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ABSTRACT 

Background and Aims: Proteomics holds promise for individualizing cancer treatment. We 

analyzed to what extent the proteomic landscape of human colorectal cancer (CRC) is 

maintained in established CRC cell lines and the utility of proteomics for predicting therapeutic 

responses. 

Methods: Proteomic and transcriptomic analyses were performed on 44 CRC cell lines, 

compared against primary CRCs (n=95) and normal tissues (n=60), and integrated with genomic 

and drug sensitivity data. 

Results: Cell lines mirrored the proteomic aberrations of primary tumors, in particular for 

intrinsic programs. Tumor relationships of protein expression with DNA copy number 

aberrations and signatures of post-transcriptional regulation were recapitulated in cell lines. The 

five proteomic subtypes previously identified in tumors were represented among cell lines. 

Nonetheless, systematic differences between cell line and tumor proteomes were apparent, 

attributable to stroma, extrinsic signaling and growth conditions. Contribution of tumor stroma 

obscured signatures of DNA mismatch repair identified in cell lines with a hypermutation 

phenotype. Global proteomic data showed improved utility for predicting both known drug-

target relationships and overall drug sensitivity as compared to genomic or transcriptomic 

measurements. Inhibition of targetable proteins associated with drug responses further identified 

corresponding synergistic or antagonistic drug combinations. Our data provide evidence for CRC 

proteomic subtype-specific drug responses. 

Conclusions: Proteomes of established CRC cell line are representative of primary tumors. 

Proteomic data tend to exhibit improved prediction of drug sensitivity as compared to genomic 
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and transcriptomic profiles. Our integrative proteogenomic analysis highlights the potential of 

proteome profiling to inform personalized cancer medicine. 

Keywords: colorectal cancer, cell lines, proteomics, drug sensitivity   
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INTRODUCTION 

Studies of the genomic and transcriptomic landscapes of human colorectal cancer (CRC), have 

been instrumental in advancing our understanding of disease biology and the identification of 

clinically actionable aberrations 1-3. While the major genomic and transcriptomic hallmarks and 

subtypes of CRC have been defined 4, 5, these explain only part of tumor clinical heterogeneity. 

The next challenge is to gain a detailed understanding of the dynamic protein pathways involved 

in normal and disease states, and we have recently characterized the proteome of primary CRCs 

from patients participating in The Cancer Genome Atlas (TCGA) project, identifying five major 

proteomic subtypes (Clinical Proteomic Tumor Analysis Consortium (CPTAC) 6). From a 

therapeutic perspective, most drug targets are proteins rather than nucleic acids, and we have 

shown that DNA- or mRNA-level measurements are poor predictors of protein abundance 6. 

Cancer cell lines are the most commonly utilized model systems in tumor biology and 

therapy development. Large cancer cell line-based projects, such as NCI-60 7, Cancer Cell Line 

Encyclopedia (CCLE) 2 and Genomics of Drug Sensitivity in Cancer (GDSC) 3, have used 

molecularly heterogeneous cancer cell lines to identify stratification biomarkers and signatures 

for precision medicine. Nonetheless, controversy remains whether cell lines provide an 

appropriate representation of primary tumors, given the lack of organismal context, different 

growth conditions, and selection or acquisition of additional aberrations in vitro. Genomic 

analyses indicate that established cancer cell lines are suitable molecular proxies for primary 

tumors in many cancer types 2, yet findings at the transcriptomic level have been variable, with 

data for hepatocellular carcinoma 8 and colorectal cancer (CRC) 9 indicating similarity between 

cell lines and primary tumors, whilst data for breast cancer suggest pronounced differences 10. 
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Although some global proteomics data sets for cancer cell lines are available 11, 12 there exists no 

large-scale proteomic study comparing cell lines with primary tumors. It remains unknown 

whether cancer cell lines are representative of primary tumors at the proteome level and to what 

extent molecular programs and proteogenomic relationships are maintained in vitro. The relative 

utility of proteomic data as a predictor of anti-cancer drug responses in comparison to genomic 

and transcriptomic modalities has not been systematically investigated. 

Here, we generated proteomic and transcriptomic data for a panel of 44 human CRC cell 

lines previously characterized at the genomic level 13. We performed a comprehensive 

integrative proteogenomic analysis across these 44 cell lines and 95 CRCs and 60 normal tissue 

biopsies analyzed in our CPTAC project 6 to systematically evaluate cell lines as tumor models. 

We further integrated cell line proteogenomic data with drug sensitivity measurements to assess 

the utility of different types of omics data for predicting therapeutic responses and to connect 

tumor proteomic subtypes to drug sensitivity. 

MATERIALS AND METHODS

CRC cell lines and primary tumors. A total of 44 CRC cell lines were studied 

(Supplementary Table 1, Supplementary Methods). In addition, we retrieved previously 

published genomic, transcriptomic and proteomic data on 95 primary tumor specimens from 90 

CRC patients and proteomics data from 60 normal colon biopsies from 30 patients from our 

original CPTAC study 6, as well as RNA-Seq data for 48 normal colon and rectum samples 

deposited by the TCGA (Supplementary Table 2-3). 
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LC/MS-MS. The protein extraction and tryptic digestion of the frozen cell line pellets were 

performed as previously described for TCGA CRC specimens 6 (Supplementary Methods). 

Raw data for the cell lines, database search results, and the two versions of assemblies can be 

found at the Mass spectrometry Interactive Virtual Environment (MassIVE, ftp to 

massive.ucsd.edu, username: MSV000080374, password: a. HTTP access from the MassIVE 

website will be available after publication of the manuscript).

Transcriptome sequencing. RNA samples from CRC cell lines were extracted from pellets 

collected at the same time as the samples for proteomics analysis and sequenced to a depth of at 

least 28 million reads. Reads were subsequently aligned to human genome build Hg19 using 

Tophat (Supplementary Methods). 

SNP microarray analysis. SNP array data on 38 cell lines from our cohort have been published 

previously 13. SNP array assays on the additional DiFi, GEO, IS1, IS2, IS3 and V9P cells were 

performed at the Australian Genome Research Facility (AGRF) using CytoSNP-850K v1.1 and 

processed using OncoSNP v2.18 suite (Supplementary Methods). 

Exome-capture sequencing. Whole exome mutation data on 35 CRC cell lines from our cohort 

have been published previously 13. Additionally, DIFI, GEO, IS1, IS2, IS3, LIM1863, LIM2537, 

V9P and VAC05 cells were sequenced using the Nextera Rapid Capture Expanded Exome 

Enrichment Kit (Illumina) on an Illumina HiSeq 2000 System at the AGRF. Sequence alignment 

and calling of SNVs and INDEL in the absence of matched normal tissue were performed using 
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a hybrid of the GATK Germline and Somatic Best Practice Variant Detection Protocols 

(Supplementary Methods). 

Variant peptide identification and analysis. To identify variant peptides, we derived 

customized protein sequence databases from matched WES and RNA-Seq data and then 

performed database searches using these databases for individual samples (Supplementary 

Methods). 

VOOM/LIMMA analysis. Voom/limma analyses were performed using Limma and edgeR R 

packages, and method sensitivity and specificity for spectral count data were validated using the 

spike-in data set generated by the 2015 study of the Proteome Informatics Research Group 

(iPRG) of the Association of Biomolecular Resource Facilities (ABRF) (Supplementary Fig. 1, 

Supplementary Methods). 

Online databases. The Human Protein Atlas, tumor stroma markers, KEGG pathways and 

GDSC (Genomics of Drug Sensitivity in Cancer) drug sensitivity data were downloaded from 

online resources (Supplementary Methods). 

Correlation analysis. Spearman’s correlation analysis of steady state mRNA and protein 

abundance, mRNA and protein variation, and relative mRNA-protein abundances required 

additional normalization steps that are outlined in Supplementary Methods. 
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Pathway signature identification. To assess whether genes in a given KEGG pathway had 

differing expression in tumors or cell lines relative to normal colorectal tissue, we modelled the 

protein or mRNA expression levels (cpm values for quantifiable genes) of pathway members 

using a linear mixed-effects model (lme4 R package) (Supplementary Methods). 

Comparison of the impact of copy number alteration on protein abundance for cell lines 

and tumors. Evaluation of the association between copy number alteration and protein or 

mRNA levels were carried out using voom/limma analysis utilizing robust linear regression for 

gene-level log R ratios against protein or RNA-Seq expression levels (Supplementary 

Methods).

Comparison of the effect of candidate oncogene-targeting shRNAs on the proliferation of 

colon cancer cell lines. The shRNA gene level data was downloaded from the Achilles project 

website (https://portals.broadinstitute.org/achilles/datasets/5/download) and contained eight 

colon cancer cell lines overlapping with our 44 cell lines. We calculated the Spearman’s 

correlation between shRNA score and log-transformed DNA copy number data across eight cell 

lines for each candidate oncogene (Supplementary Methods).  

Drug sensitivity studies. Oxaliplatin (Cat# S1224), erlotinib (Cat# S7786) and regorafenib 

(Cat# S1178) were purchased from Selleck Chemicals. 5-fluorouracil (Cat# F6627) was obtained 

from Sigma. Cells were seeded into 384-well plates with compounds added to the cells in 

quadruplicate for 72hr. Cell viability was determined using CellTiter Glo 2 (Supplementary 
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Methods). For drug combination screening in HCT116 cells, 123 drugs were accessed from 

Compounds Australia, Griffith University, Australia (Supplementary Tables 4-5).  

Comparison of omic modalities for prediction of drug sensitivity. Assessment of the utility of 

proteomic data for drug sensitivity prediction relative to mutation, DNA copy number, and 

mRNA expression data was undertaken using random forests and five-fold cross-validation for 

5-fluorouracil, erlotinib, oxaliplatin, regorafenib and SN-38 over our panel of 44 CRC cell lines 

(Supplementary Methods). 

