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ABSTRACT 29 

 We determined how the extra- and intra-cranial circulations respond to 30 

generalized sympathetic activation evoked by a cold pressor test (CPT) and whether 31 

this was affected by healthy aging. Ten young (23±2 yr; mean±SD) and nine older 32 

(66±3 yr) individuals performed a 3-min CPT by immersing the left foot into 33 

0.8±0.3°C water. Common carotid artery (CCA) and internal carotid artery (ICA) 34 

diameter, velocity and flow were simultaneously measured (duplex ultrasound), along 35 

with middle cerebral artery and posterior cerebral artery mean blood velocity 36 

(MCAvmean and PCAvmean), and cardiorespiratory variables. The increases in heart rate 37 

(~6 bpm) and mean arterial blood pressure (~14 mmHg) were similar in young and 38 

older groups during the CPT (P<0.01 vs. baseline). In the young group, the CPT 39 

elicited a ~5% increase in CCA diameter (P<0.01 vs. baseline) and tendency for an 40 

increase in CCA flow (~12%; P=0.08); in contrast, both diameter and flow remained 41 

unchanged in the older group. Although ICA diameter was not changed during the 42 

CPT in either group, ICA flow increased (~8%; P=0.02) during the first minute of the 43 

CPT in both groups. While the CPT elicited an increase in MCAvmean and PCAvmean in 44 

the young group (by ~20% and ~10%, respectively; P<0.01 vs. baseline), these intra-45 

cranial velocities were unchanged in the older group. Collectively, during the CPT, 46 

these findings suggest a differential mechanism(s) of regulation between the ICA 47 

compared to the CCA in young individuals, and a blunting of the CCA and intra-48 

cranial responses in older individuals.  49 
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New & Noteworthy 50 

Sympathetic activation evoked by a cold pressor test elicits heterogeneous extra- and 51 

intra-cranial blood vessel responses in young individuals that may serve an important 52 

protective role. The extra- and intra-cranial responses to the cold pressor test are 53 

blunted in older individuals. 54 

 55 

Keywords: Brain blood flow, elderly, sympathetic nerve activity 56 

 57 

 58 

  59 
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INTRODUCTION 60 

The cold pressor test (CPT) has been widely employed for the assessment of 61 

human autonomic function (13, 17), peripheral vascular reactivity (7, 45, 53, 72) and 62 

cardiovascular risk stratification (6, 38, 61). However, the cerebrovascular responses 63 

to the CPT remain poorly understood, particularly in healthy aging and chronic 64 

disease. This issue is compounded by the controversy surrounding the sympathetic 65 

regulation of the extra- and intra-cranial blood vessels (1, 58). During the CPT, 66 

signals from activated cutaneous thermoreceptor and nociceptor afferents are rapidly 67 

integrated within the central nervous system (principally the hypothalamic and 68 

medullary regions) and lead to the activation of cortical sites (10). This activation 69 

elevates peripheral vascular resistance, HR and blood pressure (23) on account of the 70 

characteristic autonomic efferent response, consisting of a robust increase in 71 

sympathetic nerve activity (SNA) [e.g., increased plasma noradrenaline (19) and 72 

muscle sympathetic nerve activity (65)], and potentially a decrease in cardiac 73 

parasympathetic nerve activity [e.g., decreased HR variability (16)]. Cerebral blood 74 

flow may be affected by several mechanisms during the CPT, including neurovascular 75 

coupling, a hydraulic pressure effect even in the absence of a change in vascular 76 

resistance, local autoregulatory mechanisms, and by the sympathetic modulation of 77 

extra- and intra-cranial blood vessels. 78 

In animal studies, innervation of the CCA, ICA and intra-cranial vasculature 79 

by postganglionic sympathetic nerve fibers has been identified (12, 37, 42); electrical 80 

stimulation of sympathetic nerves can evoke cerebral vasoconstriction (2, 66); and 81 

norepinephrine causes vasoconstriction in cerebral microvessels (36, 59). In humans, 82 

the spillover of noradrenaline from the brain into the internal jugular vein has been 83 

reported (43); clinically indicated upper thoracic sympathectomy increases ICA 84 
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diameter and flow (26); and stellate ganglion blockade reportedly increases cerebral 85 

perfusion (62), although this is not been a universal finding (27). The effect of CPT-86 

evoked sympathoexcitation on cerebral perfusion has principally been evaluated in 87 

terms of intra-cranial artery mean blood flow velocity and usually within the middle 88 

cerebral artery (MCAvmean). Intriguingly, both reductions (3, 41) and elevations (46, 89 

