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Abstract 

 

The ever increasing pace of development of novel therapies mandates efficient 

methodologies for assessment of their tolerability and activity. Evidence increasingly 

support the merits of model-based dose-finding designs in identifying the recommended 

Phase II dose compared to conventional rule-based designs such as the 3+3 but despite 

this, their use remains limited. Here, we propose a useful tool, Dose Transition Pathways 

(DTP), which helps overcome several commonly-faced practical and methodological 

challenges in the implementation of model-based designs. DTP projects in advance the 

doses recommended by a model-based design for subsequent patients (stay, escalate, de-

escalate or stop early), using all the accumulated information.  After specifying a model with 

favourable statistical properties, we utilise the DTP to fine-tune the model to tailor it to the 

trial’s specific requirements that reflect important clinical judgements. In particular, it can 

help to determine how stringent the stopping rules should be if the investigated therapy is 

too toxic. Its use to design and implement a modified Continual Reassessment Method is 

illustrated in an Acute Myeloid Leukaemia trial. DTP removes the fears of model-based 

designs as unknown, complex systems and can serve as a handbook, guiding decision-

making for each dose-update. In the illustrated trial, the seamless, clear transition for each 

dose-recommendation aided the investigators’ understanding of the design and facilitated 

decision-making to enable finer calibration of a tailored model. We advocate the use of the 

DTP as an integral procedure in the co-development and successful implementation of 

practical model-based designs by statisticians and investigators. 
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INTRODUCTION 

 

The majority of Phase I dose-finding trials have been carried out using conventional rule-

based designs, such as the 3+3 design typically seen in oncology trials(1,2). However, in 

recent years, there have been calls to put the 3+3 Design to rest, particularly in the 

contemporary era of dose-finding trial settings involving targeted therapy and combination 

therapy(3-5). There is consequently an emerging interest in more innovative and versatile 

model-based dose-finding methods such as the Continual Reassessment Method (CRM)(6) 

and Escalation with Overdose Control(7), that can be extended to cope with more complex 

clinical settings to meet the demands of the rapidly changing field of novel therapeutics(4).  

Such approaches aim to utilise all accumulated data to make informed decisions on dose 

recommendation during the trial as well as the final recommended dose for the next phase. 

Despite their apparent increased statistical complexity, they have demonstrated the 

following advantages in comparison to rule-based designs within the statistical literature: 

 Superior performance in correctly identifying the right dose (primary trial objective) 

and hence enable a quicker and more effective progression to later phases of clinical 

development 

 Ability to expose fewer patients to potentially toxic doses and  

 Allocation of more patients to desirable dose(s)(8).  

 

Nevertheless, adoption of these advanced methods has been very limited due to the 

perceived challenges in the implementation of such complex designs(9). Firstly, despite the 

flexibility that such adaptive designs offer, there exist methodological challenges such as 

how to choose an appropriate design that takes into consideration the specific requirements 

of the trial, and is applicable in practice. Secondly, such designs are less familiar than rule-

based designs perceived to be “successful” for decades in determining a safe dose. It thus 

remains a challenge to communicate to investigators (including clinicians and the trials’ 

management team) how the design works as well as the rationale for using a more 

resource-intensive and statistically complex design. Thirdly, operational challenges include 

trialists’ impression that dose-recommendations come from an unknown system (“black-

box”), which contrast unfavourably with the transparent simple rules of a rule-based design. 

There are concerns too about possible delays that might result from the operational team 

needing to await complex statistical analysis to recommend the next dose. Close 

collaboration between the statistician and investigators will also be required throughout the 

dose-finding phase. Such infrastructure may only be present at centres which are able to 
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invest on specialised statisticians with the relevant expertise (10).  This is a major contrast 

to the simple operational aspect of a rule-based design, which can and has been conducted 

without a statistician’s involvement. Its dose-recommendations are readily anticipated 

without the need for any kind of calculation.   

 

In this paper, we introduce Dose Transition Pathways (DTP) as a practical tool to aid 

design, analysis and operation of a trials-specific tailored model that is applicable in 

practice. We first focus on dose-finding trials whereby the primary objective is to determine 

the Maximum Tolerated Dose, MTD. This is commonly monitored via a binary variable of 

occurrence of dose-limiting toxicities (DLT) within a specified assessment period, as defined 

in the trial protocol.  Extension to other model-based designs will be discussed later.  

