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Abstract

Solution-processed nickel oxide (s-N)OQwvas synthesized for use as hole-transport layers
(HTLs) in the fabrication of polymer solar cell €5devices. The s-NiQthin-films were
deposited using spin-coating and post-annealed@t°@, 400 °C, or 500 °C. With increased
annealing temperature, the nickel acetate precutsocomposes more fully and forms s-NiO
films that show larger crystalline grain sizes witlhwer root mean square surface roughness.
Bulk heterojunction solar cells fabricated with thew random polymer RP(BDT-PDBT) and
[6,6]-phenyl-Gg-butyric acid methyl ester (B@BM) using s-NiQ as HTLs exhibit a 4.46%
enhancement in power conversion efficiency ancebstability compared to conventional PSCs
using poly (3,4-ethylenedioxythiophene):poly(styesulfonate) as HTLs. We believe that the
solution-processable and highly stable s-Ni€duld be a potential alternative for functional

interface materials in optoelectronic devices.



Bulk heterojunction polymer solar cells (BHJ PSG#gr a promising alternative in the
development of low-cost, low-temperature-procesaad, roll-to-roll-fabricated larger-area solar
cells [1-5]. The power conversion efficiency (PC&) BHJ PSCs has steadily improved,
approaching 11%, by using various polymers [6-8tahoxide layers [9-11], and new device
structures [12-14] in recent years. Traditional BPSCs contain transparent conducting oxide
(TCO) anodes, hole transport layers (HTLs), phdteadayers, electron transport layers, and a
top cathode. In particular, the use of an efficiefitiL with high optical transparency, good
chemical stability, and good electron-blocking #pibetween the TCO and photoactive layer
facilitates better hole transport, consequentlyrowmg device performance [15-18]. In typical
PSCs, poly(3,4-ethylenedioxy-thiophene):poly(stgrsalfonate) (PEDOT:PSS) is a widely used
HTL material because it is easily deposited by smiating and shows the high work functidb)
of ~ 5.2 eV, which is well matched to the highestupied molecular orbital (HOMO) level of
many of the polymers used as active layers [19E0jvever, the acidity and water-absorbing

tendency of PEDOT:PSS cause poor device performamteatability [21].

Solution-processed metal oxides such as molybdeoxigle (MoQ) [22,23], tungsten
oxide (WQ) [11,24], vanadium oxide (V{ [25], copper oxide (CuOx) [26] and nickel oxide
(NiOy) [27] have emerged as alternative HTL materiatsH8Cs because they show excellent
stability and® values that match those of active layer materialeong them, NiQ has a
HOMO level well-aligned to those of many polymeas,well as showing excellent stability [28].
In addition, nickel acetate tetrahydrate and mdmer&ilamine (MEA) precursors for Nj@an
be spin-coated to form NiQhin films after a simple annealing process, destrating solution-
processable NiQ(s-NiQy) fabrication. In this work, we report the use ofjily stable and
solution processable s-Nj@s HTL material and investigate the structuralyphological, and

optical properties of s-NiQthin films. A PSC based on a BHJ of random-polyrR&(BDT-



PDBT) [29] and P&BM using s-NiQ as an HTL exhibits improved stability and effiaign

compared to a conventional device utilizing PEDCESRas the HTL.

Fig. 1 shows the ultraviolet—visible—near-infraigtl/-Vis-NIR) absorption and transmission
spectra of the s-Nigthin films post-annealed at 300, 400, and 500 AG @imple hot plate. In
the s-NiQ layer annealed at 300 °C, the precursor is comlgletonverted into NiQ as
indicated by the strong band-edge absorption ped@5@ nm. NiQ exhibits clear absorption
onset at ~370 nm regardless of the annealing teatyer indicating an optical band gap of ~3.3
eV. This is in good agreement with previously répdrvalues [30-32]. The transmission spectra
of the post-annealed s-Nj@Im show high transparencies, which are suitdbteapplication as

window layers in PSCs.

To understand the chemical and electronic statéiseo$-NiQ film post-annealed at 500 °C,
the film was analyzed by X-ray photoelectron spesstopy (XPS). Fig. 2a shows the XPS
spectrum for the Ni & level, which is deconvoluted into three peaks (seeporting
information Fig. S1 for the XPS spectra of s-Nidms post-annealed at various temperatures).
The peak at 853.7 eV corresponds tG*Nipecies in the standard Ni—-O octahedral bonding
configuration in cubic rock-salt NiO [33-35]. Thec®nd broad peak centered at 855.6 eV is
ascribed to the Ni vacancy-induced Ni ion [33,34,36]. The third broad peak centeredéat8
eV is also assigned to the NiO structure [33,34,B&). 2b shows the XPS spectrum for the0D 1
energy level, which is deconvoluted into two distipeaks. The peak centered at 528.9 eV
confirms the occurrence of Ni-O octahedral bondmiiO. The peak at 532.2 eV indicates the

presence of both NiO and 4di;[30,35].