Cell line proteomic and CMS subtype predictions. To assign cell lines to our previously 

identified proteomic subtypes 6, the R package pamr (http://CRAN.R-project.org/package=pamr) 

was used to apply our predefined signature genes from our CPTAC CRC tumor study to the cell 

line proteomic data (Supplementary Methods). 

To assign CMS subtypes to cell lines and a dataset of 5 matched primary and metastatic 

tumor pairs (deposited in NCBI GEO: GSE90814), we used the CMSclassifier package in R 

(https://github.com/Sage-Bionetworks/CMSclassifier). (Supplementary Methods).

RESULTS 

Proteomic analysis of CRC cell lines 

We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) based 

shotgun proteomic analyses on 44 established CRC cell lines (Supplementary Table 1, 

Supplementary Fig. 2), identifying a total of 10,643 distinct peptides (2,548,082 spectra) in an 
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assembly of 7,796 protein groups with a protein-level False Discovery Rate (FDR) of 4% 

(Supplementary Table 6). To capture protein variants, we further searched customized protein 

sequence databases derived from matched whole exome sequencing (WES) and RNA-Seq data 

(Supplementary Tables 7-8). Out of 111,022 non-synonymous SNVs from RNA-Seq and WES 

data, we observed 1,702 unique variants at the proteomic level including 276 somatic variants 

reported in the TCGA/COSMIC databases and 952 germline variants listed in the Single 

Nucleotide Polymorphism Database (dbSNP) (Supplementary data, Supplementary Table 9, 

Supplementary Fig. 3-4). The sparse detection of non-synonymous SNVs by peptide 

sequencing is consistent with our previous findings in primary tumors 6, reflecting the partial 

protein-coding sequence coverage achievable with the current proteomic technology. 

Protein inventory concordance between cell line, tumor and normal samples 

The cell line proteomic analysis was performed on the same platform previously used for 

the analysis of the TCGA tumors (n=95) and normal tissues (n=60) in our CPTAC project 6, and 

analysis of quality control samples across both projects demonstrated high platform stability 

(Supplementary Fig. 5). To determine the overlap between protein inventories of CRC cell line, 

tumor and normal colon samples, proteomic data were integrated into a joint assembly of 9,101 

protein groups (Supplementary Table 2). The protein inventory of cell lines was highly similar 

to those from tumor and normal tissues, exhibiting 98.0% and 90.9% overlap, respectively 

(Supplementary Fig. 6a). 103, 42 and 20 proteins were detected exclusively in cell line, tumor 

and normal samples, but most of these were low abundance proteins at the threshold of detection 

(Supplementary Fig. 6b-6d). Notably, proteome analysis detected 48% of the 18,178 protein-

coding genes identified in corresponding mRNA datasets including the 44 matched cell line 
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samples, 87 matched tumor samples, and 48 normal samples (Supplementary Table 3), with 

similar representation of the major Gene Ontology (GO) categories (Supplementary Fig. 7). In 

the following analyses, we only used robustly quantifiable proteins, i.e., proteins with a spectral 

count per million (CPM) >20 in 20% of samples. 

Contribution of stroma components to tumor proteomes

Among the 4,904 quantifiable proteins from the CRC tumor and cell line proteomes, 747 

(15.2%) exhibited significantly higher levels in the cell lines, whereas 979 (20.0%) displayed 

higher levels in the tumors (FDR<5% and fold-change >2, voom/limma, Figure 1a,

Supplementary Table 10). Using GO enrichment analysis in WebGestalt 14, cell line-

overexpressed proteins were enriched for cell growth and proliferation-related biological 

processes, such as metabolism and cell cycle, as anticipated for a comparison between in vitro

cultured cell lines in log phase growth and primary tumor cells in vivo (Figure 1b, 

Supplementary Table 11a and Supplementary Fig. 8a). In contrast, tumor-overexpressed 

proteins were enriched for processes related to immune response, extracellular matrix, and 

response to extrinsic stimuli (Figure 1b, Supplementary Table 11b, and Supplementary Fig. 

7b). The latter proteins also significantly overlapped with previously published cancer-associated 

fibroblast, leukocyte, or endothelial cell signatures 15 (p<2.2e-16, hypergeometric test, Figure 

1c), indicating a substantial contribution of stroma to the tumor proteomes. Indeed, protein 

abundance for 82.3% of the tumor-overexpressed genes showed a negative correlation with 

tumor purity scores (ABSOLUTE algorithm 16), in contrast to 38.4% among other genes 

(p<2.2e-16, two-sided Wilcoxon rank sum test, Figure 1d and Supplementary Table 12). We 
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also compared the mRNA profiles of cell lines and tumors and obtained similar results 

(Supplementary Table 13-15 and Supplementary Fig. 9-10).  

To characterize which components of the tumor stroma contributed to the tumor-

overexpressed gene signature, we interrogated our tumor and cell line data for the expression of 

relevant stroma markers. Protein markers for blood plasma, extracellular matrix, endothelial cells, 

erythrocytes, fibroblasts, granulocytes, macrophages/monocytes, megakaryocytes/platelets and T 

cells were generally overexpressed (FDR<0.05 and fold-change>2, voom/limma) in the CRC 

samples as compared to the cell lines (Figure 1e, Supplementary Table 16). Analysis of RNA-

Seq data additionally identified overexpression for markers of B lymphocytes and natural killer 

cells (Supplementary Table 17). Markers of the various tumor stroma components identified in 

the proteomics or RNA-Seq based analyses were verified by immunohistochemistry (IHC) data 

from the Human Protein Atlas (HPA)17 (Supplementary Fig. 11). In contrast, IHC supported 

epithelial cell markers (EPCAM, KRT19, ITGA6, ITGB4; Supplementary Fig. 12), displayed 

similar expression levels (fold-change<2) in the cell lines and tumors (Figure 1e, 

Supplementary Fig. 9e). 

To examine the impact of “contaminating” stroma on tumor proteome profiles, we 

intersected cell line and tumor data with the tumor-cell specific IHC expression scores from the 

HPA. Protein abundance measurements in tumor specimens showed only a weak concordance 

with corresponding IHC expression scores (p=0.075, Jonckheere's trend test), while cell line data 

exhibited a high level of concordance (p<2.2e-16) (Figure 1f). 
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Cell line proteomes reveal intrinsic biology of the hypermutation phenotype 

To compare the utility of proteomic data from cell lines against that of tumor samples to 

elucidate cell-intrinsic molecular mechanisms, we investigated the protein profiles associated 

with the well-characterized hypermutation phenotype (both cohorts included 19 hypermutated 

cases; Supplementary Table 1 and Supplementary Fig. 2). Using differential protein 

expression analysis followed by gene set enrichment analysis (GSEA) (Supplementary Tables 

18-20), the DNA mismatch repair pathway was found to be significantly underexpressed in 

hypermutated cell lines compared with non-hypermutated cell lines (FDR=0.047), but this was 

not observed in tumors (Figure 2a). Genes contributing to the statistical significance in the cell 

line data (blue bars, GSEA leading edge, Figure 2b) included the mismatch repair proteins 

MSH2 and MSH6, as well as two subunits of DNA polymerase delta, POLD1 and POLD2 

(Figure 2b and 2c). Loss of MSH2 and MSH6 expression are diagnostic of defective DNA 

mismatch repair, in particular for CRC associated with Lynch syndrome 18, and loss of POLD1 

proof-reading function by somatic mutation in the exonuclease domain is implicated in causing 

tumor hypermutation phenotypes 19. In contrast, tumor data associated the hypermutation 

phenotype with strong immune system signatures (Figure 2a), consistent with documented high 

levels of lymphocyte infiltration in hypermutated cases 20. These results were replicated when 

examining mRNA-expression (Supplementary Table 21-23, Supplementary Fig. 13). Notably, 

MLH1 protein, loss of which underlies most hypermutated sporadic CRCs 18, was not detected in 

the proteomics data but was observed in the RNA-Seq data, with a greater dynamic signal range 

in cell lines relative to tumor samples (p=6.85e-05, Levene’s test). 
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Tumor pathway signatures of post-transcriptional regulation are maintained in cell lines  

We previously reported that mRNA and protein levels are only modestly correlated in the 

TCGA CRC cohort suggesting a major impact of post-transcriptional regulation 6, although 

omics analyses in tumor samples were performed on different specimen sections. To evaluate the 

relative contributions from biological and specimen variability, we compared mRNA-protein 

correlations in tumors samples with those from cell lines. 

The average Spearman’s correlation between steady-state mRNA and protein abundance 

within individual samples across genes was 0.60 for cell lines, compared to 0.46 for tumors 

(Figure 3a); the average correlation across samples within genes was 0.37 for cell lines, 

compared to 0.22 for tumors (Figure 3b). These results indicate that the tumor-based analyses 

likely have underestimated the protein-mRNA correlations, and emphasize the necessity of 

performing mRNA and protein measurements on the same tissue sample. Nevertheless, even for 

the cell line data, mRNA measurements remained poor predictors of protein abundance 

variations for many genes. 

To investigate whether tumor signatures of post-transcriptional regulation at the 

biological pathway level were maintained in cell lines, we performed GSEA KEGG enrichment 

analysis on the average rank-differences between mRNA and protein expression (see Methods, 

Figure 3c and Supplementary Table 24). Tumors and cell lines exhibited high concordance for 

putative post-transcriptionally modulated pathways, with 66.7% of significant pathways 

overlapping between these cohorts (p<2.2e-16, hypergeometric test). Post-transcriptional up-

regulation of protein expression was observed in both cohorts for 28 processes including 20 
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metabolic pathways, cAMP, cGMP signaling and cell adhesion functions. Only two pathways, 

p53 and Notch, showed evidence of coordinated post-transcriptional down-regulation.  

