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Distributed quasi-Bragg beam 
splitter in crossed atomic 
waveguides
V. Guarrera1,2, R. Moore1,3, A. Bunting1, T. Vanderbruggen1 & Y. B. Ovchinnikov1

We perform an experimental and theoretical study of a novel distributed quasi-Bragg splitter for cold 
atoms propagating in crossed optical waveguides. The atoms are guided by horizontal red-detuned 
laser beams which cross with an angle of roughly 90°. The lattice formed by the interference between 
the two waveguides is used as a quasi-Bragg splitter to continuously deflect the atomic flux from one 
waveguide into the other. In the limit of strong waveguide confinement and depending on the velocity 
of the cloud, three main regimes are observed corresponding (1) to the absence of reflection, (2) to 
partial reflection and (3) to full reflection into the second waveguide. In view of the application to 
atom interferometry, the condition to split the cloud into mainly two equally-populated fragments is 
only met in the highest velocity regime, where the fraction of reflected and transmitted atoms can be 
controlled by tuning the lattice height. A diagnostic of the momentum distribution shows that a quasi-
Bragg splitter with the occupation of mainly two momentum states is achieved in this regime. This 
behaviour can be understood by considering the band structure associated with the potential in the 
crossing region and agrees with numerical simulations of the atomic dynamics.

Since the first realization of ultracold matter waves, the strong analogy with optics has boosted a number of 
seminal achievements and has driven novel technological progress1–3. A major goal in the field of atom optics 
is the realization of coherent atomic circuits. There is indeed a strong interest towards the potential technolog-
ical application of these systems as guided atom interferometers4, and also as analogs of electronic circuits with 
enhanced control on the carrier particles, an emerging field known as Atomtronics5, 6. For all these applications, 
it is of primary importance to develop appropriate techniques to control the dynamics of the atoms in the wave-
guides, starting from the basic building block of any circuit and interferometer: the beam splitter. Coherent beam 
splitters have been realized for Bose-Einstein condensates (BECs) trapped in double-well potentials7, guided in 
linear optical waveguides8, and in Y-shaped waveguides with a small opening angle9, 10. However an integrated 
splitter able to continuously separate a guided atomic cloud and to spatially deflect it by a large and arbitrary angle 
has not been realized yet.

Here we consider a system where the atoms are confined in horizontal waveguides realized by means of 
red-detuned laser beams. The simple intersection of two such waveguides has shown not to lead to a good beam 
splitter as the atoms exit all the four available channels following chaotic dynamics11. In the domain of optical 
waveguides, a controlled reflection of the light is commonly achieved by employing distributed Bragg reflectors 
which serve as optical filters, couplers and optical (de)multiplexers. An analogous version for matter waves prop-
agating in a single linear waveguide has been recently realized12.

In this paper we study both theoretically and experimentally a novel all-optical splitter for propagating mat-
ter waves which combines for the first time these two features: a crossing guide configuration with a distrib-
uted quasi-Bragg reflector, where by quasi-Bragg we refer to an intermediate regime between the Bragg and the 
so-called channeling regime, where the diffraction pattern is still similar to the one generated by a Bragg diffrac-
tion13, 14. We propose to realize the periodic potential required for such a reflector by allowing the two crossing 
waveguides to interfere, thus generating an inhomogeneous optical lattice in the spatial region where they over-
lap, as shown in Fig. 1. The atoms initially propagating in one linear waveguide can thus be reflected by the lattice 
formed in the crossing region and can enter the second waveguide, which intercepts the first one at an angle θ. 
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This minimal scheme thus allows a controlled reflection of the atoms into one specific direction of the crossing 
waveguide and could work for any angle θ, as the orientation of the lattice is naturally correlated with the align-
ment of the two waveguides. The proposed splitter could be used for Michelson as well as for Mach-Zehnder 
interferometry where a large deflection of the atomic beams can be exploited to design circuits with large enclosed 
areas for high-sensitivity measurements. In the latter case, the mirrors and the recombiner can be in principle 
realized with the same design of the splitter, provided four linear waveguides are properly intersected. We note 
that the recombination of two split clouds confined in waveguides can be done, without re-passing through the 
same path, either by bending the waveguides or by using straight waveguides and mirrors, similarly to optical 
interferometers. As bent optical dipole traps are not easy to realize9, our technique can provide a simpler solution 
for the generation of controlled atomic circuits with laser beams. Moreover, splitting and recombining the atoms 
in two momentum states provides an easier readout with respect to the Y-splitters, where the states to be read 
are external states of the radial trap realized by the waveguide. Our technique would ideally suit applications in 
optical waveguides realized by integrated or miniaturized optical elements. Atoms both in the BEC regime or in 
the thermal regime can be used, provided the momentum spread of the cloud is smaller than the recoil velocity 
which corresponds to a temperature much lower than 140 nK for our experimental parameters.