To investigate the post-annealing temperature &ffen the surface properties of s-NiO

thin films, the film morphologies were examinedngsiatomic force microscopy (AFM). The



nickel ink precursor was spin-coated onto indiumaxide (ITO) substrates and post-annealed at
300, 400, and 500 °C on a simple hot plate in@irlfh. The topography and phase imaging of
the s-NiQ films are shown in Fig. 3. The s-Ni@Ims post-annealed at 300 °C and 400 °C show
larger triangular grains with root-mean-square (RM&ughness values of 2.4 and 1.2 nm,
respectively. The s-NiQOfilm post-annealed at 500 °C shows uniformly slibgeins with the
RMS value of 0.8 nm. This result indicates that pust-annealing temperature influences
surface roughness and morphology of the syNilth. However, the RMS values of the films
post-annealed at 300 °C and 400 °C are highertttarof the film post-annealed at 500 °C. The

RMS value therefore depends on both the preparatidrthe post-annealing temperature.

s-NiOy as the HTL and RP(BDT-PDBT):R§BM photoactive layers were used to fabricate
photovoltaic cells. The device structure and thergy band diagram of the s-Ni@evice are
shown in Fig. 4, along with those of the refereREDOT:PSS devices. The energy level of
RP(BDT-PDBT) is determined using electrochemicallicyvoltammetry. The energy levels of
s-NiOy are determined using ultraviolet photoelectroncpecopy (UPS) and UV-Vis-NIR
spectroscopy. The energy levels of ITO, PEDOT:ASS5:BM, and aluminium (Al) are taken
from previously reported results [37-40]. All dewidabrication details are reported in the
experimental section. We fabricated PSCs with dbffé post-annealed s-Nj@ilms as HTLs.
The current density—voltage (J-V) characteristiosl ancident photon-to-current efficiency
(IPCE) of the solar cells are presented in Figth®; characteristics of their performances are
summarized in Table 1. At processing temperatufe800 °C and 400 °C, the precursor
decomposes into s-NjOand develops a high RMS roughness value, showmg [PSC
performance compared to the film post-annealed@t°®. The best-performing PSC has a PCE
of 4.46%, short-circuit current densityJJof 9.85 mA/cr, open-circuit voltage () of 0.71,

and fill factor (FF) of 63% and uses an HTL of S9ifilm (RMS = 0.8 nm). However, the PSC



using an s-Ni@film with an RMS of 2.4 nm as the HTL shows thevést PCE of 3.72%, with

the J.decreased to 8.71 mA/ém

The effective interfacial area between the s\Na@d the active layer depends on the surface
roughness of s-NiQ The RMS value of 0.8 nm corresponds to the sistadéfective surface
area; the film with this RMS value forms the smstlleffective interfacial area, whereas the film
post-annealed at 300 °C has the largest. For casgpaof the performance of solar cells with
our s-NiQ, HTL, we fabricated PEDOT:PSS-based devices andatgek the cells side-by-side.
The optimized PEDOT:PSS-based device showed a P@B%5%, while the optimized s-NjO

devices showed a PCE of 4.46%

During this study, significantly enhanced stabilityas observed in the s-NjQdevices
compared to that of the conventional PEDOT:PSSéds®ices. Stability measurements were
performed on un-encapsulated s-Ni@nd PEDOT:PSS-based devices stored at ambient
conditions for 300 min. As shown in Fig. 6, the ©9Nbased device degrades much more slowly
than the PEDOT:PSS-based devices. The performanitee a@onventional device degrades by
the loss of &, attributed to the degradation of the HTL andhe interface because of the acidic

and hygroscopic nature of PEDOT:PSS, which corrtite$TO electrode [41-43].

In conclusion, we newly synthesized solution-preaese s-NiQ for use as an efficient HTL
material and investigated the morphological andcapproperties of the s-Nidilm. PSCs with
RP(BDT-PDBT) and P&BM active layers and s-NiOQas HTL exhibited significant
enhancements in FF and PCE compared to conventRIBRIOT:PSS-based solar cells. The
post-annealing temperature and the surface roughmah affected the solar cell performance.

Importantly, the s-NiQ device exhibited significantly enhanced stabiltgmpared to the



conventional device with the PEDOT:PSS HTL. Thamfave believe that s-NiCcould be an

alternative functional interface material in sabmtiprocessable optoelectronic devices.