The use of the DTP will be illustrated in the Viola trial - a Phase I trial in Acute Myeloid 

Leukaemia (AML), where a modified CRM is implemented.  

 

METHODS 

 

The idea of DTP is to project in advance the recommended doses for subsequent cohorts 

(stay, escalate or de-escalate or stop the trial early), depending on the information accrued 

thus far.  

 

In a characteristic CRM design, certain parameters need to be considered in the choice of a 

suitable design. Figure 1 displays the typical specification to be considered for a model-

based design such as the CRM(11,12). This can be broken down into the broad categories 

of clinical parameters, model specification parameters and practical considerations. It 

highlights that due to the flexibility of such designs, the number of input parameters to 

consider is in stark contrast to what is necessary for a rule-based design. The latter typically 

considers only the clinical parameters category, including DLT definition and assessment 

period, set of doses, fixed cohort size and starts at the lowest dose, and has pre-set dose-

escalation rules. On the other hand, one needs to deliberate how the decisions on the 

numerous parameters for model-based designs (e.g. initial guesses of DLT rates or 

stopping early) would impact on overall performance and dose-recommendation. 
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Using the Dose-Transition Pathways as a Design Calibration Tool 

 

Figure 2 displays the practical steps that could be considered in using DTP as a design 

calibration tool. Several studies have investigated ways to calibrate a CRM design in order 

to optimize performance(11,13,14).  As with all adaptive designs, it is important to conduct 

statistical simulations to examine the average performance (operating characteristics) of the 

chosen design under several clinically relevant scenarios (Step 1, Figure 2)(12).   

 

One might argue that even after extensive simulations to select a statistically optimal design 

under certain conditions, there is a risk it might not be translatable in practice.  For instance, 

during its implementation, the clinical investigators may decide to deviate from what the 

model recommends, if it recommends doses that are contrary to what they expect. Though 

use of such designs is to provide guidance for dose-recommendation and is non-binding, 

repeated deviations from the model would undermine confidence in it. This can be avoided 

by utilising the DTP as a visual tool to provide better insights – to statisticians as well – than 

a set of unintuitive statistical equations. This gives us the ability to know when our models 

are useful and when they might not be appropriate (Step 2, Figure 2). 

 

Here, we introduce the idea of “reverse engineered decision” with an objective to determine 

how stringent the stopping rules should be to stop a trial early if the lowest dose is too toxic. 

There are certain pathways whereby the clinical investigators are certain they would 

recommend stopping if they do observe unexpected levels of DLTs, particularly in the initial 

cohorts when safety data are limited, e.g. 2/3 or 3/3 DLTs at the lowest dose, or even 1/3 

DLT if the acceptable DLT level is low. An example of a Bayesian safety stopping early 

criterion is displayed below: 

 

p(  true DLT rate at lowest dose > target DLT rate + x | current observed data and any 

relevant prior information ) > y  

 

This implies if there is a high chance (> y) that the true DLT rate at the lowest dose is 

greater than (target DLT rate + x), we would recommend stopping the trial early. The 

threshold value y is usually calibrated to obtain a design with good operating characteristics 

(stopping early if all doses are too toxic), but here we will utilise the DTP to fine-tune it to 

ensure the design also reflects how clinical decisions are likely to be undertaken particularly 

if unanticipated toxicities arise in the initial cohorts.  To aid discussion on when one would 
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stop early, the DTP can be colour-coded (using a heatmap as employed in the Viola trial 

described later) to highlight the pathways where there are high risks that that the lowest 

dose is too toxic.  

 

After obtaining an updated investigator-endorsed DTP of the initial cohorts (Step 3, Figure 

2), one then re-run simulations to assess if the model’s average performance is still 

promising as it may be different from the unmodified CRM (Step 1, Figure 2) due to the 

added modifications. In particular, the impact on the performance of the design under the 

scenario when all doses of the therapy are too toxic (i.e. the trial should stop early and no 

dose should be considered suitable as the MTD) should be evaluated. The whole process 

is completed if the model’s operating characteristics are favourable. Otherwise, further 

calibration might be required before applying it in a trial. The two main processes of 

simulations to assess operating characteristics and generation of DTP go hand in hand, 

and the whole procedure may be somewhat iterative before the final design is chosen (Step 

4, Figure 2). 