Theoretical Description
We first theoretically study the proposed matterwave reflector in the simplified assumption of a two-dimensional 
(2D) system with no interparticle interactions, which is experimentally justified in the case of low atomic density. 
In the following we consider the motion of the atoms limited to a horizontal plane, as correction due to the grav-
itational sag is negligible in the considered range of parameters. The potential that results from the intersection 
between two identical Gaussian beams crossing near the two waists at an angle θ is α= −

ε
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where α is the atomic polarizability, E0 the amplitude of the light field and the normalized intensity I(x, y) in the 
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with kR = 2π/λ the wave number of the light, w0 the beams’ waist and ε≤ ≤0 1 the interference contrast which 
depends on the relative polarization of the two beams and defines the lattice amplitude. In Eq. 1 the x-axis coin-
cides with the axis of one of the waveguides, see also Fig. 1. To simplify the notation, we operate a change of 
coordinates consisting in a rotation of θ/2 and we work in the reference frame set by the lattice. The potential in 
the rotated basis {x′, y′} can be simply written as

ε θ′ ′ = − ′ ′ ′ ′ + ′U x y U x y A x y q y( , ) ( , )[ ( , ) cos( ( ) )] (2)R0

with the effective wavevector θ θ π= =q k d( ) 2 sin( /2) 2 /R R  and d being the lattice spacing. In the intersection 
region, the potential U(x′, y′) is the sum of two terms: a trapping potential, − ′ ′ ′ ′U x y A x y( , ) ( , )0 , and a 
quasi-periodic lattice with a gaussian envelope ε= ′ ′U U x y( , )lat 0 , being:

Figure 1.  Schematics of the distributed quasi-Bragg reflector in crossing atomic waveguides. The two 
waveguides are realized by the same off-resonant laser and produce an inhomogeneous optical lattice in the 
crossing region where they interfere. We use this configuration as a controllable beam splitter to divide a BEC, 
which initially propagates along one linear waveguide (WG1), into two different fragments moving along each 
of the two waveguides (WG1 and WG2) which cross with a variable angle θ.
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Figure 2.  Imaginary part of the Mathieu characteristic exponent calculated along the x axis for different initial 
velocities of the atomic wavepacket and different lattice strengths. Atoms propagating towards the crossing 
region move from negative to positive values of x/w0 in this picture. The calculations refer to our experimental 
parameters with λ = 1064 nm, U E25t R and =E k m/(2 )R R

2 2 . (a) For ε = 0.2 atoms with velocity v ≲ vR 
(highlighted with a red dashed line) are most probably deflected by the lowest energy band opening at a distance 
~1.4w0 from the center. (b) With ε = 0.4, higher order band gaps, opening progressively closer to the centre, 
deflect the atoms at velocities higher than vR. The solid white line in the graphs shows for each position x the 
initial velocity v = v0 at which the kinetic energy of the atoms satisfies the condition Ekin(x, v0) = Ut. When the 
atoms are reflected by the spatial gaps their kinetic energy is ideally transferred from the axis of one waveguide 
to the axis of the other. Only if >E x v U( , )kin t, or v > v0 for a position x where the reflection takes place, the 
atoms can leave the trap generated by the first waveguide along its radial direction and enter the second 
waveguide. The minimum velocity v0 at which a spatial gap intersects this condition, which for the case 
presented here is roughly equal to 3vR (see red dashed line in the graph), provides a rough estimate of the onset 
of a regime where the atoms, once reflected by the gaps, can directly enter the second waveguide. (c) Zoom on 
the higher order band gaps opening in the centre of the crossing region, calculated for ε = 0.6. For each lattice 
height the corresponding potential =U x y( , 0) is shown in the right column of the figure. Note that the atoms 
are accelerated (and decelerated) when propagating across the intersection region due to the radial trap of the 
second waveguide with depth Ut.
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where Ut is the trap depth of the single waveguide. Given πw k2 / R0 , we perform a local approximation assum-
ing that the functions U0(x′, y′) and A(x′, y′) are slowly varying compared to cos (qR(θ)y′).