Tumor intrinsic protein expression and pathway signatures are retained in CRC cell lines 

To investigate to what extent proteome dysregulation in primary tumors was 

recapitulated in CRC cell lines, we compared protein abundances from cell line and tumor 

samples against those from normal samples. Cell lines and tumors exhibited a high correlation of 

expression changes relative to normal tissue (Spearman’s correlation=0.66, p<2.2e-16; Figure 

4a, Supplementary Table 25), with significant overlap between up-regulated and down-

regulated proteins (FDR<0.05, fold change>2, voom/limma) identified for each group (p<2.2e-

16, Fisher’s exact test, Figure 4b). Nonetheless, expression in tumor samples tended to lie 

between that for normal tissues and cell lines, observed for 82.2% of the overlapping 

dysregulated proteins (p<2.2e-16, proportion test, Figure 4c), consistent with tumor samples 

representing an admixed population of neoplastic and normal cell types. Similar results were 

obtained when considering mRNA expression (Supplementary Fig. 14a-14b, Supplementary

Table 26).  

To gain a more detailed understanding of the level of conservation between cell lines and 

tumors at the level of protein pathways, we tested for coordinated protein expression changes 

within KEGG pathways as compared to normal tissue. Overall, changes in pathway expression 

were highly concordant between cell lines and tumors as observed at the individual protein level 

(Spearman’s correlation=0.69, p<2.2e-16; Supplementary Fig. 15a, Supplementary Table 27). 

In particular, significant “intrinsic” pathways (FDR<0.05 for either group comparisons; left 
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panel of Figure 4d) related to genetic information processing and metabolism showed a high 

consistency of protein expression between tumors (purple points) and cell lines (orange points) 

compared to normal tissues (green points), with tumor pathway expression levels generally 

between cell lines and normal tissues. However, for “extrinsic” and stroma-related pathways 

including environmental information processing, cellular and immune-system related processes, 

tumors were more similar to normal tissues, while expression in cell lines was markedly 

decreased. These global protein and pathway category patterns were recapitulated for RNA-Seq 

data (Supplementary Fig. 14c, Supplementary Fig. 15b, Supplementary Table 28). 

Influence of copy number aberrations on protein abundance across cell lines and tumors 

While the impact of DNA copy number on mRNA expression is well established 4, our 

previous analysis of TCGA tumors suggested that this impact is less apparent with respect to 

protein expression 6. To compare the effect of DNA copy number aberrations on gene expression 

between tumors and CRC cell lines, we retrieved DNA copy number states from matched SNP 

array data. DNA copy-number spectra in cell lines closely resembled those seen in tumors, with 

the most commonly gained chromosome arms including chromosome 7, 8q, 13, and 20q, and the 

most common deleted regions including 8p, 17p, and 18q (% gain = red bars, % loss = blue bars

in Figure 5a). Overall, 989 proteins in CRC cell lines and 1524 proteins in tumors were 

associated with DNA copy-number changes (FDR<0.2, voom/limma, see Methods), with 

strengths of associations tracking with the respective frequencies of DNA copy number loss or 

gain (Figure 5b, Supplementary Table 29-30). As expected, similar but more pronounced 

results were found when analyzing associations between DNA copy number aberrations and 

mRNA expression (Supplementary Table 31-32). 438 protein-DNA measurement relationships 
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were detected across both tumors and cell lines (p<2.2e-16 for overlap, hypergeometric test; 

large points in Figure 5b), 90.0% of which also were detected at the mRNA level (green/red 

points). Among these proteins, 26 are known or proposed cancer genes (red points in Figure 5b, 

Supplementary Table 33). Proteins identified in regions of gain included the established EGFR 

oncogene 21, and candidates such as FOXK1, a forkhead transcription factor, and CNDP2, an 

activator of MAPK pathways. Increased expression of FOXK1 has been shown to promote CRC 

invasion and metastasis 22, and up-regulation of CNDP2 to facilitate colon cancer proliferation  23. 

In regions of loss, we identified several putative tumor suppressors, including MTHFD1, a 1-

tetrahydrofolate synthase. MTHFD1 deficiency has been shown to increase intestinal tumor 

incidence, number and burden in transgenic mouse models 24. Using shRNA knockdown data 

from the Achilles project 25, we further validated six oncogene candidates (USP39, PARP1, 

EGFR, DLD, SRI and IDH3B) as “essential” genes in CRC (Supplementary Fig. 16). 

Proteomics data better predicts CRC drug sensitivity 

To evaluate the relative utility of proteomics data as a marker of drug responses in 

comparison to mutation, DNA copy number, and mRNA expression data, we retrieved response 

profiles for 210 drugs from the GDSC database which comprised 18 cell lines from our CRC cell 

line panel. 

Considering 191 known drug-target gene associations quantifiable at the protein level 

(Supplementary Table 34), proteomics data identified 16.2% of the relationships (FDR <0.2), 

as compared to only 6.3% for mRNA, 5.3% for DNA copy number and 1.9% for mutation data 

(Supplementary Table 35). Among the significant drug-target gene pairs detected at the protein 
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level were multiple associations for EGF receptor family members (afatinib, cetuximab, 

gefitinib), heat shock protein 90 (CCT018159, SNX-2112) and -tubulin family members 

(docetaxel, epothilone B, vinblastine, vinorelbine) (Figure 6a). Among pairwise comparisons in 

which at least one omics modality showed a discernable association (FDR <0.2), proteomic data 

showed greater correlations with drug responses than mRNA and DNA copy number data for 

77.1% (27/35, p=0.001) and 81.6% (31/38, p=9.53e-05) of cases, respectively. Mutation data 

could not formally be evaluated for this latter comparison as only two quantifiable cases were 

significant in the overlap with the proteomics data. 

Extending our association analyses to known drug-pathway relationships, proteomics 

data again identified more relationships (52.8%) than mRNA (25.2%), DNA copy number 

(1.6%) and mutation data (0%) (Figure 6b, Supplementary Table 36). The KEGG DNA 

replication (e.g. mitomycin C, SN-38), MAPK (e.g. TAK-715, trametinib) and PI3K-Akt 

(GDC0941, KIN001-102) pathways were among the significant drug-pathway pairs detected at 

the protein level (Figure 6b). Similarly, for pairwise comparisons, proteomic data showed 

greater correlations with drug response than mRNA, DNA copy number and mutation data for 

74.3% (55/74, p=2.36e-05), 97.0% (65/67, p=1.80e-14) and 100% (62/62, p=1.65e-13) of 

respective cases. In addition to the established drug-target relationships, responses for many 

drugs were correlated with protein signatures reflective of cell doubling rate (Supplementary 

Fig. 17-18, Supplementary Tables 37-38). 

To more formally assess the utility of proteomic data for prediction of drug sensitivity 

relative to mRNA expression, DNA copy number and mutation data, we evaluated predictive 
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models using random forests and five-fold cross-validation. Given the limited number of CRC 

cell lines with matched GDSC data, we screened our 44 CRC cell lines panel against four major 

drugs used in the treatment of human CRC, 5-fluoruracil (5-FU), oxaliplatin, SN-38 and 

regorafenib. In addition, we tested the small molecule inhibitor erlotinib as a proxy for anti-

EGFR antibody therapeutics (Supplementary Table 39). Significant correlations were observed 

between GDSC and our drug sensitivity data for two overlapping drugs, 5-FU and SN-38 

(Supplementary Fig. 19). 

As shown in Fig 6c, proteomics data demonstrated better performance for predicting 

sensitivity to 5-FU, SN-38, erlotinib, regorafenib and oxaliplatin in 11 out of 15 pair-wise 

comparisons against other modalities. Notably, proteomics data displayed a striking advantage 

for 5-FU, SN-38 and erlotinib. For regorafenib and oxaliplatin, only mutation data (yellow) and 

mRNA data (blue) outperformed proteomics data, respectively. In general, proteomics data thus 

provides an improved ability to predict the drug sensitivity of the CRC cell lines. 

Proteins associated with drug sensitivity may be functionally implicated in determining 

drug responses. Pharmacological inhibition of targetable proteins contributing to drug resistance 

may synergize with baseline treatment, whereas inhibition of proteins conferring sensitivity may 

be antagonistic. To test this contention, we assembled 60 and 92 drugs whose inhibitory profiles 

included targetable protein implicated in responses to 5-FU or SN-38 (the active metabolite of 

irinotecan) (FDR <0.2 in GDSC, 48 and 56 targets), respectively, two mainstay treatments for 

CRC (Supplementary Tables 4-5). Dose-response curves for the inhibitor panel were 

determined for HCT116 colon cancer cells in the presence or absence of 5-FU or SN-38 at 
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IC30/40 concentrations, and drug combinations evaluated for evidence of synergy or antagonism 

based on excess over the Bliss (EOB) independence model. For both 5-FU and SN-38 treatment, 

EOBs tended to differ between drugs targeting protein markers of resistance as compared to 

markers of sensitivity (5-FU, p=0.011, SN-38, p=0.103, t-test), with the expected propensities to 

synergy or antagonism (Figure 6d-e, Supplementary Tables 4-5). For 5-FU treatment, 

inhibition with disulfiram, an efficacious ALDH inhibitor (incl. ALDH1 and ALDH2), was the 

top synergistic combination detected (Figure 6f). ALDH is a family of enzymes that play a key 

role in the metabolism of aldehydes and  have been shown to oxidize and inactivate several 

prominent chemotherapeutic drugs 26. ALDH activity has been associated with colon cancer 

resistance to irradiation and 5-FU 27. Accordingly, disulfiram has previously been shown to 

potentiate gemcitabine and 5-FU treatment in colon cancer cells 28, 29. 

Danusertib, an inhibitor against for Aurora A/B/C was identified as another synergistic 

compound with 5-FU (Figure 6f), and multiple inhibitors of Aurora kinases have been evaluated 

for the treatment of CRC in combination with 5-FU, with several in clinical trials 30. Consistent 

with our findings, several studies have indicated that overexpression of Aurora kinases has a role 

in chemo- and radiotherapy resistance of CRC 31, 32. 