 

We illustrate later how those practical steps in using the DTP were undertaken to fine-tune 

the CRM model in the Viola trial, with particular focus on Steps 2 and 3. 

 

Using the Dose-Transition Pathways as an Analysis and Operational Tool  

 

The design rules of a 3+3 design dictate that if we observe 0 out of 3 (0/3) patients 

experiencing a DLT, we will escalate to the next higher dose; if we observe 1/3 DLT, we will 

include another cohort at the current dose; and if we observe at least 2/3 with DLT, we will 

de-escalate to the next lower dose or stop the trial if the current dose is the lowest dose. 

Given the pre-set design rules, the 3+3 design is very straightforward in its operation and 

no analysis for dose-recommendation is required at the interim stages after each cohort. 

Often, a statistician may not be required in the running of such designs.  

 

An adaptive model-based design is not as straightforward in its analysis or operational 

aspect, because the next recommended dose at each interim stage will depend on all 

accumulated data (i.e. all patients’ DLT outcomes at all treated dose levels), as opposed to 

only recent data. Thus the DTP can be a valuable analytical and operational tool. In a way, 

it pre-analyses all possible pathways in advance at the planning stage to provide dose-

recommendations for subsequent cohorts, and can be displayed in the form of a table or a 
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flow diagram.  With b cohorts each including a patients giving a total sample size of ab, 

there are (a+1)b possible pathways. For instance, ten cohorts of three patients would 

produce up to 1 million possible pathways. The number of unique pathways could be 

reduced if the trial is stopped early. Displaying the pathways in full is neither practical nor 

useful.  A practical recommendation is to produce a DTP for a specific number of cohorts 

first. For instance, for a cohort size of three patients, DTP for the first three complete 

cohorts with up to 64 possible pathways can be produced initially. This would facilitate 

discussion on the design and its operation with the investigators, which is often the critical 

stage as data are limited. Once agreement is reached, the DTP based on the adopted 

tailored CRM model, can form part of the operational procedures for the dose-escalation 

process. Inclusion of the DTP for the first group of cohorts in the protocol and Statistical 

Analysis Plan can also facilitate understanding on the workings of such complex designs, 

overcoming the challenge of navigating through the complexities of novel statistical designs 

commonly faced by the review committees (12).  

 

The DTP could be updated (using the same tailored CRM model) to project pathways for 

subsequent (e.g. three) cohorts. In this way, the DTP will only have to be updated in a few 

stages, rather than after every cohort. Useful discussion on the projected further pathways 

can be conducted after each update. This may reduce the operational demands of such 

designs, as well as ensure smoother flow of the trial, avoiding undue delay. It could 

potentially reduce the need for the statistician to be at hand after each cohort.  

 

Furthermore, the DTP can allow the trial to easily implement the “look ahead” strategy if the 

next recommended dose by the CRM model is the same regardless of the outcome of the 

remaining patients in the current cohort. This has an attractive advantage of reducing 

waiting time between cohorts – a valuable time-saving benefit.   

 

RESULTS 

 

Viola as an illustrative example 

 

Viola (ISRCTN 98163167) is a Phase I trial using a CRM design in AML patients who have 

relapsed after allogeneic stem cell transplantation. Currently, treatment options for such 

patients are extremely limited and the great majority die of resistant disease. Small studies 

showed both azacitidine and lenalidomide possess anti-leukaemic activity when 
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administered as monotherapy in non-transplant patients whilst azacitidine is active and well 

tolerated post-transplant(15).  Administration of lenolidomide is associated with a significant 

risk of severe graft-versus-host disease (GvHD)(16). On the basis that azacitidine may 

moderate the risk of GVHD post-transplant(17),  Viola wished to explore the MTD of 

lenolidomide in combination with azacitidine.  Given the lack of effective treatment options 

currently in the study population, the investigators were happy to accept a higher target 

DLT probability of 20% (defined as Grade 3/4 or recurrent Grade 2 acute GvHD or most 

Grade 3 or 4 non-haematological toxicities) in exchange for potentially higher additive 

efficacy benefit for the combined therapy which has not been tested for this patient 

population.  

 

The set of seven lenalidomide doses considered for the Viola Trial, ranging from Dose 

Level -2 to 4,  with initial guesses (skeletons) of DLT rates, are displayed in Table 1. 