47, 56, 73) in cerebral perfusion have been reported during the CPT, possibly due to 90 

differences in the partial pressure of arterial carbon dioxide (PaCO2). With respects to 91 

the regulation of extra-cranial blood flow during the CPT, an increase in common 92 

carotid artery (CCA) diameter by ~8% is reported in young healthy individuals (28, 93 

34, 53). In contrast, CCA diameter is reduced during the CPT in patients with 94 

coronary artery disease, possibly due to the greater sensitivity of the a-adrenergic 95 

receptors (53). Unfortunately, to date no assessment has been made of internal carotid 96 

artery (ICA) diameter or volumetric flow during the CPT, but these are essential in 97 

order to understand the implications for cerebral blood flow (as opposed to blood flow 98 

to the head and scalp via the external carotid artery). It would seem unlikely that the 99 

same responses were observed in the CCA and ICA during the CPT. In accordance 100 

with Poiseuille’s Law, small changes in diameter have a major effect on flow (e.g., 101 

flow a (diameter/2)4). Accordingly, if the ICA were to dilate to a similar degree as the 102 

CCA (e.g., ~8%) brain blood flow would increase markedly. Given that the brain 103 

seems to be particularly effective at protecting itself from over-perfusion (68) and that 104 

the ICA (and vertebral arteries) are known to be integral to the regulation of cerebral 105 

blood flow through modifying vascular resistance (14, 22, 29, 39, 40), it seems 106 

reasonable to expect that different responses occur in the CCA and ICA during the 107 

CPT. 108 
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Increased age is associated with a multitude of structural, functional and 109 

regulatory alterations throughout the cardiovascular system (30, 31), including the 110 

brain (5, 54). Age-related increases in arterial stiffness (28, 33), impairments in 111 

endothelial vasodilator function and altered a- and b-adrenergic receptors signaling 112 

within the peripheral vasculature have been identified in humans (4, 11). However, 113 

the extent to which age modifies the cerebral blood flow responses to sympathetic 114 

stimulation remains unclear. 115 

The purpose of this study was two-fold. First, to comprehensively describe the 116 

extra- (CCA, ICA) and intra-cranial (MCA) blood flow responses to the CPT. Second, 117 

to ascertain the influence of age on these cerebrovascular responses to the CPT. To 118 

achieve these goals, in both younger and older subjects, simultaneous measurements 119 

of CCA and ICA diameter, velocity and flow were made along with MCAvmean and 120 

posterior cerebral artery mean blood flow velocity (PCAvmean) during the CPT under 121 

conditions of controlled isocapnia. We hypothesized that there would be less of an 122 

increase in ICA diameter compared to the CCA during the CPT in young individuals. 123 

In addition, we anticipated that the extra- and intra-cranial responses to the CPT 124 

would be blunted in older individuals.  125 

 126 

MATERIALS AND METHODS 127 

Ethical Approval 128 

All experimental protocols and procedures were approved by the University of 129 

British Columbia Research Ethics Board (H15-01951) and conformed to the 130 

Declaration of Helsinki. Prior to participation a detailed verbal and written 131 

explanation of the study was provided and each participant completed written 132 

informed consent. 133 
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 134 

Participants 135 

Nineteen study participants, ten young (2 women, 23±2 years, 176±7 cm, 136 

73±9 kg, mean±SD) and nine older (2 women, 66±3 years, 176±8 cm, 78±13 kg) took 137 

part in the study. As determined by a written screening questionnaire and oral 138 

confirmation, no study participants had a history of cardiovascular, cerebrovascular or 139 

respiratory disease. None of our participants were active smokers, except one of the 140 

older participants had a history of smoking. Participants were not taking prescription 141 