For SN-38, combination with multiple tubulin inhibitors showed evidence of antagonism 

(Figure 6f). It has previously been reported that a primary mechanism of tubulin inhibitor 

resistance is simultaneous administration of a compound that inhibits cell cycle progression at 

the G2-M phase, the main phase of action of SN-38 33.  

Cell lines connect proteomic subtypes to drug sensitivity 
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Colorectal tumors can be classified into five proteomic subtypes that are largely distinct 

from the established transcriptomic subtypes 6. Using a PAM prediction model trained on the 

primary tumor samples (Supplementary Fig. 20), 40 cell lines were assigned to a proteomic 

subtype with a prediction probability of >0.8 (Supplementary Fig. 21), with representative cell 

lines identified for all five subtype classes (A-E) (Figure 7a, Supplementary Table 1). Cell 

lines were further categorized into transcriptomic subtypes using the CMSclassifier algorithm 5. 

Subtypes CMS1, CMS2 and CMS3 were identified among cell lines, but subtype CMS4 was not 

assigned (Supplementary Fig. 22a, Supplementary Table 1). The failure to detect CMS4-

assigned cell lines may be coincidental given our limited cohort size, or perhaps reflect the 

observation that this subtype signature is largely dominated by signals from tumor stroma 15, 34. 

Comparing cell lines and tumors, proteomic and CMS subtypes were associated with 

similar distributions of genomic hallmarks across the cohorts, including MSI and CIMP status 

and mutations in BRAF, APC, TP53 and KRAS (Figure 7b, Supplementary Fig. 22b). 

Interestingly, analysis of paired cell lines derived from the same tumor or primary tumor and 

metastatic derivatives identified some discordant assignments for proteomic subtypes. 

Discordances were also observed for transcriptomic subtypes, suggesting that proteomic and 

transcriptomic subtypes may represent transient states, with tumors adopting different subtypes 

with clonal evolution (Supplementary Data). Consistent with this suggestion, mutational 

differences were evident between paired cell lines at the genetic level (Supplementary Data). 

The transient nature of expression-based subtypes was further supported by microarray analysis 

for 5 matched primary tumors and liver metastases identifying discordant CMS subtypes for 3 of 

these pairs (Supplementary Table 40).  
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To evaluate the potential value of tumor proteomic subtypes to predict drug response, we 

analysed the 5-FU, oxaliplatin, SN-38, regorafenib and erlotinib data for our 44 CRC cell line 

panel. GDSC data were not evaluated, due to the small cohort size. Although the number of cell 

lines in each subgroup were limited, proteomics subtypes were significantly associated with 

response to 5-FU, with subtype C exhibiting the greatest sensitivity (univariate p=0.014, 

ANOVA, Figure 7c). The association of proteomic subtypes with 5-FU response remained 

significant when adjusting for cell doubling time (adjusted p=0.003 ANOVA), which itself was 

directly related to 5-FU sensitivity (adjusted p=0.0007, ANOVA), or when the analysis was 

limited to microsatellite stable cases (univariate p=0.031, adjusted p=0.009, ANOVA, 

Supplementary Fig. 23). In contrast, transcriptomic subtypes showed no significant associations 

with drug response (Supplementary Fig. 22c). The mechanism underlying the increased 

sensitivity of proteomics subtype C to 5-FU remains to be elucidated, but may be related to 

differences in 5-FU metabolic activation, detoxification or drug export 35, 36. These results further 

underscore the potential of proteomic data for drug response prediction, in line with our protein 

signature and pathway analyses. 

DISCUSSION 

Our global proteomic characterization firstly demonstrates that CRC cell line proteomes 

maintain the major cell-intrinsic molecular programs, proteogenomic relationships and proteomic 

subtypes observed in primary tumors, highlighting the utility of cell lines as models for tumor 

biology, biomarker discovery and therapeutics. Most proteome aberrations and intrinsic pathway 
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signatures (e.g. genetic information processing and metabolism) showed concordant differences 

in both cell lines and tumors as compared to normal tissues. Relationships between protein 

expression and somatic DNA copy number changes in primary tumors were recapitulated in cell 

lines, identifying both established (EGFR) and candidate cancer genes (e.g. FOXK1, CNDP2 and 

MTHFD1) 22-24. Integration of proteomic and transcriptomic data indicates that tumor post-

transcriptional regulation at the biological pathway level is maintained in cell lines. The five 

proteomic subtypes previously identified for primary tumors were represented among cell lines 

and showed similar distributions of established genomic hallmarks. Notably, some heterogeneity 

in proteomic subtype assignments was observed between paired cell lines, as for transcriptomic 

subtypes, suggesting that expression-based subtype signatures may represent transient states. 

Nonetheless, systematic differences between cell line and tumor proteomes were apparent, 

with major changes attributable to tumor stroma, extrinsic signaling and different growth 

conditions. Because of the significant contribution of the tumor stroma, the anticipated signatures 

of DNA mismatch repair and DNA proofreading polymerases identified in cell lines with a 

hypermutation phenotype were not detectable in the primary tumors. Instead, the proteomes of 

hypermutated tumors were characterized by signatures of immune infiltrates that are typically 

associated with such cases 20. Overall, protein abundance measurements in cell lines showed a 

higher concordance with tumor-cell specific IHC expression measurements than did proteome 

profiles of admixed tumor specimens. Together, these findings underscore both the value and 

limitation of cell line models for unraveling tumor biology. 
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Multiple studies have explored genomic and transcriptomic markers for drug sensitivity 

in cancer cell lines 1, 3, but data on the proteome remain limited 11. Our comparison of omics 

modalities for the identification of known drug-target gene or pathway relationships in CRC cell 

lines demonstrates the potential of global proteomic data to predict therapeutic responses. 

Consistent with our observation that DNA and mRNA measurements are poor predictors of 

protein abundance, protein level data outperformed mRNA, DNA copy number and mutation 

data in 11 out of 15 pairwise comparisons for five evaluated standard therapies (5-fluoruracil, 

SN-38, erlotinib a proxy for anti-EGFR antibody therapy, regorafenib, oxaliplatin). Furthermore, 

proteomic data more closely predicted known drug-target relationships, both at the individual 

gene and the target pathway levels. Pharmacological inhibition of targetable proteins associated 

with CRC cell line resistance or sensitivity to standard chemotherapies (5-FU and SN-38) 

identified markers that may be functionally implicated in determining drug responses, exhibiting 

synergy or antagonism in combination treatments, respectively. In addition, our data suggest that 

tumor proteomic subtypes may be useful predictors of drug responses, warranting further 

investigation in expanded studies. A caveat to our analysis is that we could not validate 

proteome-drug sensitivity relationships in our cohort of TCGA primary cancers due to 

insufficient cases with single-agent treatment and outcome data. 

In summary, our integrative analysis demonstrates the utility of CRC cell lines as 

representative models of primary tumors at the proteome level, and highlights the potential of 

global proteomic data to inform personalized cancer medicine. Our data provide a rich resource 

for the scientific community and are available in public repositories and for interrogation via 

customized online research tools. 
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FIGURE LEGENDS 

Figure 1. Comparison of protein abundances between CRC cell lines and tumors. (a) 

Volcano plot indicating proteins overexpressed in cell lines (blue) or tumors (red) (FDR<5% and 

fold change>2); other genes are colored in grey. (b) The GO Biological Processes (BP) enriched 

for proteins overexpressed in cell lines (blue) or tumors (red) identified using WebGestalt 14. (c) 

Overlap of stroma signatures with genes overexpressed in tumors versus other genes. p value for 

hypergeometric test. (d) Distributions of the signed -log10 p values (voom/limma) of the 

associations between protein abundance and tumor purity score for genes overexpressed in 

tumors versus other genes. p value for Wilcox rank sum test. (e) Heatmap of tumor stroma and 

epithelial protein marker expression in tumors and cell lines. The bar plot to the left of the 

heatmap represents the signed -log10 FDR (voom/limma) comparing protein abundances of 

tumor and cell line samples. (f) Box plots comparing protein abundance measurements for cell 

lines and tumors against tumor-cell specific IHC scores defined by the Human Protein Atlas. p

values for Jonckheere's trend test. 

Figure 2. Pathways associated with the hypermutation phenotype in CRC cell lines and 

tumors.  (a) GSEA enrichment scores for significant KEGG pathways in cell lines and tumors. 

Red and blue bars represent the positively and negatively enriched pathways, respectively. The 

numbers in the parentheses represent the enriched FDR of the pathways. (b) Genes sorted by 

differential expression between hypermutated and non-hypermutated samples. Red and green 

represent overexpression in hypermutated and non-hypermutated samples, respectively. Bars in 

the bottom panel represent genes annotated to the mismatch repair pathway with blue bars 
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indicating the leading-edge genes reported by GSEA. (c) Comparison of protein abundance 

between hypermutated and non-hypermutated samples for the leading-edge genes identified from 

the cell line data. 

Figure 3. Comparison of the correlations between mRNA and protein abundance in tumor 

and cell line data. (a) Correlations between steady state mRNA and protein abundance across 

genes within individual samples. (b) Correlations between mRNA and protein variation across 

cell line or tumor samples for each gene. (c) GSEA KEGG enrichment for average differences in 

mRNA-protein ranks across genes in both the cell line and tumor data. Genes colored in red are 

ranked higher in RNA, genes in green ranked higher in proteomics and blue are the leading-edge 

GSEA genes. 

Figure 4. Comparison of cell lines and tumors to normal tissues based on protein 

abundance data. (a) Correlation of protein expression changes for cell line and tumor relative to 

normal tissue. (b) Overlap between up-regulated and down-regulated proteins (FDR<0.05, fold 

change>2) relative to normal. (c) Heat map showing protein expression in normal, tumor and cell 

line samples. (d) Coordinated protein expression changes within KEGG pathways determined 

using a linear mixed-effects model. Mean log fold change as compared to normal and heatmap of 

pathway expression shown for normal, tumor and cell line samples. 

