for ray tracing of 579 

PmP arrivals). Red dots are ocean-bottom seismometers/hydrophones. 580 
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 581 

Figure 5.- Standard deviation of Vp values of the average solution of the Monte-Carlo analysis for 582 

profiles P04 (a), P03 (b), and P02 (c). The width of the red band shows the standard deviation of the 583 

depth of the Moho. 584 
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 585 

Figure 6.- 1D Vp vs depth diagrams of the uppermost mantle of models P03 (a) and P02 (b) showing 586 

across-axis variations in mantle Vp. The degree of serpentinisation is derived from Vp using the 587 

empirical relationship of Carlson and Miller [2003], assuming a Vp of 8.2 km/s for unaltered 588 

peridotite (i.e. 0% serpentinisation). The grey area represents the standard deviation computed from 589 

the Monte-Carlo analysis, and the black solid lines are the vertical velocity structure extracted from 590 

models in Fig. 4 at the profile distance given in the figure. We interpret the steep velocity gradient 591 

(~1s-1) in the first 2 km of each profile as a partially serpentinised, tectonically-controlled shear zone 592 

between the crust and mantle, whereas the gentle gradient below (~0.1 s-1) suggests a change to a less 593 

pervasively deformed but still fractured zone with less serpentinisation. (c) and (d) are 1D Vp vs depth 594 

diagrams comparing the seismic structure of profiles P03 and P02 with that of P04 at the intersection 595 

point between models.  596 
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 597 

Figure 7.- (a) Time-migrated seismic reflection line 106 showing crustal faults modified from Reston 598 

et al. [2004]. Red dots are OBS/H, while yellow and orange dots depict the top of the Cretaceous unit 599 

and top of the syn-rift sequence, respectively. Green dots follow the P-detachment reflectivity there 600 

where it corresponds to the Moho. Black arrows show the eastward dipping reflectivity interpreted as 601 

the Moho by Reston et al. [2001]. Black arrows also depict the location where the P-detachment 602 

diverges from the Moho and becomes an intracrustal feature (see Fig. 2 in Reston et al., 2001). TWT: 603 

two-way time (b) Time-migrated seismic reflection line 106 overlaid by seismic velocities of model 604 

P02 converted from depth to two-way time assuming a near-vertical propagation. The width of the 605 

blue band shows the standard deviation of the depth of the WAS-derived Moho calculated in the 606 

Monte-Carlo analysis. See section 5.1 for detailed discussion on the mismatch between the WAS-607 

derived Moho and the MCS-interpreted Moho observed along this image. 608 
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 609 

Figure 8.- (a) Observed free air gravity anomaly (FAA) from satellite measurements [Sandwell et 610 

al., 2014] (white circles) and synthetic anomaly (red & green lines) obtained along line P03. (b) 611 

Density model used to compute the best-fitted synthetic anomaly along P03 (green line). The Moho 612 

(blue line) has been extracted from velocity models in Fig. 4, and modified in the margins, where PmP 613 

ray coverage was poor. The red line was obtained using the same density model as in (b) but with a 614 

3.3 g/cm3 homogeneous mantle density. (c) and (d) correspond to the same as (a) and (b), respectively, 615 

but along line P02. These results show that across-axis variations in mantle density are required to 616 

explain the gravity anomaly, and therefore support across-axis variations in the degree of 617 

serpentinisation. 618 
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 619 

Figure 9.- (a) 3D view of the gravity anomaly highlighted in Fig. 1b. Thick black lines depict the 620 

location of WAS lines, whereas thin grey lines show the location of reflection lines used in this study. 621 

(b) 1D Vp vs depth diagrams of the upper mantle of models P02 and P03 showing how upper mantle 622 

Vp decreases southwards, suggesting an increasing degree of serpentinisation. The shaded areas show 623 

the standard deviations computed from the Monte-Carlo analysis. (c) From top (north) to bottom 624 

(south), time-migrated seismic reflection lines Wire2, PAD, 103 and 106, showing the increment of 625 

crustal faulting (dashed red lines) and variations of the P-detachment surface (green circles) along the 626 
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basin axis. Blue dashed line is the Moho derived from WAS data. Orange dots depict top of syn-rift, 627 

while yellow dots show top Cretaceous. Wire2 was previously discussed by Klemper and Hobbs 628 

[1991] and Watremez et al. [2016]. 629 

 630 

Figure 10.- (a, b) Ray coverage of the lower crust and uppermost mantle along lines P03 and P02, 631 

respectively. The width of the blue band shows the standard deviation of the depth of the Moho, while 632 

the red box depicts the region chosen to derive the vertically averaged degree of serpentinisation 633 

shown in (d). These areas are selected because they are constrained by comparatively high ray 634 

coverage, and because they are located beneath crustal faulting potentially responsible for mantle 635 

hydration. (c) Vertically averaged Vp-derived degree of serpentinisation from the red box in (b) and 636 