We thus study the local band gap structure produced by the potential ′ ′U x y( , ), using the method described in 
ref. 15. With the potential of Eq. 2, the stationary Schroedinger equation is a Mathieu equation and the problem 
of determining the band gaps is resolved by numerically calculating the imaginary part of the so-called Mathieu 
characteristic exponents κ. The solutions of the Mathieu equations have the form κe f x( )i x  and an imaginary value 
of κ indicates that the wavefunction is evanescent. For particle energies lying within a band gap, the transmission 
by the lattice is exponentially suppressed and reflection takes place. The inhomogeneity of the lattice amplitude 
has the effect of projecting in real space the band gap structure, giving rise to reflective barriers for the atoms 
called spatial gaps. The presence of an external confining potential, in addition, determines the spatial distribution 
of these gaps within the intersection region of the two crossing beams, where the lattice is formed. In particular, 
this is responsible for the lowest energy band gaps to appear at the external edge of the intersection region, the 
exact number of these side gaps depending on the depth of the trap.

A full map of the spatial gaps in two dimensions is rather complex as it relies onto the details of the atomic 
dynamics in the crossing region. In the following we thus restrict this analysis to just one dimension by consider-
ing an atomic wavepacket propagating towards the intersection of the beams along the x axis as shown in Fig. 1 
with an initial velocity v and total energy = + | δ=− =E m Uv x y

1
2

2
( , 0), where δ  w0 is the distance between the 

position where the atoms are released and the center of the crossing. The angle formed by the two waveguides 
θ = 90° has been also chosen, in the first instance, to avoid the coupling of the axial and radial degrees of freedom 

Figure 3.  The maximum fraction of atoms reflected into WG2 obtained by optimizing ε, here plotted as a 
function of the initial velocity of the BEC. Three regimes of propagation are observed experimentally: (1) 
for low velocity v ≲ vR the atoms stop at the edge of the crossing region and only a few atoms enter WG2 
propagating in both its two directions (this weak signal in WG2 is highlighted by the red arrows), (2) for higher 
velocities vR < v ≲ 3vR the atoms start to be reflected into a single port of WG2, (3) when v > 3vR the atoms are 
almost fully reflected into WG2. The atomic clouds are imaged after passing through the intersection region, for 
different lattice amplitudes, with 2 ms time-of-flight. White dashed lines are added to the images of the atoms to 
show the orientation of the two waveguides. The black solid line in the graph refers to the numerical solution of 
the time-dependent Schroedinger equation in 2D, which shows a good agreement with the experimental data.
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in the waveguides which takes place when an atomic cloud propagates in the intersection region of two 
non-interfering crossing beams, as shown in ref. 11. It is also important to notice that a large trap depth with 

=U Et R
k
m2

R
2 2

 is necessary to hold the atoms against gravity during their motion in the waveguides for λw0 . 
For a given lattice amplitude ε, we plot in Fig. 2 the imaginary part of κ at the crossing region versus the velocity 
of the incoming particle to obtain a 1D map of the spatial regions where the atoms can undergo a reflection. For 
a given trap depth Ut, the location of these regions depends on the atom velocity and on the lattice amplitude. The 
atoms with an initial velocity lower than the recoil velocity vR are mainly deflected by the first spatial band gap 
opening at a distance larger than the beam waist w0 from the center of the intersection, starting from very low 
lattice amplitudes Fig. 2a,b. Increasing the initial velocity, the effect of the low lying energy band gaps progres-
sively fades and only higher order band gaps opening closer to the centre of the crossing region count, as shown 
in Fig. 2b. Obviously, a lower value of κ and a smaller spatial width of the gap, which means a reduced probability 
of reflection, are associated with the higher order band gaps for a certain lattice strength. However, by tuning 
these parameters, it should be possible to control both the amount of reflected atoms and the position where 
reflection takes place, including the center of the crossing region as shown in Fig. 2c. We note that at the external 
edge of the crossing region, where the lattice amplitude is arbitrarily low, the usual Bragg condition holds with 
reflection taking place for velocities which are integer multiples of the recoil velocity v = N × vR = N × ħkR/m, 
these values are also independent of the crossing angle θ.