Azacitidine was fixed at 75mg/m2. Patients were recruited in cohorts of 3 with a target 

sample size of 27. Prior guess of MTD was at Dose Level 1. However, as this was the first 

time that the two therapies were combined in this patient population, a cautious starting 

dose level was decided at Dose Level 0. No skipping of untried doses in escalation was 

allowed whereas skipping of untried doses in de-escalation was permitted. A one-stage, 

one-parameter empiric Bayesian CRM model was used, with a normal prior of mean 0 for 

the slope parameter of the dose-toxicity curve.  Following the recommended steps as in 

Figure 2, simulations were first conducted to assess the operating characteristics of the 

design under several clinically relevant scenarios and a prior variance of 0.75 was selected 

based on favourable performance (step 1, Figure 2).   

  

Next, we assessed the initial DTP (step 2, Figure 2) for the first three cohorts with all 64 

possible pathways (Supplementary Table S1). As mentioned earlier, one could opt to pre-

specify all 49 possible dose pathways for nine cohorts and store it as an extended 

spreadsheet; however displaying such a large table upfront may not be practical or useful 

for discussion or operational purposes. The investigators were in agreement with the 

model’s recommended pathways in terms of escalating, de-escalating or staying at the 

same dose (Supplementary Table S1 for initial DTP). The one obvious parameter that 

needed calibration was when to stop the trial early for excessive DLT at the lowest dose. If 

we observe at least 2 DLTs out of 3 patients at the starting dose (third lowest dose), the 

estimated DLT rate at the untested lowest dose, Dose -2 is likely to be high. The 

investigators were unwilling to stop the trial early without first testing the lowest dose, which 
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is monotherapy of azacitidine. Also, for the first cohort of three patients at the lowest dose, 

the investigators would only want to stop the trial if there were at least 2 DLTs. Pathways 

where there were high chances that the lowest dose was too toxic were highlighted using a 

DTP-heatmap (Supplementary Figure S2). Coupled with initial DTP in Supplementary Table 

S1, this DTP-heatmap served as a useful tool to discuss with the investigators when one 

should stop the trial early for excessive toxicity by focusing on those scenarios that were 

red (high risk that the lowest dose was too toxic) and  orange (fairly high risk) based on the 

first three cohorts. This led to fine-tuning of the threshold value of y as 0.72 to produce 

pathways which reflect the empirical requirements of the investigators on when they desire 

the model to recommend stopping early (as in Step 3, Figure 2). This implies if there is a 

high chance (>72%) that the true DLT rate at the lowest dose is more than 30%, the model 

will recommend early stopping. The Trial Management Group and Trial Steering Committee 

(TSC) will be alerted and the latter, with support of any external evidence, will recommend if 

the trial should be stopped.   

 

The operating characteristics of the design were updated to take into account the fine-tuned 

safety criteria and the operating characteristics remained favourable (Step 4, Figure 2).  

The final DTP, based on the tailored CRM design, with 52 unique dose pathways for the 

first three complete cohorts was discussed and agreed by the clinical investigators as well 

as the TSC before implementation (Table 2). It was included in both the protocol and the 

Statistical Analysis Plan. From the DTP in Table 2, if we observe 0/3 DLTs for cohorts 1-3, 

the model will recommend escalation to the next higher dose after each cohort, as 

expected. If we observe 1/3 or at least 2/3 DLTs for the first cohort, the model will 

recommend de-escalation to Dose level -1 and Dose level -2 respectively.  An alternative 

flow diagram of DTP is provided in Figure 3. Some of the pathways lead to the same 

eventual doses and could be combined if preferred.  

 

An illustration where the look ahead strategy can be applied is if we observe 1/3 DLT in 

Cohort 1 at Dose 0 and treat Cohort 2 at Dose -1 and observe 2 DLTs in patients 4 and 5 

(pathways 25-32, Table 2). Regardless of the DLT outcome of patient 6, the recommended 

dose for the next cohort is de-escalation to Dose -2. Hence, one can avoid the usual 

recruitment suspension between cohorts whilst assessing DLT and proceed to recruiting 

patients in Cohort 3.      
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Once the DLT outcomes are observed for the first three cohorts, the DTP can be updated to 

project dose pathways for Cohorts 4-6 and subsequently for Cohorts 7-9, using the same 

tailored CRM model adopted for Cohorts 1-3.  In a hypothetical situation where 0/3 DLT in 