Figure 5. Proteome alterations associated with copy-number aberrations. (a) DNA copy-

number spectra (% gain = red bars, % loss = blue bars, relative to ploidy) in cell lines and tumors. 

(b) Strengths of association for protein expression with corresponding DNA copy-number 
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changes (-log10(FDR)). Grey = not significantly associated with copy number alterations, blue = 

significant across proteomics cell line and tumor data only, green = significant for both 

proteomics and mRNA expression across cell line and tumor, red = candidate tumor suppressor 

and oncogenes. 

Figure 6. Proteomics data utility for predicting therapeutic responses. (a, b) Associations of

proteomic, mutation, DNA copy number and mRNA data with (a) established drug-target 

associations and (b) drug-pathway associations. Associations are shown for drug-target gene 

associations quantifiable at the protein level and significant in at least one of the four modalities 

as signed -log10(FDR) values from voom/limma and GSEA analyses, respectively. (c) 

Comparison of  the utility of four omic modalities to predict drug sensitivity for 5-fluoruracil (5-

FU), erlotinib, oxaliplatin, regorafenib and SN-38: proteomic data (red); RNA-Seq data (blue); 

CNA data (green); and exome mutation data (yellow). For each drug-omic modality combination, 

area under the receiver operating characteristic curve (AUROCs) were generated from 100 times 

of 5-fold cross-validations. The two-sided Wilcoxon rank sum test was used to compare the 

performance between protein-based models and models based on other omics data types. For 

each comparison, the p value is colored based on the color of the omic data type with 

significantly better performance. (d-e) Pharmacological targeting of proteins associated with 

resistance or sensitivity to (d) 5-FU or (e) SN-38. Bliss excess values are shown for drug 

combinations with 5-FU (at IC30 concentration) and SN-38 (at IC40 concentration) in HCT116 

cells. The protein targets were restricted to those with FDR< 0.2 from the relevant voom/limma 

calculation; drugs are detailed in Supplementary Tables 4-5. p-values for Student’s t-test. (f) 

Dose-response plots for selected compounds alone (black), with either a 5-FU or SN-38 (blue), 
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or the predicted response under the assumption of Bliss independence for the two compounds 

(green). Bliss synergy = blue line below green line; Bliss antagonism = blue line above green 

line.

Figure 7. Concordance of proteomic CRC subtypes in cell lines and tumors. (a) Heatmap of 

protein abundances indicating proteomic subtypes for tumors (left panel) and cell lines (right 

panel). Samples are arranged along the X axis and genes are arranged along the Y axis. Increased 

expression (red) and decreased expression (blue) relative to the mean-centered and scaled 

expression of the gene (normalized CPM) across the samples. (b) Representation of genomic 

hallmarks among proteomic subtypes. (c) Drug responses of proteomic subtypes to 5-fluoruracil 

(5-FU), erlotinib, oxaliplatin, regorafenib and SN-38 treatment, and relationships with cell 

doubling time. Puni (univariate) is the P-value obtained from univariate ANOVA, and Padj 

(adjusted) is the P-value from two-way ANOVA adjusting for cell doubling time. 
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SUPPLEMENTARY DATA 

Proteomic detection of single nucleotide variants (SNVs) in CRC cell lines 

WES and RNA-Seq captured a combined total of 111,022 nonsynonymous single 

nucleotide variants (nsSNVs), 19.4% of which were exclusively detected by RNA-Seq analysis 

with an enrichment of A:T to G:C transversions characteristic of RNA editing 1 (Supplementary

Fig. 4). Of the detected nsSNVs 1,702 unique variants were observed at the proteomic level 

(Supplementary Table 9); 276 corresponded to somatic variants reported in the 

TCGA/COSMIC databases, and 952 were listed in the Single Nucleotide Polymorphism 

(dbSNP) database and are likely to be germline variants (Supplementary Fig. 3a). 678 SNVs 

were not captured in these databases, and these were significantly enriched in hypermutated as 

compared to non-hypermutated cell lines (p=9.7e-08, two-sided Wilcoxon rank-sum test), 

suggesting that most represented somatic changes (Supplementary Fig. 3b). As observed for 

known somatic variants, previously unreported SNVs had significantly higher predicted 

functional impact than the dbSNP-supported variants (Supplementary Fig. 3c, Supplementary

Table 9). Non-dbSNP variants were associated with a stronger negative impact on protein 

abundance than dbSNP-supported variants (p<2.2e-16, two-sided Kolmogorov–Smirnov test), 

suggesting reduced protein stability or translational efficiency associated with these variants 2, 3. 

The 276 TCGA/COSMIC-supported protein variants mapped to 248 genes, including 23 

cancer genes in the Cancer Gene Census database such as KRAS, CTNNB1, TP53, EGFR, 

SF3B1, SMAD4, and CDH1. The list also included 27 targets of FDA-approved drugs or drugs 

in clinical trials 4, such as EGFR, ALDH1B1, HSD17B4, PARP4, GSR, MAP2K1, and 
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AKR1A1. Overall, we found TCGA/COSMIC-supported variants in protein drug-targets in 40 

out of the 44 cell lines.   

Proteomic, transcriptomic and mutational discordance among paired cell-lines 

Included in our cell line panel were 2 pairs/triplets originally derived from the same 

tumor (COLO201/COLO205, DLD1/HCT8/HCT15) and 2 pairs/triplets derived from a primary 

tumor and metastatic derivatives (SW480/SW620, IS1/IS2/IS3). Assignments of proteomics 

subtypes exhibited some discordance for paired cell lines, with one outlier for the triplet of cell 

lines derived from the same tumor (DLD1/HCT8/HCT15) and one outlier each for the two 

primary-metastasis cell line pairs/triplets (SW480/SW620, IS1/IS2/IS3) (Figure 7a). CMS 

classifications were only confidently assigned for the IS1/IS2/IS3 triplet, but these also indicated 

discordance (Supplementary Fig. 22a). This proteomic and transcriptomic heterogeneity is 

consistent with heterogeneity observed at the genomic level between these paired cell lines, with 

46, 372, 117, 116 and 129 mutational differences in the non-hypermutated pairs 

COLO201/COLO205, SW480/SW620, IS1/IS2, IS1/IS3 and IS2/IS3, and 4125, 2460 and 1584 

for the hypermutated pairs DLD1/HCT8, DLD1/HCT15 and HCT8/HCT15. 
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SUPPLEMENTARY METHODS 

Colorectal cancer cell lines and primary tumors. A total of 44 CRC cell lines were studied: 

C125, C135, C70, CACO2, COLO201, COLO205, COLO320-DM, DiFi, DLD1, GEO, Gp5D, 

HCA7, HCC2998, HCT116, HCT15, HCT8, HRA19, HT115, HT29, HT55, IS1, IS2, IS3, 

LIM1215, LIM1863, LIM1899, LIM2099, LIM2405, LIM2537, LIM2551, LS513, NCI-H747, 

RKO, SNU-175, SNU-C2B, SW1116, SW1222, SW480, SW620, SW948, T84, V9P, VACO4S, 

VACO5 (Supplementary Table 1). Cells were cultured in Dulbecco's modified Eagle's medium 

(DMEM; Gibco BRL Life Technologies) supplemented with 10% fetal bovine serum (FBS; 

Bovogen Biologicals), 100U/ ml penicillin-streptomycin (Sigma-Aldrich) at 37°C and 5% CO2 

incubator. Cells were verified to be mycoplasma free using the Lookout Mycoplasma PCR 

Detection kit (Sigma-Aldrich). All the cell lines were authenticated at the Australian Genome 

Research Facility Ltd. (AGRF) (Parkville, VIC, Australia) by STR profiling analysis using the 

GenePrint 10 System (Promega). In addition, we retrieved previously published genomic, 

transcriptomic and proteomic data on 95 primary tumor specimens from 90 CRC patients and 

proteomics data from 60 normal colon biopsies from 30 patients from our original CPTAC study 

2, as well as RNA-Seq data for 48 normal colon and rectum samples deposited by the TCGA 

(Supplementary Table 2-3). Fresh-frozen paired primary tumor and liver metastases samples 

from five patients with CRC were obtained from the Victorian Cancer Biobank, and gene 

expression microarray analysis performed using Affymetrix GeneChip® Human Gene 1.0 ST 

Arrays at the AGRF (accessible at the Gene Expression Omnibus, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=wjodggyojjqjrgr&acc=GSE90814). This 

study was human research ethics committee-approved, and all patients gave informed consent. 
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LC/MS-MS. The protein extraction and tryptic digestion of the frozen cell line pellets were 

performed as previously described for TCGA CRC specimens 2; however, the optimal cutting 

temperature (OCT) compound removal procedure was omitted, since OCT was not present. The 

resulting tryptic peptides were fractionated using off-line basic reversed phase high-pressure 

liquid chromatography (bRPLC). A total of 60 fractions were collected, concatenated, and 

analyzed on a Thermo Orbitrap-Velos mass spectrometer by reversed phase HPLC. All samples 

were analyzed on the same instrument system that was used for the TCGA CRC sample analysis 

and with the same chromatography components, separation conditions, instrument settings and 

laboratory personnel. Consistent with the TCGA CRC analysis, control samples from basal and 

luminal human breast carcinoma xenografts (CompRefs) were analyzed in alternating order after 

each set of five cell lines. Raw data were processed and used for database and spectral library 

searching using three different search engines, Myrimatch 5, Pepitome 6 and MS-GF+ 7, as 

previously described 2. Protein assembly for the cell line data was performed using IDPicker 3 8

at 0.2% PSM FDR and a minimum of 2 distinct spectra required per protein. To compare data 

from the cell line, tumor, and normal samples and to facilitate the integration between genomic 

and proteomic data, a gene-level assembly was performed for all cell line, tumor, and normal 

samples at 0.1% PSM FDR and a minimum of 2 distinct spectra required per protein. For the 

confidently identified proteins, we relaxed the PSM FDR threshold to 1% to rescue additional 

high quality PSMs that were excluded by the stringent PSM FDR threshold, as previously 

described 2. For the 5 tumors and all 30 normal cases with proteomic measurements from 

duplicated samples, only the sample with a larger total spectral count was included for 

quantitative analyses. Raw data for the cell lines, database search results, and the two versions of 

assemblies can be found at the Mass spectrometry Interactive Virtual Environment (MassIVE, 
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ftp to massive.ucsd.edu, username: MSV000080374, password: a. HTTP access from the 

MassIVE website will be available after publication of the manuscript.) 