In order to get a more analytical insight on the shape of the spatial gaps, it is instructive to extend the pertur-
bative approach of ref. 15, and calculate the energy borders of the spatial gaps in the limit of low lattice depth. For 
a higher order band gap, the second order for example, by using a three-modes approximation we obtain:
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Figure 4.  Number of atoms which are (a) reflected into WG2 along a single port, (b) transmitted in WG1, 
and (c) lost in the other two ports or trapped in the crossing region, as a function of the lattice height ε for 
four different propagation velocities. The measurements are taken roughly 20 ms after the atoms first arrived 
at the crossing and are normalized by the total atom number in the trap. Information on the losses from the 
trap following the passage through the crossing is reported in (d). The relative difference in the atom number 
measured before and after the interaction with the lattice is shown. In (c,d) we have highlighted with larger 
symbols the values which correspond to an equal splitting between the two exit ports in WG1 and WG2. Solid 
lines are guides for the eyes. (e) For v ~5vR and larger, the atomic cloud can be split into two equally populated 
fragments propagating along WG1 and WG2 with best efficiency around 80% (comprehensive of the losses from 
the trap). Note that, by tuning the lattice height in this regime, the splitter can be also used as a mirror with best 
efficiency larger than 60% (comprehensive of the losses from the trap).
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where ′ ′ = ′ ′s x y U x y E( , ) ( , )/ R0 0 . It can be seen that the shape of the spatial gap depends on the envelope of the 
inhomogeneous lattice ε ′ ′s x y( , )0 , and on the trap ′ ′ ′ ′A x y s x y( , ) ( , )0 , which acts as an energy offset shifting the gap 
at lower energies as it approaches the center of the crossing region. From the thickness of the gap 

′ ′ − ′ ′+ −E x y E x y( , ) ( , )n n( ) ( ) , which depends on the amplitude of the lattice, we can derive an upper limit for the 
spread of the initial velocity of the atomic cloud. This can be estimated on the order of few tenths vR for typical 
parameters of our splitter. The velocity spread fundamentally limits the efficiency of a Bragg splitter16. In our case, 
due to the spatial inhomogeneity, the distribution of the initial velocities also determines the extension of the 
region where the atoms are reflected. A velocity spread much smaller than the recoil velocity vR is thus necessary 
for mode-matching of the reflected cloud to the radial trap of the second waveguide. For our experimental param-
eters this implies that the temperature of the atomic cloud should be much lower than 140 nK, which indicates 
that a Bose-Einstein condensate is the ideal atomic source to be used with the splitter.

Finally, we complement the theoretical description provided by the Mathieu equation approach with the sim-
ulation of the atomic dynamics. This is done by numerically solving the time-dependent Schroedinger equation 
for a BEC in 2D with the split-step Fourier method. The calculations are performed for 87Rb atoms, external 
potential equal to U(x, y) and in absence of interparticle interactions. The results obtained with the two different 
approaches are consistent. While the spatial band gaps calculated within the Mathieu equation approach pro-
vide a general understanding of the interaction of the atoms with the inhomogeneous lattice, the solution of the 
time-dependent Schroedinger equation reveals all the details of the complex two-dimensional dynamics that the 
atoms undergo in the crossing region.

Experimental Results
We prepare a spinor BEC of 7 × 104 Rb atoms and we release it in a linear waveguide (WG1) by rapidly switch-
ing off the beams of the crossed dipole trap where the BEC is initially produced. The atoms can thus propagate 
in the harmonic trap formed by WG1, which has an axial frequency ωax = 2π × 2.4 Hz and a radial frequency 

Figure 5.  (a) Atomic clouds imaged at different times when passing through the quasi-Bragg splitter and after 
5 ms time-of-flight. The BEC velocity before entering the reflector is (7.0 ± 0.2)vR, the height of the lattice is 
ε = .0 92, and t0 = 40 ms is the time the BEC takes to move from its initial position to the splitter. The population 
of several quasi-momentum peaks is visible around q1,2 signalling the presence of multi-photon processes in the 
interaction with the strong lattice. The quasi-momentum distribution also provides an effective ruler for the 
understanding of the momentum distribution of the atoms when leaving the splitter. For the measurements 
shown here, for example, one can see that the reflected and transmitted atoms occupy a few different 
momentum states after the splitting. (b) For high enough initial velocities, two main momentum states can be 
occupied in the exit ports of the splitter. The picture shows a measurement taken for v = (8.1 ± 0.2)vR at 
t = 40 ms with ε = .1 0. (c) Our beam splitter lies between the Bragg and the “channeling” regime for the velocity 
range that we have investigated, i.e. 3vR ≤ v ≤ 8vR. However, thanks to the smooth Gaussian envelope of the 
lattice, the diffraction pattern produced by a single spatial gap is very similar to that typical of a Bragg regime. 
We refer to this regime as quasi-Bragg.
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ωrad = 2π × 190 Hz. A second similar waveguide (WG2) is aligned orthogonally to WG1 at a distance δ from the 
position where the BEC is generated and in such a way that the two waveguides intersect at their minimum waist 
position, see Methods for more details on the experimental apparatus. Both the waveguides are created by linearly 
polarized laser beams with waist w0 ≃ 20 μm and wavelength λ = 1064 nm. Each waveguide produces at the inter-
section region a trapping potential Ut ~ 25ER. Once the atoms are released in WG1 they naturally move towards 
the minimum of this trap, which coincides with the position of the minimum waist, thus acquiring a maximum 
velocity v ≃ ωaxδ immediately before the intersection between WG1 and WG2. The measured velocity spread 
δv = ±0.2 vR, where vR = 4.3 mm/s is the recoil velocity, is mainly due to the interaction energy of the atoms con-
verting into kinetic energy as they are released from the initial trap. Being derived from the same laser, WG1 and 
WG2 can interfere at their crossing, thus forming an optical lattice whose height can be set by tuning the relative 
polarization between the two beams. By changing the distance δ we can control the velocity of the atomic cloud 
center of mass at the lattice position, while maintaining the same atomic density after a fixed expansion time of 
100 ms, avoiding effects due to the interactions. The maximum velocity we can achieve in this way is roughly 4.7 
vR corresponding to a distance δ ~ 1 mm equal to the Rayleigh length of the WG1 Gaussian beam.