Cohort 1 at Dose 0, 1/3 DLT in Cohort 2 at Dose 1 and 0/3 DLT in Cohort 3 at Dose 1 are 

observed, the recommended dose for Cohort 4 is Dose 2 (pathway 5, Table 2). Using this 

accumulated information, the DTP can be readily updated for Cohorts 4-6, as displayed in 

the Supplementary Table S3.  Assuming 1/3 DLT at Dose 2, 0/3 DLT at Dose 1 and 2/2 

DLT at Dose 2 for Cohorts 4 to 6 respectively (pathway 19 in Supplementary Table S3), 

subsequent DTP for Cohorts 7-9 and the final recommended MTD can be produced, taking 

into account all the accrued information at all doses (Supplementary Table S4).  

 

As the software code for producing the DTP can be written upfront at the design stage, the 

update is straightforward and can be easily prepared. In the Viola trial, with the use of the 

DTP, this allows the user the option to only update twice, after Cohorts 3 and 6. In contrast, 

using the CRM without the DTP will require eight updates (after every cohort) for dose-

assignments. This reduces the operational demands and resources (particularly real-time 

statistical support) typically required for such complex designs.  

 

DISCUSSION 

 

It is well established that model-based designs are superior to rule-based designs. 

However, we recognise that implementation of CRM faces several challenges in the design, 

analysis and operational stages. We thus present DTP as a solution for these challenges. 

 

A potential disadvantage of model-based designs in general, compared to rule-based 

designs, is their lack of transparency.  The key role of the DTP is to bridge this gap by 

translating the opaque model-based recommendation into numerical decisions that 

clinicians can comprehend and be able to make inputs to further calibrate the model, 

ensuring any unexpected behaviour can be resolved prior to implementation. In particular, it 

helps to determine how stringent the stopping rules should be to stop a trial early if all 

doses are too toxic. Operationally, this is an attractive tool, as the visualisation of the pre-

specified pathways on how the model will recommend doses depending on the 

accumulated data takes away the fears of such designs being black-boxes. It can serve as 

a handbook of dose pathways adopted in advance by the investigators, guiding decision-
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making for each dose update and reducing the need for constant real-time statistical 

support similar to the operation of a simple rule-based design.    

 

Furthermore, DTP can be a useful tool to facilitate the work of the relevant safety monitoring 

board as the dose pathways are clearly displayed in advance, and any concerns could be 

raised prior to the start of the trial, or after each stage of the updated DTP.  If the trial 

happens as planned with no undue concerns, recruitment of the next cohort can be 

continued at the model’s recommended doses as agreed beforehand. This may reduce the 

need for safety overview committees to meet regularly after each cohort because of the 

otherwise opaque dose-recommendation of an adaptive design, speeding up the process to 

proceed to recruiting the next cohort. Even in unexpected circumstances where there is a 

deviation in the design (e.g. change in cohort size or incorrect dose given), the DTP can be 

easily updated for future dose-recommendation. 

 

An alternative simpler model-based approach which combines Bayesian based methods 

with simple up and down rules similar to the 3+3 algorithm is the modified toxicity probability 

interval, mTPI (18,19). The toxicity rates are modelled independently with a monotone 

dose-toxicity curve imposed only at the end of the study. The authors proposed a similar 

idea as the DTP using a simple Excel spreadsheet to project dose decisions in advance for 

mTPI at the current dose. Recently, another toxicity probability interval method, Bayesian 

Optimal Interval Design, BOIN (20) also promoted the use of pre-specification of dose-

decision table. Notably, one of the main differences in the dose-assignment decisions 

between the three approaches is that whilst dose decisions (de-escalate, escalate or stay) 

under mTPI and BOIN are based on number of DLTs amongst number of evaluable 

patients at the current tested dose, dose decisions under the CRM are dependent on 

accumulated data at all doses (not only at the current tested dose) thus borrowing strength 

from across doses. 