Transcriptome sequencing. RNA samples from CRC cell lines were extracted from pellets 

collected at the same time as the samples for proteomics analysis using the AllPrep DNA/RNA 

Mini kit (Qiagen). Libraries were prepared for sequencing using the TruSeq Stranded Total RNA 

Library Preparation Kit (Illumina), pooled and clustered using the cBot system (Illumina) with 

TruSeq SR Cluster Kit v3 reagents (Illumina). Sequencing was performed on the Illumina HiSeq 

2000 system with TruSeq SBS Kit v3 reagents (Illumina) at the AGRF. Each sample was 

sequenced to a depth of at least 28 million reads. Sequencing reads were quality assessed and 

trimmed for any remaining sequencing adaptor using Trimmomatic (v0.22) 9; reads smaller than 

50 bp were removed. Reads were subsequently aligned to human genome build Hg19 using 

Tophat (v2.0.8.Linux_x86_64) 10 with parameters -g 1, --library-type fr-firststrand. Gene level 

expression was quantified using Gencode v15 annotation using featureCounts with a parameter 

to account for stranded counting (-s 2) 11. Data can be accessed at the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ktadckourbkbbur&acc=GSE90830).  

Exome-capture sequencing. Whole exome mutation data on 35 CRC cell lines from our cohort 

have been published previously 12. Libraries for the additional DIFI, GEO, IS1, IS2, IS3, 

LIM1863, LIM2537, V9P and VAC05 cells were produced using the Nextera DNA Library 

Preparation Kit (Illumina), and 100bp paired-end read sequencing performed using the Nextera 

Rapid Capture Expanded Exome Enrichment Kit (Illumina) on an Illumina HiSeq 2000 System 
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at the AGRF. Sequence alignment and calling of SNVs and INDELs involved mapping with 

BWA (0.7.12) and variants calling with GATK (GATK-3.4-46). To ensure high-quality variant 

calling of putative somatic mutations in the absence of matched normal tissue by GATK, we 

created a hybrid pipeline between the GATK Germline and Somatic Best Practice Variant 

Detection Protocols (https://software.broadinstitute.org/gatk/best-practices/) as described 

previously 12. Briefly, we aligned paired-end reads to the human reference genome (hg19) with 

BWA-mem followed by adding read groups, marking duplicates and re-ordering with Picard 

tools (1.69). We then carried out base quality score recalibration and INDEL realignment using 

GATK modules. Finally we applied the GATK variant caller ‘HaplotypeCaller’ and filtered 

reads using the ‘VariantFiltration’ module. The minimum Phred-scaled confidence threshold for 

calling variants was set to 30. The ‘VariantFiltration’ module excluded SNVs with: a quality by 

depth score (QD) <2.0, a Fisher strand score (FS) >60.0, Mapping Quality Rank Sum Test 

(MappingQualityRankSum) < -12.5 and relative positioning of ALT alleles within reads 

(ReadPosRankSum) < -8.0. For INDELs, the following exclusion criteria were used: QD 

<2.0, FS >200.0 and ReadPosRankSum < -20.0. These filters ensured: (1) high confidence 

variant calls based on unfiltered depth of non-reference samples (QD); (2) low strand bias for 

detection of variants (FS) as strand bias is indicative of false positive calls; (3) checks for similar 

mapping qualities between REF and ALT alleles (MappingQualityRankSum) and checks to 

determine whether there was a position bias within the reads between ALT and REF alleles – 

ALT (but not REF)  alleles occurring at end of reads is indicative of false positive calls. To 

remove putative germline variants in the absence of matched normal data we annotated detected 

alterations against databases of human germline variations including the Single Nucleotide 

Polymorphism database (dbSNP, build 135, SAO = 1), 1000 Genomes Project database (build 
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20110521), Mills et al. data set of small insertions and deletions 13 and germline variants 

detected in 114 normal colorectal tissues analyzed in our laboratories. Regions of known 

germline chromosomal segmental duplications were excluded to reduce the possibility of false-

positive variants caused by read mismapping 14. For analyses of cancer gene mutations, 

following variant classification was considered: “FRAME SHIFT” / “Frame Shift Del” / “Frame 

Shift Ins", "CODON DELETION" / "In Frame Del", "CODON INSERTION" / "In Frame Ins", 

"SPLICE SITE ACCEPTOR" / "SPLICE SITE DONOR" / "Splice Site", "STOP GAINED" / 

"Nonsense Mutation", “NON SYNONYMOUS CODING" / "Missense Mutation", "CODON 

CHANGE PLUS CODON DELETION", "CODON CHANGE PLUS CODON INSERTION", 

"STOP LOST", "START GAINED", "START LOST”. 

Variant peptide identification and analysis. To identify variant peptides, we used a customized 

protein sequence database approach 15, 16 wherein we derived customized protein sequence 

databases from matched RNA-seq data and then performed database searches using the 

customized databases for individual samples. Sequence alignment and calling of SNVs and 

INDELs involved mapping with STAR 2.5.0c and variants calling with GATK (3.5-0-

g36282e4). To ensure high-quality variant calling by GATK, we followed the GATK Best 

Practice Variant Detection protocol on RNA-Seq 

(http://gatkforums.broadinstitute.org/dsde/discussion/3892/the-gatk-best-practices-for-variant-

calling-on-rnaseq-in-full-detail). Briefly, we aligned reads to the human reference genome 

(hg19) with STAR followed by adding read group, marking duplicates and re-ordering with 

Picard tools (1.78). We then applied the GATK pipeline that includes modules 

‘SplitNCigarReads’, ‘HaplotypeCaller’ and ‘VariantFiltration’. The minimum Phred-scaled 
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confidence threshold for calling variants was setting to 20. The ‘VariantFiltration’ module 

excluded SNVs with: a quality by depth score (QD) <2.0, a Fisher strand score (FS) >30.0 or 

clusters of at least 3 SNPs that were within a window of 35 bases between them. These filters 

ensured: (1) high confidence variant calls based on unfiltered depth of non-reference samples 

(QD); (2) low strand bias for detection of variants (FS)—as strand bias is indicative of false 

positive calls; (3) filtering of many false variant calls introduced by mapping error of RNA-Seq 

reads. For customized database construction and variant peptide identification we used the R 

package customProDB 15 to annotate variations predicted from RNA-seq, including mapping to 

dbSNP138 and COSMIC66 databases. For each sample, customProDB generates a protein 

FASTA database by appending proteins with nonsynonymous protein coding SNVs and aberrant 

proteins to the end of the standard RefSeq human protein sequence database. Peptide 

identification was performed for each sample separately using corresponding customized 

FASTA database and MS-GF+ and MyriMatch 2.1.87. Search settings were identical to those 

described above. IDPicker 3 was used for protein assembly as described earlier, except that the 

data set was filtered at 1% PSM FDR and a minimum of 5 spectra identified per protein. The full 

data set consisted of 9,983 protein groups with 4.3% protein FDR. Identified SNVs were further 

annotated for existence in the somatic variant list published by TCGA 17 (i.e., TCGA-somatic 

variants), existence in the COSMIC66 database (that is, COSMIC-supported variants), and 

existence in the dbSNP138 database (i.e., dbSNP-supported variants). Functional impact of the 

SNVs was analyzed using MutationAssessor 18 and Sorting Intolerant From Tolerant (SIFT) 19.  

SNP microarray analysis. SNP array data on 38 cell lines from our cohort have been published 

previously 12. SNP array assays on the additional DiFi, GEO, IS1, IS2, IS3 and V9P cells were 

performed at the AGRF using CytoSNP-850K v1.1 BeadChips (Illumina). SNP array data were 
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processed using GenomeStudio software (Illumina), and SNPs with detected copy-number 

variation in a reference set of 637 normal tissue samples were excluded from downstream 

analysis as described previously 12. The median call rate for the cell line samples was 97.3% 

(range 93.5-99.7%). DNA copy number segmentation with adjustment for normal contamination 

and intra-tumor heterogeneity was performed using the OncoSNP v2.18 suite 20, and the 

proportion of samples with gain or loss relative to ploidy (modal chromosome copy number) 

quantified at the SNP level. Average mean log R ratios were calculated for genes from the 

segmented data based on their RefSeq genomic positions. 

VOOM/LIMMA analysis. The application of Voom to count data 21 assumes that the gene-wise 

mean-variance relationship should be smoothly decreasing with the count size. This assumption 

was met by filtering for quantifiable proteins or mRNAs, defined as CPM>20 in 20% of samples 

for protein spectral counts and CPM>1 in 20% of samples for RNA-Seq counts (Supplementary

Fig. 24). Then, based on the quantifiable proteins or mRNAs, we used voom to normalize the 

proteomics or RNA-Seq data and performed differential gene expression analyses utilizing 

limma 22. Voom/limma analyses were performed using Limma 22 and edgeR 23 R packages, and 

method sensitivity and specificity for spectral count data were validated using the spike-in data 

set generated by the 2015 study of the Proteome Informatics Research Group (iPRG) of the 

Association of Biomolecular Resource Facilities (ABRF) (ftp://iprg_study@ftp.peptideatlas.org/ 

(password ABRF329)) (Supplementary Fig. 1). Briefly, the 2015 iPRG study was based on four 

artificially made samples of known composition, each containing a constant background 200 ng 

of tryptic digests of S.cerevisiae (ATCC strain 204508/S288c). Each sample was separately 

spiked with different quantities of six individual protein digests and analyzed in triplicate by LC-
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MS/MS acquisitions (total of 12 runs) using a Thermo Scientific Q-Exactive mass spectrometer.  