We study the dynamics of the atomic wavepacket when passing through the crossing region with different 
velocities and for different lattice heights. In our measurements we can identify three main regimes, in the limit 
of strong confinement U Et R. For low velocities v ≤ v1 ≃ vR, the atoms are blocked at the external edge of the 
intersection region for very low lattice amplitudes and we do not observe any macroscopic reflection into WG2, 
see Figs 3 and 4. This behaviour can be explained recalling the band gaps structure: the atoms are reflected from 
the first band gap at a distance larger than w0 from the center of the crossing, the precise position depending on 
the initial velocity of the wavepacket. At this point, they have not acquired sufficient kinetic energy to leave WG1 
and they remain confined in the combined trap formed by the lattice and the trapping potential of the wave-
guides. Only very few atoms, see Fig. 3-(1) for example, can enter WG2 in both directions for intermediate lattice 
strengths, by redistributing isotropically after passing some time inside the crossing region. No clear effect related 
to the lattice orientation is visible in the propagation of the atoms in this case and the presence of the trapping 
potential, due to the crossing of the two waveguides, has a major role in the resulting complex dynamics. This 
behaviour, which is also confirmed by the numerical solution of the 2D time-dependent Schroedinger equation, 
could signal the onset of a chaotic regime of propagation similar to the one described in ref. 11.

For intermediate velocity v1 < v ≤ v2 ≃ 3vR, we observe a substantial reflection into WG2. Indeed, while a 
fraction of the atoms are still reflected in both directions of WG2 for intermediate lattice amplitudes, the cloud 
is more consistently deflected into one single exit port of WG2 for increasing lattice strengths. At low lattice 
strength, the atoms are broadly diffused from the center of the intersection region, whereas for higher lattice 
height they are reflected out of the center of WG2, and acquire an oscillation along the radial direction when later 
propagating in WG2 see Fig. 3-(2). This signals that the atoms with sufficiently high velocity can pass unaffected 
by the first energy gap and are reflected by higher order gaps. In this case, these are the second, third, and fourth 

Figure 6.  The main parameters of the quasi-Bragg splitter (trap depth and beam waist) are shown for different 
realizations numerically optimized to minimize the generation of radial excitations when dividing the cloud 
into two equal parts. Solving the relative Mathieu equations, we observe a crossover from a single isolated 
spatial gap appearing at the centre of the crossing region (w0 ≤ 8 μm, shown with blue dots in the graph) to two 
distinct gaps (red dot refers to our experimental realization). The dashed line is a simple estimate of the upper 
boundary for an isolated band gap to appear, calculated in the limit U Et R. In the insets we report the section 
of the spatial band gaps σ x( ) 2 for the optimized splitters with w0 = 5 μm and w0 = 22 μm. For w0 = 5 μm the 
spatial gap has been calculated for three different initial velocities v = (3.94, 4.04, 4.14)vR with spread δv = 0.2vR 
(solid lines in the inset) and for maximum lattice amplitude 22ER. For w0 = 22 μm, the calculation has been done 
for ε = v = (7.90, 8.00, 8.10)vR with maximum lattice amplitude of 100ER. The dash-dotted lines show, for 
comparison, the density distribution of the radial ground state in WG2.
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order gaps, which open closer to the crossing center at a distance ~w0, as derived from the solution of the Mathieu 
equation. Even if this results in a higher probability of reflection into WG2, at this distance however the atoms 
cannot yet directly enter WG2 once reflected by the band gaps, see Fig. 2b. Motivated by the good agreement 
between the experimental measurements and the results of the numerical simulations shown in Fig. 3, we can rely 
on the latter for understanding the mechanism responsible for guiding the atoms into WG2 after reflection by the 
spatial gaps. We observe a progressive change from a situation where these dynamics are mainly driven by the 
boundaries of the waveguides’ trapping potential at low velocities, to a cascade of multiple reflections by several 
spatial gaps opening in the xy-plane for increasing atomic velocities. Additionally, the fraction of atoms reflected 
into WG2 (in a single port) is always below 50%, see Figs 3 and 4a. Indeed, for increasing lattice depths the atoms 
are blocked at the edge of the crossing region in WG1 as shown in Fig. 4c, see also Methods for a more detailed 
analysis of the atom number in the different exit ports and in the crossing region. Note that quantum reflection by 
a single lattice site, estimated analytically by using a similar barrier shape17, occurs only for relatively high lattice 
amplitudes in this range of velocities, see Methods. Neither the observed reflection into WG2 or the blocking of 
the atoms at the edge of the crossing region can be explained with reflection by a single barrier. They are thus due 
to the periodic potential and, more specifically, to the action of spatial gaps of different order.