Experimental Section

NiOx precursor synthesis

A 285mg of nickel acetate tetrahydrate (Ni(CH3CO@H20) was dissolved in a 10 ml of
ethanol with a 61 mg of monoethanolamine (NH2CH20OH2 The mole ratio of
Ni(CH3C0O0)2.4H20:NH2CH2CH20H was maintained atih:&thanol solution. The prepared
solution was stirred at 70 °C for 3 hours in a séajlass vial to obtain homogeneous and deep

green colour solution. The prepared solution waslwathin a month without segregation.

HTL thin-film deposition and characterization

PEDOT:PSS (Baytron PH) aqueous solution was sgsh-at 4500 rpm, and 40 sec on UV-

Ozone treated ITO substrates. The PEDOT:PSS caoatestrate was baked at 140 °C for 10
min in atmospheric conditions. The Ni@recursor solution was spin-coated at a rotatpeed

of 7000 rpm and 40 sec on the pre UV-Ozone (10 téated ITO substrates. The NiOx coated
substrates were baked at 120 °C for 10 min therstistrates were post annealed at 300°C,
400°C and 500 °C, respectively for 1 hour. Thekhéss of the as-prepared s-NiOx film was

~30 nm, but decreased to ~18 nm after the postadingeprocess.

Device Fabrication and Characterization



The PEDOT:PSS and s-NiOx (~18 nm) HTL coated IT®states were transferred to the
nitrogen (N) filled glove box for active layer deposition.1®mg of RP(BDT-PDBT) and 15mg
of PGoBM was dissolved in 3 vol% of diphenylether as aidiave then a 1 ml of
dichlorobenzene was added. The detailed synthediclaaracterization of RP(BDT-PDBT) are
presented in previous report [29] with supportinpimation. The prepared polymer blended
mixture solution was stirred at a speed of 450 gma maintained at 40 °C in the Nlove box
over 12 hour. The active layer was deposited by spating RP(BDT-PDBT:P£BM blended
solution) at 1000 rpm and 70 sec on HTL coate@ Bubstrates. The active layer (~75 nm)
deposited on HTL/ITO substrate was maintained atmrdemperature for 30 minute in the
nitrogen (N) filled glove box for evaporation of excess solvédrom the active layer.
Subsequently, Al (=100 nm) electrodes were depisiiseing shadow mask via thermal

evaporation in a vacuum (<5 x1Pa). The active area of device was about 0.038 cm
Characterization

The crystalline structure was confirmed by X-raffrdction (XRD) (Rigahu-Smart Lab). s-NiOx
thin-films was analyzed using XPS (Thermo Sciecitilheasurements. Optical transmittance and
absorption spectra of s-NiOx thin-flms were measguusing a JASCO V-570 double-beam
spectrophotometer in the wavelength ranging betv2®®2500 nm, with quartz substrate in the
reference path of the beam. Hence, the shown tittasge spectra do not include the effect of
guartz substrate. The surface microstructure was/zed by an Asylum MFP 3D atomic force
microscope (AFM) operated in AC mode. The curresitage (J-V) characteristics were
recorded using a Keithley 2400 Source Meter in 108 mW/cni simulated AM of 1.5 G
irradiation (Science tech SS-0.5K Solar Simulatdhe light intensity was measured by using a
photometer (International light, IL1400) and cotegtusing a standard silicon solar cell. All the
measurements were performed under ambient atmosloaditions at room temperature.
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13



Table 1. Device characteristics of the solar cells.

Hole Transport Layer J(MmA/cnT) Voc(MV) FF (%) PCE (%)
PEDOT:PSS 9.94 0.74 54.5 4.05 + 03
PEDOT:PSS, Stability after 1 h 291 0.72 53.0 ®1R02
PEDOT:PSS, Stability after 2 h 0.21 0.21 21.2 @601
s-NiQ,, 300 °C 8.71 0.68 61.0 3.69 £0.03
s-NiQ,, 400 °C 8.78 0.68 62.0 3.75+£0.02
s-NiQ,, 500 °C 9.85 0.71 63.0 4.45+0.01
s-NiQy, 500 °C, Stability after 1 h 8.38 0.70 62.6 3.60.83
s-NiQy, 500 °C, Stability after 2 h 7.83 0.69 61.5 3.36.61

I The average values of the PCEs based on twentyedeare prepared in parentheses.
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Resear ch Highlight

- Solution-processed nickel oxide (s-NiOy) was synthesized for use as hole-transport layers

(HTLSs) in the fabrication of polymer solar cell (PSC) devices.

- The nickel acetate precursor fully decomposes and forms s-NiOy films, which shows larger

crystalline grain sizes with lower root mean square roughness.

- The PSC fabricated using s-NiOy as HTLs exhibit the enhanced efficiency of 4.46% and
better  stability @ compared to  conventiond PSCs using poly (34-

ethylenedioxythiophene): poly(styrene sulfonate) as HTLSs.