 

Horton et al (2017) (21) compared the CRM with mTPI and BOIN via an extensive 

simulation study. The paper found that the CRM outperformed the latter two competing 

methods and its superior performance was more pronounced as the number of dose levels 

increased. As noted by the authors, CRM is more difficult to implement in practice 

compared to both mTPI and BOIN (where dose assignments can be displayed in advance) 

as it is less transparent (21) – without the use of DTP. With DTP, more complex but 

nonetheless more flexible and superior model-based designs, such as the CRM, can be 
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made more transparent with the projection of future dose pathways, increasing their 

potential uptake. Also, by facilitating understanding and interaction with clinicians on the 

workings of such complex designs, the flexibility of such designs, including incorporation of 

useful clinical judgements, could be more fully utilised in the development of an eventual 

tailored model, as demonstrated in Viola.  

 

Although we have focused on the demonstration of DTP in relation to CRM, the concept of 

DTP is equally applicable and useful to inform the decision-making process and design for 

other model-based designs such as time-to-event CRM (TITE-CRM) for delayed and 

cumulative toxicity(22,23), escalation with overdose control(7), phase I/II methods that 

incorporate activity and toxicity to determine the most desirable or optimal dose(24-26), and 

methods that consider toxicity severity (as opposed to a binary DLT)(27).  The user may 

have to choose a feasible approach to present projected dose pathways in different settings 

that will be useful to aid decision making.  

 

For instance, in the case of TITE-CRM(22), where we might have full and partial followed-

up DLT observation periods for patients, the projected DTP might differ depending on the 

amount of information available for each dose update. This will be dependent on patients’ 

accrual times and the time of update. It is hence harder to map out the DTP in advance. 

However, in such a setting, it will still be useful to produce the DTP for the equivalent CRM 

where the full assessment period is assumed when designing the trial. This can serve as 

guidance on whether a waiting period should be imposed if dose-decision based on partial 

information differs from complete information. For joint evaluation of efficacy and toxicity, 

the DTP will take into account both outcomes for each patient.  Each patient can achieve 

four possible outcomes: (Toxicity, Efficacy), (Toxicity, No Efficacy), (No Toxicity, Efficacy), 

(No Toxicity, No Efficacy).  If the model is going to be updated after every patient (i.e. 

cohort size of 1), projected DTP for the first three complete patients will produce up to 43 = 

64 pathways. On the other hand, if the cohort size is 3, it may only be feasible to project 

one cohort in advance, giving 20 possible pathways. Projection of two cohorts’ joint 

outcomes will produce 400 (=202) pathways which might not be useful.   To date, we have 

utilised the DTP to design several model-based dose-finding trials, using CRM(28,29) and 

using a model which jointly evaluates efficacy and toxicity, EffTox(30). For computations in 

practice, availability of R codes for generating DTP tables and figures are available from the 

authors upon request. Also, the DTP can easily be implemented using existing software 
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(e.g., the “dfcrm” package in R (31)) to inform all possible outcomes in the following 

cohort(s).  

 

Calibrating a model is key to the success of using a model-based dose-finding design.  

Simulation is a common tool to evaluate the statistical properties of a selected design over 

the long run – this can be viewed as the Big Picture. However, it is vital too to focus on the 

finer, Small Details, to ensure that the model operates in ways that adhere to the 

investigators’ judgement, such as coherence in escalation/de-escalation(11,32), stopping 

early for excessive toxicity and any trial’s explicit requirements. The utility of this tool is even 

more important at the initial stage where patient numbers are low, by fine-tuning the model 

to ensure that the dose decisions be guided (arguably sometimes more) by clinical 

judgement in conjunction with the statistical model. One can then allow a gradual shift of 

responsibility to the statistical model as data mature, though clinical input is still important.  

This can help to ensure that even though there are several potential models with promising 

statistical properties, the selected design (with its individual performance) is one the clinical 

investigators find reliable and are comfortable to adopt in practice.  

 

A simple, comprehensive, investigator oriented tool to link between complex models and 

simple decision-making, fulfils a vital and unmet need for better efficiency that can only be 

achieved by using such designs in dose-finding trials. By assimilating opinions of clinicians, 

statisticians and trials operational team to co-develop designs which are applicable in 

practice and can be easily implemented, DTP can serve as an integral step towards greater 

confidence and increase uptake of such efficient designs. This will undoubtedly contribute 

to more rapid and effective progression to later phases of clinical development and 

ultimately, accelerating patients’ access to potentially life-changing innovations. 
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Table 1: Set of dose levels considered in the Viola trial   

Dose Level Azacitidine dose Lenalidomide dose Prior Probability 
(skeleton) of DLT 