Finally, when increasing the velocity above v2 an increasingly larger fraction of the atoms are reflected into 
WG2, to the point where an almost complete reflection can be achieved (85% of the atoms in the trap for the 
maximum velocity reported in Fig. 3). The higher order band gaps are now responsible for the reflection of the 
atoms at a distance smaller than w0 from the center of the crossing. In this regime, atoms can exit WG1 to enter 

Figure 7.  Schematics of the experimental apparatus.

Figure 8.  Relative population of the different classes of non-transmitted atoms (inset) as a function of the 
lattice height, revealing the complexity and different mechanisms governing the atom dynamics in the splitter. 
Measurements are shown for two different regimes: (a) v = 2.7vR and (b) v = 3.7vR. Solid grey areas show the 
maximum quantum reflection probability by a single barrier calculated using the analytical expression in ref. 
17. Solid lines are guides to the eyes. Please refer to the insets of Fig. 3 for the definition of the waveguides’ 
orientation.
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WG2 both directly or after a few subsequent reflections, depending on their initial velocity and lattice height. In 
the limit of large lattice amplitudes, the reflection probability drops again, Fig. 4a–c, likely due to the onset of 
single-barrier quantum reflection, which is independent of the band gap spatial distribution and shows a reflec-
tion peak around x ~ w0, see Methods. We note that these different regimes of propagation generally appear in the 
limit U Et R when the atoms naturally cross several spatial bands due to the strong trapping potential and only 
v2 depends on the details of the specific realization. Interestingly enough in this regime of high velocity we can 
fully control the ratio of atoms reflected and transmitted by the lattice by adjusting the lattice height ε and we can 
also split the atoms into two equally populated fragments propagating in WG1 and WG2 respectively, Fig. 4e. As 
anticipated above, this feature is of great interest in the perspective of realizing an all-optical guided atom inter-
ferometer. For this purpose it is also of primary importance to perform an accurate diagnostic on the status of the 
BEC after the splitting. Not only should the splitter be coherent but it should also not generate excitations which 
limit the coherence time, and thus the sensitivity of the interferometer, or which smear out the contrast of the 
interferometric fringes by populating too many modes of the confining trap18. For the tested range of initial veloc-
ities, we have generally observed a fragmentation of the cloud into a few pieces after the splitting, accompanied by 
excitations: whereas the transmitted cloud shows a clear oscillation of the centre-of-mass in the radial direction 
of the waveguide, the reflected one exhibits a more complex excitation, as also confirmed by the results of the 
numerical simulations. We have detected atom losses from the trap both in the splitter configuration, 20% on 
average for the velocity range 3vR − 5vR, and in the mirror configuration, 30% roughly, see also Fig. 4d.