Data were acquired in data-dependent (DDA) mode. The MS/MS spectra were searched against 

the provided target-decoy protein database using three sequence search engines, OMSSA 24, MS-

GF+ 7 and Comet 25. The search results were first validated at the peptide-spectrum match (PSM) 

level by PeptideProphet 26, employing decoy-assisted semi-parametric modeling 27. The results 

from the three search engines were combined using iProphet 28. The LC-MS features were 

identified and quantified with Skyline 29 v.2.6.0.6851. The original Skyline-based quantification 

in a tab-delimited table form was downloaded from the ftp site. Voom/limma identified spike-in 

samples with a sensitivity of 87.1%, specificity of 99.9% positive predictive value of 93.1% and 

negative predictive value of 99.9% based on FDR<0.05 and greater than 2-fold change 

(Supplementary Fig. 1a-b), and voom/limma estimated fold-changes were highly correlated 

with expected fold-changes (Spearman’s correlation=0.95, p<2.2e-16, Supplementary Fig. 1c). 

Human Protein Atlas. The Human Protein Atlas data were downloaded from 

http://www.proteinatlas.org/about/download (cancer.csv and proteinatlas.tab), which contained 

the IHC expression scores of 185,406 patients for 16,235 proteins on colorectal tumor samples. 

Data were filtered for antibodies with “supportive” evidence. Summary tumor protein scores 

were classified as not detected, low, medium or high staining groups based on the mode of 

respective individual sample scores. 

Tumor stroma markers. Markers for tumor cells and stroma components were assembled from 

key human cell phenotype markers (BD Human and Mouse CD Marker Handbook, 
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https://www.bdbiosciences.com/documents/cd_marker_handbook.pdf; 

http://www.biolegend.com/cell_markers; 30), blood group systems 31, blood plasma 32 and 

extracellular matrix components 33 (Supplementary Table 41) 

KEGG pathway. The KEGG pathways and corresponding annotations were downloaded using 

KEGG API (http://www.kegg.jp/kegg/rest/keggapi.html) 34. We only considered the pathways 

from the classes “Metabolism”, “Genetic Information Processing”, “Environmental Information 

Processing”, “Cellular Processes” and “Organismal Systems”, which contained 229 pathways 

and 6,488 unique annotated genes. 

Correlation between steady state mRNA and protein abundance. Because steady state 

comparisons require mRNA and protein measurements within a sample to be comparable, we 

used FPKM (Fragments Per Kilobase Million) and NSAF (Normalized Spectral Abundance 

Factor) to normalize the RNA-Seq and proteomics data of tumors and cell lines. Then, based on 

the 8,874 overlapping genes among the four data sets, we calculated the Spearman’s correlation 

coefficients between FPKM and NSAF measurements for both tumors and cell lines.  

Correlation between mRNA and protein variation. To evaluate mRNA and protein variations across 

samples, we focused on 3,718 overlapping quantifiable genes identified from Voom among RNA-Seq and 

proteomics data of tumors and cell lines. The different sample sizes of tumor and cell line cohorts may 

cause the correlations between mRNA and protein variation from these two data sets to be incomparable. 

Thus, for the tumor data, we randomly selected 44 samples and calculated the Spearman’s correlations 
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between mRNA and protein variations across these 44 samples. We repeated this process 100 times and 

calculated the mean correlation for each gene. For the cell line data, we directly calculated the 

Spearman’s correlations between mRNA and protein variations across the 44 cell line samples. Then, 

based on the Spearman’s correlation of the tumor and cell line data, we identified the enriched KEGG 

pathways based on the two-sided Kolmogorov-Smirnov test under FDR 5%. 

Correlation of relative mRNA-protein abundances. To identify pathways that are modulated 

at the post-transcriptional level in cell lines and tumors, we used the FPKM and NSAF 

normalized data of the 8,874 overlapping genes among the four protein and mRNA data sets. We 

calculated the mean differences between mRNA and protein ranks for each gene within 

individual samples across each cohort and then performed the GSEA enrichment analysis against 

KEGG pathways (excluding the overview pathways in the “Metabolism” and “Organismal 

systems” classes) to identify the enriched pathways under a 5% FDR. 

Pathway signature identification. To assess whether genes in a given KEGG pathway have 

differing expression in tumors or cell lines relative to normal colorectal tissue, we modelled the 

protein or mRNA expression levels (cpm values for quantifiable genes) of pathway members 

using a linear mixed-effects model (lme4 R package, 35). Genes and sample type were treated as 

fixed effects (each as categorical variable), and the interaction terms between the genes and 

sample type (grouped by sample type) as random effects. The coefficient for sample type was 

interpreted as an aggregate measure of expression change for the pathway proteins/mRNAs in 

tumors or cell lines relative to normal tissue. P values were calculated using the degrees of 
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freedom for the sample type coefficients as the number of respective pathway proteins or 

mRNAs minus one.

Comparison of the impact of copy number alteration on protein abundance for cell lines 

and tumors. Evaluation of the association between copy number alteration and protein or 

mRNA levels was carried out for genes with complete gene-level log R ratio data (not all gene 

level data could be computed due to probe failure, see call rates) and which had quantifiable 

expression from Voom: 4,878 proteins and 12,277 mRNAs for cell lines, and 4,344 proteins and 

13,269 mRNAs for tumors. We performed voom/limma analysis utilizing robust linear 

regression for gene-level log R ratios against protein or RNA-Seq expression levels. 

Voom/limma analysis was run for each gene-level log R ratio state across all genes, retrieving 

only the relevant FDR adjusted statistic of the gene in question. Results were aggregated and 

overlapping significant associations identified between protein and mRNA data for cell lines and 

tumors. 

Comparison of the effect of candidate oncogene-targeting shRNAs on the proliferation of 

colon cancer cell lines. The shRNA gene level data was downloaded from the Achilles project 

website (https://portals.broadinstitute.org/achilles/datasets/5/download) and contained eight 

colon cancer cell lines overlapped with our 44 cell lines. We calculated the spearman’s 

correlation between shRNA score and log-transformed copy number data across eight cell lines 

for each candidate oncogene. The negative correlation indicates the gene knockdown affects the 

cell proliferation. Because of the limited sample size, we identified the significant candidate 
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oncogenes based on r<-0.5 instead of the p value. If one gene has multiple shRNAs, this gene 

was selected only if all shRNAs were concordant. 

Drug sensitivity studies. Cells were seeded into 384-well plates (1000 cells/well) in DME 

(Gibco) supplemented with 10% FBS (Bovogen Biologicals). Oxaliplatin (Cat# S1224), erlotinib 

(Cat# S7786) and regorafenib (Cat# S1178) were purchased from Selleck Chemicals. 5-

fluorouracil (5-FU) (Cat# F6627) was obtained from Sigma. Compounds were titrated in DMSO 

(10-point 3-fold dilution series) and added to the cells in quadruplicate using liquid handling 

robotics. Final DMSO concentration in all wells was 0.25%. After incubation with compounds 

for 72hr, cell viability was determined using CellTiter-Glo-2 (Promega) according to 

manufacturer’s instructions and calculated as a percentage of DMSO (100%) and 1uM 

bortezomib (0%, Cat# S1013, Selleck Chemicals). Data was analyzed in Pipeline Pilot 

(BIOVIA) and the IC50 values calculated using a four-parameter logistic nonlinear regression 

model. Data were summarized as pIC50 +/- SD= with 2-3 independent experiments for each cell 

line. For drug combination screening in HCT116 cells, 123 drugs were accessed from 

Compounds Australia, Griffith University, Australia (Supplementary Tables 4-5). For each 

compound at a given dose, we calculated the Bliss excess as BE = fcombo - fsingle - f2nd drug + (fsingle

× f2nd drug) for duplicate experiments. We then calculated the average BE over the doses for that 

compound in combination with either 5-FU or SN38. 

GDSC data. GDSC (Genomics of Drug Sensitivity in Cancer) drug sensitivity data 36 were 

downloaded from http://www.cancerrxgene.org/downloads (version 07/04/2016), which 
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contained 18 colon cancer cell lines used in this paper and 251 drugs. Because the sensitivity 

data of some drugs were missed in many of the 18 cell lines, we finally kept 210 drugs with at 

most five missing values for analysis. Drug-target gene and KEGG pathway level relationships 

tested are summarized in Supplementary Table 34. 

Comparison of omic modalities for prediction of drug sensitivity. To compare the utility of the 

proteomics, RNA-Seq, CNA and mutation data for predicting drug sensitivity to 5-fluorouracil, erlotinib, 

oxaliplatin, regorafenib and SN-38 in our 44 CRC cell line panel, 3269 common genes assayed by all four 

omics platforms were used as the features for the prediction.  Following the approach of Haibe-Kains et. 

al. 37, the 44 cell lines were dichotomized into sensitive and resistant groups for each drug based on the 

median of their respective pIC50 values. For each drug-omics modality combination, random forests 

models were constructed and evaluated using 100 times of 5-fold cross-validation based on AUROC (area 

under the receiver operating characteristic curve). During the training phase of each cross-validation, we 

used 1000 trees and optimized the number of features randomly sampled as candidates at each split from 

a grid of 100 pre-defined numbers using an inner-loop cross-validation. To compare the performance 

between proteomics data and other omics data, the two-sided Wilcoxon rank sum test was performed.  