-2 75mg/m2  N/A 0.03 

-1 75mg/m2  2.5 mg  0.07 

0 (starting dose) 75mg/m2  5 mg  0.12 

1 75mg/m2  10 mg  0.2 

2 75mg/m2  15 mg  0.3 

3 75mg/m2  25 mg  0.4 

4 75mg/m2  50 mg  0.6 
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Table 2   Dose Transition Pathways (DTP) for the first three complete cohorts for the 
Viola Trial using a modified CRM with cohort size of three. It presents the 
recommended projected doses for the first three complete cohorts giving in each case the 
recommended dose for cohort 4 with 52 unique pathways. Starting Dose is Dose 0 (75 
mg/m2 Azacitidine and 5mg Lenalidomide).  
 

Pathway 
Cohort 1 Cohort 2 Cohort 3 Cohort 4 

Dose DLT Dose DLT Dose DLT Dose 

1 0 0 1 0 2 0 3 
2 0 0 1 0 2 1 2 
3 0 0 1 0 2 2 1 
4 0 0 1 0 2 3 0 
5 0 0 1 1 1 0 2 
6 0 0 1 1 1 1 0 
7 0 0 1 1 1 2 -1 
8 0 0 1 1 1 3 -2 
9 0 0 1 2 -1 0 0 

10 0 0 1 2 -1 1 -1 
11 0 0 1 2 -1 2 -2 
12 0 0 1 2 -1 3 -2 
13 0 0 1 3 -2 0 -1 
14 0 0 1 3 -2 1 -2 
15 0 0 1 3 -2 2 -2 
16 0 0 1 3 -2 3 STOP 
17 0 1 -1 0 0 0 1 
18 0 1 -1 0 0 1 0 
19 0 1 -1 0 0 2 -1 
20 0 1 -1 0 0 3 -2 
21 0 1 -1 1 -1 0 -1 
22 0 1 -1 1 -1 1 -2 
23 0 1 -1 1 -1 2 -2 
24 0 1 -1 1 -1 3 -2 
25 0 1 -1 2 -2 0 -2 
26 0 1 -1 2 -2 1 -2 
27 0 1 -1 2 -2 2 -2 
28 0 1 -1 2 -2 3 STOP 
29 0 1 -1 3 -2 0 -2 
30 0 1 -1 3 -2 1 -2 
31 0 1 -1 3 -2 2 STOP 
32 0 1 -1 3 -2 3 STOP 
33 0 2 -2 0 -2 0 -1 
34 0 2 -2 0 -2 1 -2 
35 0 2 -2 0 -2 2 -2 
36 0 2 -2 0 -2 3 STOP 
37 0 2 -2 1 -2 0 -2 
38 0 2 -2 1 -2 1 -2 
39 0 2 -2 1 -2 2 STOP 
40 0 2 -2 1 -2 3 STOP 
41 0 2 -2 2 STOP NA STOP 
42 0 2 -2 3 STOP NA STOP 
43 0 3 -2 0 -2 0 -2 
44 0 3 -2 0 -2 1 -2 
45 0 3 -2 0 -2 2 -2 
46 0 3 -2 0 -2 3 STOP 
47 0 3 -2 1 -2 0 -2 
48 0 3 -2 1 -2 1 -2 
49 0 3 -2 1 -2 2 STOP 
50 0 3 -2 1 -2 3 STOP 
51 0 3 -2 2 STOP NA STOP 
52 0 3 -2 3 STOP NA STOP 
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Figure 1. Design considerations for Continual Reassessment Method and similar 

approaches. (Rule-based designs typically consider only the clinical parameters category.) 

 

Figure 2. Practical steps in using DTP to fine-tune model-based designs at the design 

stage, with the integration of investigators’ opinions in the decision-making process, to 

produce a tailored model. 

 

Figure 3.  DTP in the form of a flow diagram for projected dose pathways for Viola.  It 

displays the starting dose as d(0) for Cohort 1 (C1) and the corresponding projected 

recommended doses for Cohort 2 (C2) and Cohort 3 (C3) depending on the number of 

DLTs observed, for a cohort size of three. The coloured lines of green, amber and red 

indicate escalation, staying at the same dose level and de-escalation respectively. The filled 

red boxes with “STOP” indicate stopping the trial early due to strong evidence that the 

lowest dose is too toxic.   

 