To better explore this regime for application to atom interferometry, we have acquired a second set of meas-
urements focussing on reaching even higher velocities of propagation. In this case, the BEC is spin-purified dur-
ing the evaporation process and the atoms occupy the state |F = 1, mF = −1〉 with a purity larger than 95%. 
Wavepacket velocities up to 23vR are obtained by applying a magnetic field gradient along the axial direction of 
WG1, before the atoms arrive at the crossing region between the two waveguides. Experimental results show a 
reduced cloud fragmentation and excitation when the splitting is obtained for velocities roughly higher than 5vR. 
This is also reflected in the average atom losses which decrease to 7%. This is compatible with the fact that the 
atoms can be reflected only by a reduced number of band gaps which open near or at the center of the crossing 
region for particle energies larger than the trap depth, as shown in Fig. 2c. The closer the reflection takes place 
with respect to the axis of WG2, the smaller is the amplitude of the radial oscillation that the cloud undergoes 
when propagating into WG2. Additionally the full two-dimensional dynamics is greatly simplified as the atoms 
can be directly reflected into WG2 without undergoing several subsequent partial reflections. For the transmitted 
cloud, the observed radial oscillation of its centre of mass does not appreciably change with the initial velocity in 
the range that we have considered. This can be explained by the fact that for strong lattice amplitudes ≥U mvlat

1
2

2, 
the atoms start shifting in direction of the channels of the optical lattice near the center of the splitter14.

Further comprehension of these dynamics are obtained by rapidly switching off all the confining potentials 
and by analysing the atomic cloud after a few ms time-of-flight expansion. Interestingly, when observing the 
atoms during the splitting phase we can clearly resolve several quasi-momentum peaks. These peaks reveal the 
several multi-photon processes that the atoms undergo in the interaction with the light grating before their direc-
tion of propagation is deflected by an angle close to 90°. The velocity of propagation and the envelope of the 
inhomogeneous lattice are naturally setting the thickness of the light grating. For our experimental parameters 
the interaction time between the atoms and the optical lattice is typically long >t( 1)ER


 and the reflection of the 

atoms takes place at strong potentials ( U Elat R), which characterize our splitter to lie between the Bragg and the 
channeling regime using the nomenclature of refs 13, 14, see Fig. 5c. The diffraction grating also provides a ruler 
for the diagnostics of the momentum distribution of the cloud after the splitting. In Fig. 5 we report an example 
of the time evolution of the quasi-momentum peaks. We first observe that few quasi-momentum peaks are pop-
ulated around = qq ( , 0)1  and = qq (0, )2  where q corresponds to the momentum of the atoms before the reflec-
tion. Adjacent peaks are separated by θ θ∆ = ± π θ π θ− −q qq ( ( )cos( ), ( )sin( ))R R2 2

. The number of occupied peaks 
increases in time as they cover the whole range between q1 and q2, signalling that several multi-photon processes, 
instead of two-photon like processes, have taken place in-between the two extreme quasi-momentum states. 
Observing the dynamics at a later time, it is possible to identify which momentum the atoms have acquired when 
leaving the splitter. The number of momentum states occupied can be controlled by changing the initial velocity 
of the atoms. Despite the complexity of the dynamics undergone by the atoms in the splitter, for an initial velocity 
as high as 8vR, one single momentum state can be occupied in each exit port, see Fig. 5b. This confirms that the 
splitting is due to diffraction by the off-resonant lattice in a coherent process, just like in a standard Bragg diffrac-
tion. Moreover it shows that the atoms are not reflected by several band gaps or scattered by the walls of the con-
fining potential. Indeed all these dynamics, which can lead to loss of coherence, appear with the occupation of 
other momentum states out of the splitter. The occupation of mainly two momentum states corresponds to the 
observed removal of the cloud fragmentation and to the realization of a quasi-Bragg splitter with q16 R momen-
tum transfer. Note that a residual oscillation is present in the transverse direction of the waveguide both for the 
reflected and transmitted clouds which is compatible with deflection of the center of mass motion due to the onset 
of channeling. Finally, we point out that the splitter does not substantially improve for velocities larger than 8vR, 
which require larger lattice amplitudes and thus larger potential depths for the cloud splitting to be achieved.