Cell line proteomic and CMS subtype predictions. To assign cell lines to our previously 

identified proteomic subtypes 2, normalized cpm data from voom were transformed into z-scores 

and the R package pamr (http://CRAN.R-project.org/package=pamr) was used to apply our 

predefined signature genes to the cell line scaled expression matrix. To identify the optimal value 

of the shrinkage parameter for our PAM prediction model, we selected the value that minimized 

leave-one-out cross-validated misclassification error for 79 tumor samples (error rate<2%). We 
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assigned five proteomics subtypes to 40 cell lines with probability more than 0.8 using 1,377 

signature genes. For each sample in a subtype, we calculated the Pearson correlation with others 

in the same subtype. To assign CMS subtypes to cell lines and a dataset of 5 matched primary 

and metastatic tumors pairs, we used the CMSclassifier package in R (https://github.com/Sage-

Bionetworks/CMSclassifier). To make the RNA-Seq and microarray data compatible with the 

microarray data background set supplied with the package, gene expression values were quantile 

normalized to the reference distribution. Class assignments were made based on consistent 

predictions from both the nearest random forest and single sample predictors. 

Resources. To make the quantitative data described in this paper available to the scientific 

community, we developed a web application CRCOmics (http://crcomics.zhang-lab.org), which 

allows users to perform differential, correlation, and pathway analyses to compare cell lines and 

tumors, and to visualize analysis results using various types of statistical plots. To enable 

visualization of the variant peptides identified in this study in the context of the human genome, 

we converted PSMs from the customized search results into the proBAM format 38, which can be 

download or accessed in a JBrowse-based genome browser (http://proteogenomics.zhang-

lab.org/).  
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SUPPLEMENTARY FIGURES 

Supplementary Fig. 1. Voom/limma method sensitivity and specificity for protein spectral 

count data using spike-in data. (a) Six spike-in sample comparisons showing identified true 

positives (red), true engatives (blue) and false negatives (gold). (b) Test performance of 

voom/limma across spike-in experiments. (c) Comparison of expected and voom/limma derived 

log fold-changes for spike-in proteins. 
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Supplementary Fig 2. Mutation frequencies in 44 human CRC cell lines. Cell lines 

segregated into distinct hypermutated and non-hypermutated cases. MSI-H, microsatellite 

instability-high 
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Supplementary Fig 3. Proteomic detection of single nucleotide variants (SNVs) in CRC cell 

lines. (a) Classification of the SNVs detected in individual cell lines based on support from 

various variant databases. The cell lines are ordered by the number of new variants, then 

COSMIC/TCGA-supported somatic variants, and then dbSNP-supported variants. Yellow, light 

blue, and dark red indicate SNVs detected only by exome sequencing based database search, 

only by RNA-Seq based database search, and by both searches, respectively. Sample 

hypermutation (Hyper) status is labeled at the bottom (blue, hypermutated; grey, non-

hypermutated). (b) Association of all detected variants, COSMIC/TCGA supported variants, 
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dbSNP supported variants and new variants with cell line hypermutation phenotype. p for 

Wilcoxon rank-sum test. (c) Distributions of the functional impact scores calculated by 

MutationAssessor and SIFT for the three categories of SNVs. p for t-test. 
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Supplementary Fig. 4. Incorporation of non-synonymous single nucleotide variants 

(nsSNVs) into a customized database. (a) A scatterplot shows the number of nsSNVs detected 

by exome sequencing (x-axis) and RNASeq (y-axis). Each dot represents a cell line. (b) dbSNP 

rates of ncSNVs detected by exome sequencing (red) and RNASeq (blue) in 44 cell lines. The 

numbers above the box indicate the median value (c) The number of nsSNVs detected by exome 

sequencing only (red), RNASeq only (blue) and both (grey) for each cell line, ordered by the 

combined number of unique nsSNVs from the two platforms (from top to bottom). The 

hypermutation status is labelled on the left (blue, hypermutated; grey, non-hypermutated). (d) 

Mutation spectra for the three nsSNVs categories. Mutational patterns were calculated for 
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nsSNVs detected by exome sequencing only (red), RNASeq only (blue) and both (grey). Y axis 

represents the proportion of each nucleotide substitution type. Similar patterns were observed for 

overlap and exome unique nsSNVs, whereas RNASeq unique nsSNVs showed a different 

nucleotide substitution patterns. e.g., 40% of RNA-Seq unique variants show enriched A.T 

G.C mutations, which is a hallmark of RNA editing.  
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Supplementary Fig. 5. Proteomic platform stability. The cell line, tumor, and normal tissue 

proteomic analysis was performed on the same platform. To evaluate platform stability, we 

analyzed benchmark quality control (QC) samples (n=42) of basal and luminal human breast 

tumor xenografts run in alternating order after every five tumor, normal tissue, or cell line 

samples. (a) Heatmap representing the Spearman’s correlation between each pair of samples. 

The green and blue bars represent the WHIM16 and WHIM2 samples, respectively, whereas the 

brown, yellow, and purple bars represent interstitials within the tumor, normal, and cell line 

cohorts, respectively. (b) Principal component analysis plot. The color scheme is the same as (a).  
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Supplementary Fig. 6. Comparison of protein inventory between cell lines, tumor and 

normal tissue data. (a) Venn diagram comparison for the three data sets. (b-d) log-scaled mean 

CPM distribution for protein inventory of cell line, tumor and normal data. Black lines in the 

three figures represent 103 cell line-specific proteins, 42 tumor-specific proteins and 20 normal 

tissue-specific proteins, respectively. 86.4% of cell line-, 92.9% of tumor-, and 65.0% of normal-

specific proteins exhibiting <4 spectral counts per million (CPM).
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Supplementary Fig. 7. Proteomics (a) and RNA-Seq data (b) according to annotation for 

major Gene Ontology biological processes, molecular functions, and cellular components. 

Terms from GOSlim database.  
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Supplementary Fig. 8. Enriched GO biological process terms for genes overexpressed in 

cell lines (a) and tumors (b) based on the proteomics data. The boxes with red colored 

process names, numbers of proteins and adjusted p values represent the enriched GO terms. 
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Supplementary Fig. 9. Comparison between mRNA abundance of cell line and tumor data. 

Figure legend is the same as for Fig. 1. 
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Supplementary Fig. 10. Enriched GO biological process terms for genes overexpressed in 

cell lines (a) and tumors (b) based on the mRNA data. The boxes with red colored process 

names, numbers of genes and adjusted p values represent the enriched GO terms. 
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Supplementary Fig. 11. Validation of specificity of blood plasma, extracellular matrix and 

cell type-specific markers by inspection of the Human Protein Atlas. Exemplar staining 

images retrieved from the HPA. p/r indicates significance in proteomics and RNASeq data, 

respectively. 
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Supplementary Fig. 12. Validation of specificity of epithelial markers by inspection of the 

Human Protein Atlas. Exemplar staining images retrieved from the HPA.
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Supplementary Fig. 13. Pathway signatures related to the hypermutated samples for 

RNASeq cell line and tumor data. Figure legend is the same as for Fig. 2.
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Supplementary Fig. 14. Comparison of cell lines and tumors to normal tissues based on 

mRNA abundance data. Figure legend is the same as for Fig. 4. 
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Supplementary Fig. 15. KEGG pathway expression concordance between tumor versus

normal and cell line versus normal for (a) protein and (b) mRNA expression differences.
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Supplementary Fig. 16. Effect of shRNA for six oncogenes on the proliferation of colon 

cancer cells based on data from the Achilles study. X-axis represents the log ratio of copy 

number data and y-axis represents the shRNA score. The correlation was calculated by the 

Spearman’s correlation coefficient. 
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Supplementary Fig. 17. Heatmap of drug activity-protein associations. Proteins shown on the vertical axis (Supplementary Table 

37). Red and blue coloring, respectively, indicate positive and negative associations between drug pIC50 values and protein expression, 
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as obtained from voom/limma calculations. The intensity of the coloring corresponds to a range of False Discovery Rate (FDR) 

values, with the deepest to lightest corresponding to <10-4, <10-3, < 0.2 and  0.2. The drugs are ordered by their Spearman 

correlations for their pIC50 values and the cell doubling rate (plotted in the lower panel) and the proteins are ordered by their signed -

log10 FDR values for association with cell doubling rate, as obtained from the relevant voom/limma calculation (Supplementary Table 

37). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Supplementary Fig. 18. Heatmap of drug activity-protein KEGG pathway associations. For each drug, the False Discovery Rates 

(FDRs) for the KEGG pathways were obtained using the ranked protein list from the relevant voom/limma calculations to assess 

associations between drug pIC50 values and protein expression (Supplementary Table 38). The intensity of the coloring corresponds to 

a range of FDR values, with the deepest to lightest corresponding to <10-4, <10-3, < 0.2 and  0.2. The drugs are ordered by their 

Spearman correlations for their pIC50 values and the cell doubling rate (plotted in the lower panel) and the proteins are ordered by their 

signed -log10 FDR values for association with cell doubling rate, as obtained from the relevant voom/limma calculation 

(Supplementary Table 38).
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Supplementary Fig. 19. Concordance between GDSC and in-house pIC50 data for 

overlapping drugs.  
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Supplementary Fig. 20. Model for prediction of proteomics subtypes trained on primary 

tumor assignments. Overall and class-specific misclassification errors are shown for leave-one-

out cross-validation. Prediction Analysis of Microarrays (PAM) analysis with increasing values 

of centroid shrinkage. A set of 1,376 genes provided the minimum cross-validated prediction 

error. 
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Supplementary Fig. 21. Prediction of proteomics subtypes using 1,376 trained genes. Bar 

charts indicates the posterior probability of belonging to each proteomics subtype. A. Green; B, 

Orange; C, Purple; D, Blue; E, Red. 
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Supplementary Fig. 22. Concordance of mRNA CRC subtypes in cell lines and tumors (a), 

molecular features (b) and cell line drug response (c). Figure legend is the same as for Fig. 7. 
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Supplementary Fig. 23. Relationship of proteomics subtypes with drug sensitivity for 

microsatellite stable cell lines.  
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Supplementary Fig 24. Mean-variance trend plots based on the different combinations 

among cell, tumor and normal proteomics data and RNASeq data. The points in the plots 

represent the quantifiable proteins or mRNAs defined as CPM>20 in 20% of samples for protein 

spectral counts and CPM>1 in 20% of samples for RNA-Seq counts.