(c) vs the number of crustal faults interpreted from seismic reflection lines Wire2 (coincident to P03) 637 

and 106 (neighbour to P02). The degree of serpentinisation was derived from Vp using the empirical 638 

relationship of Carlson and Miller [2003]. The interpreted amount of faulting is displayed within a 639 

range of uncertainty based on observations from seismic lines in Fig. 9c. The uncertainty of the degree 640 

of serpentinisation is derived from results of the Monte-Carlo analysis in Fig. 5. 641 

  642 



30 
 

 

Figures A1 to A4 provide information about the layer stripping sequence followed to obtain the 643 

tomographic models P04, P02, and P03, as well as ray tracing information of each model. Tables A1 644 

to A3 contain information regarding modelling statistics of each tomographic model.  645 

 646 

 647 

Figure A1.- Close up of record sections of the vertical component of OBS 35 (a, b) along P02, and 648 

hydrophone 61 (c, d) along P03. Panels b, d show observed seismic phases (coloured error bars, see 649 

Fig. 2 for colour code), and calculated travel times (red dots). Record sections are reduced at 3.5 km/s. 650 

Reflected sedimentary seismic phases were used to invert for those sedimentary interfaces shown in 651 

Fig. A2. 652 
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 654 

 655 

Figure A2.- Layer stripping sequence of models P04 (a), P03 (b) and P02 (c). This sequence 656 

illustrates the construction of each model. Examples of travel times used to invert for sedimentary 657 

interfaces are shown in Fig. 2.  658 
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 659 

 660 

Figure A3.- Derivative weight sum of profiles P04 (a), P03 (b) and P02 (c). These images provide a 661 

quantitative estimate of the ray density along this line 662 

 663 
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Figure A4.- Ray tracing of PmP arrival times of WAS profiles P04 (a), P03 (b) and P02 (c). Blue 664 

thick line shows the inverted geometry of the Moho, whereas red dots are ocean-bottom receivers. 665 

Black line depicts the seafloor topography. 666 

 667 

Table A1. Modelling statistics for P02. The “refr” (refractions), “refl” (reflections)” and “all” subscripts 

refer to the parts of dataset considered. 

Step Iteration* Nrefr† Nrefl† tRMS-refr‡ tRMS-refl‡ tRMS-all‡ χ2
refr§ χ2

refl§ χ2
all§ 

1 12 1,658 2,404 85 48 68 1.09 0.60 0.80 

2 14 3,990 4,782 55 66 61 0.35 0. 90 0.67 

3 14 14,475 3,316 76 60 73 0.79 0.94 0.82 

4 14 18,493 3,316 75 69 74 1.00 1.06 1.01 

*Iteration chosen to build the input model of next step (or final model for step 6). 668 
†Numbers of picks used for the modelling. 669 
‡Root mean squared travel‐time residuals, in milliseconds. 670 
§Normalised chi‐squared.  671 

 672 

Table A2. Modelling statistics for P03. The “refr” (refractions), “refl” (reflections)” and “all” subscripts 

refer to the parts of dataset considered. 

Step Iteration* Nrefr† Nrefl† tRMS-refr‡ tRMS-refl‡ tRMS-all‡ χ2
refr§ χ2

refl§ χ2
all§ 

1 4 654 1,050 32 31 32 1.18 0.22 0.58 

2 9 978 886 25 32 28 0.82 0.13 0.49 

3 9 2,399 3,445 20 38 32 0.48 0.25 0.35 

4 9 4,410 4,124 17 29 23 0.29 0.12 0.21 

5 9 5,955 1,819 36 83 51 0.98 1.04 0.99 

6 4 15,580 3,004 58 95 65 0.60 1.11 0.69 

7 4 17,348 3,004 61 84 65 0.62 0.91 0.66 

*Iteration chosen to build the input model of next step (or final model for step 6). 673 
†Numbers of picks used for the modelling. 674 
‡Root mean squared travel‐time residuals, in milliseconds. 675 
§Normalised chi‐squared.  676 
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 677 

Table A3. Modelling statistics for P04. The “refr” (refractions), “refl” (reflections)” and “all” subscripts 

refer to the parts of dataset considered. 

Step Iteration* Nrefr† Nrefl† tRMS-refr‡ tRMS-refl‡ tRMS-all‡ χ2
refr§ χ2

refl§ χ2
all§ 

1 2 1,515 1,507 11 22 17 0.28 0.28 0.28 

2 2 4,634 5,159 14 30 24 0.19 0.41 0.30 

3 2 5,252 2,676 20 52 34 0.19 0.83 0.41 

4 2 8,979 4,658 38 67 50 0.29 0.81 0.47 

5 2 8,979 5,241 33 50 40 0.23 0.39 0.29 

6 1 16,467 5,241 63 49 60 0.45 0.39 0.44 

*Iteration chosen to build the input model of next step (or final model for step 6). 678 
†Numbers of picks used for the modelling. 679 
‡Root mean squared travel‐time residuals, in milliseconds. 680 
§Normalised chi‐squared. 681 

 682 

 683 

 684 