Discussion and Conclusions
We have presented the realization of the first distributed quasi-Bragg splitter for ultracold atoms confined in 
crossed optical waveguides which is able to split the atoms with a large angle of roughly 90° and overall efficiency 
of 80%. A splitter for atom interferometry should ideally lead to the occupation of two momentum states with no 
further excitation produced. For a pulsed quasi-Bragg splitter with a Gaussian envelope in time, the population in 
the scattering orders other than those allowed by the Bragg condition can be very small when the pulse has a 
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smooth envelope function even out of the Bragg regime13, 14. In this case the typical timescales required to guar-
antee the occupation of the two target momentum states are consistently shorter than the ones imposed by the 
adiabaticity criterion. In our splitter, the atomic dynamics determines the interaction time with the inhomogene-
ous lattice, which is equivalent to having a smooth pulse with timescales which are almost two orders of magni-
tude slower than the ones compatible with negligible losses13. We have also pointed out that, to guarantee the 
occupation of mainly two momentum states, the atoms should ideally interact with one single spatial gap. 
Additionally, to avoid radial excitations of the split cloud, the atoms should be reflected in the centre of the cross-
ing region. These conditions can be better met by working in a regime of high velocity, for the experimental 
parameters which we have considered here v ≳8vR, or they can be satisfied at lower velocity by reducing the depth 
of the confining potential due to the waveguides. Considering the gravity sag and without reducing the radial 
confinement of the trap (see discussion below), the second option turns out to be possible only by reducing the 
radial size of the waveguides. In Fig. 6, we have reported the spatial sections of the lowest-energy gaps providing 
the best condition for the beam splitting. It can be seen that lower energy band gaps can be used for the splitter 
when smaller waveguides are employed (blue points in the graph). In this case, a single spatial gap is found in the 
center of the crossing with less sensitivity on the initial velocity spread (see insets of Fig. 6) due to the reduced trap 
depth. This configuration appears more promising than the best experimental realization presented in this work 
(red point in the graph). However, even for those parameters and despite the good spatial overlap of the band gaps 
with the radial ground state of WG2 (on average larger than 75% for a velocity spread of 0.2vR, with beam waist of 
5 μm), we have numerically found a non-zero probability of occupation of several excited states. The reflection 
process is indeed taking place on time-scales which are comparable to those set by the radial frequency of the 
waveguides and the transfer of the atoms from WG1 to WG2 results in a non-adiabatic process. For reducing 
these effects, a possibility consists in decreasing the angle of intersection between the waveguides (θ ≤ 3  for the 
experimental realization presented here)10. Another solution consists in using waveguides of even smaller size 
than the ones reported in Fig. 6. We note that the conclusions drawn so far are only valid in the limit λw /20 , 
whereas for smaller beam waists the physical picture changes: matterwave reflection is not following the cumula-
tive action of an extended lattice potential but it is rather a single-barrier induced effect. We have numerically 
verified that single radial modes can be addressed in the exit ports of the splitter for waveguide beam waists 
smaller than 5 μm (and λ = 1064 nm) with a coherence preserving quasi-adiabatic approach. Even though this 
may be difficult to achieve in free space experiments where the waveguides are realized by single Gaussian beams, 
it is experimentally feasible when state-of-the-art all optical waveguides in planar chip configurations are 
employed19.

Methods
Experimental setup.  In our experiment we produce 87Rb Bose-Einstein condensates in an all optical way. 
We use a crossed dipole trap realized by a recirculating single laser beam with 1064 nm wavelength, 18 W initial 
power and 65 μm waist at the position of the atoms. After a first passage through the cell, the beam is reflected 
back with orthogonal polarization and refocussed to the atomic cloud in such a way to form an angle of 25° with 
respect to the incoming direction of propagation. In order to evaporatively cool the sample, the power of the trap 
beam is decreased with an exponential ramp of 8 s duration. For the measurements presented here, we prepare the 
BEC in the combined trap realized by the superposition of the crossed dipole trap and a waveguide (WG1) which 
acts as a dimple. This allows us to prepare the initial condensate in the radial ground state of WG1. The waveguide 
is created by means of a linearly polarized laser beam with λ = 1064 nm, power 15.5 mW and minimum waist of 
22 μm. To avoid cross interference between the WG1 and the dipole trap, the first beam is shifted in frequency by 
80 MHz with respect to the second one. The WG1 beam is focussed at a distance δ from the center of the dipole 
trap where the BEC is formed. Another almost identical waveguide (WG2), with waist 24 μm, power 17 mW 
and same frequency as WG1, is aligned with focal position coinciding with WG1 and forming with it an angle 
of roughly 90°, see Fig. 7. The amplitude of the waveguide potential is set by the minimum power necessary for 
holding the atoms against gravity at a distance of 1 mm from the position of the focus, where the BEC is initially 
prepared.

Dynamics in the different regimes.  A complete analysis of the way in which the atoms redistribute 
among the different channels of the distributed quasi-Bragg splitter, as a function of the lattice height, helps to 
highlight the mechanisms which determine the dynamics in the different velocity regimes. Figure 8 shows the 
behaviour of the non-transmitted atoms in a regime of intermediate and high velocity. We observe in particular 
a reduction of the atoms trapped in the centre (N4) or reflected into the second channel of WG2 (N2). A different 
onset of the blockage of the atoms before the crossing region is also observed (N1), likely following the onset of 
the quantum reflection from the single barriers of the inhomogeneous lattice.
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