or over-the-counter medications, except for two of the older male study participants 142 

who were using either Tamsulosin (0.4mg/day) due to enlarged prostate or 143 

Ciclesonide (400µg/day) due to mild asthma, and the two young women who were 144 

taking oral contraceptives and were tested on day 1 and 2 of their self-reported 145 

menstrual cycle. The two older women were both postmenopausal and not taking 146 

hormone replacements. Participants abstained from alcohol, caffeine and exercise for 147 

at least 12 hr prior to the experimental session. 148 

 149 

Experimental measures 150 

Cardiorespiratory measures 151 

Heart rate (HR) was assessed using a 3-lead electrocardiogram (ECG; ADI 152 

BioAmp ML132), and beat-to-beat blood pressure using a finger 153 

photoplethysmography (Finometer PRO, Finapres Medical Systems, Amsterdam, 154 

Netherlands). Mean arterial pressure (MAP) was calculated from the Finometer 155 

reconstructed brachial waveform after values were back calibrated to the average of 156 

three automated brachial blood pressure measurements made over 3-min (Tango+; 157 

SunTech, Morrisville, NC). Stroke volume (SV) was estimated using the Modelflow 158 
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method (FMS, Amsterdam, The Netherlands), which simulates aortic flow waveforms 159 

from an arterial pressure signal using a non-linear three-element model of the aortic 160 

input impedance. Cardiac output (CO) was calculated as SV x HR, and total 161 

peripheral resistance (TPR) as MAP / CO. Both the partial pressure of end-tidal CO2 162 

(PetCO2) and O2 (PetO2) were sampled at the mouth and recorded by a calibrated gas 163 

analyzer (model ML206, ADInstruments). A pneumotachograph (model HR 800L, 164 

Hans Rudolph, Shawnee, KS) connected to a bacterial filter was used to assess minute 165 

ventilation (VE). All cardiorespiratory variables were sampled continuously at 1000 166 

Hz using an analogue-to-digital converter (Powerlab, 16/30; ADInstruments, 167 

Colorado Springs, CO, USA) and data were interfaced with LabChart (Version 7), and 168 

analyzed offline. 169 

 170 

Cerebrovascular measures 171 

Transcranial Doppler Ultrasound (2MHz, TCD, Spencer Technologies, 172 

Seattle, WA) was used to simultaneously assess the right MCAvmean and left 173 

PCAvmean, in accordance with standard guidelines (67). A 2 MHz wavelength 174 

provides the optimal resolution-to-penetration depth ratio for imaging the deep 175 

cerebral vessels. The transmitted ultrasound beam contacts the red blood cells within 176 

the target vessel and a portion of the signal is reflected back to the transducer. 177 

The difference between the emitted and received frequency signals (i.e., Doppler 178 

shift) is processed through a fast Fourier transformation to produce a velocity trace 179 

and an envelope surrounding this is then exported in real time into LabChart (Version 180 

7) for offline analyses. For anatomical reasons, in two older individuals the 181 

orientation was switched such that the left MCAvmean and right PCAvmean were 182 

insonated. Despite switching side in one individuals a clear image was impossible, 183 
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therefore PCAvmean is based on n = 8. The bilaterally placed probes were secured in 184 

place by being attached to a headpiece (model M600 bilateral head frame, Spencer 185 

Technologies).  The MCA and PCA were insonated through the middle trans-186 

temporal window, using previously described locations and standardization 187 

techniques (67). Blood velocity and vessel diameter of the left common carotid artery 188 

(CCA, right CCA n=3) and right internal carotid artery (ICA, left ICA n=3) were 189 

measured using a 10 MHz multi-frequency linear array vascular ultrasound (Terason 190 

T3200, Teratech, Burlington, MA). Due to anatomical reasons a clear image of the 191 

target artery was not possible in three study participants and therefore the side of 192 

insonation was switched. Only in two study participants were the ICA and MCA 193 

insonated contralaterally. B-mode imaging was used to measure arterial diameter, 194 

while pulse-wave mode was used to simultaneously measure peak blood velocity. 195 

Extracranial blood flow measurements were made in accordance with recent technical 196 

recommendations (60). All CCA and ICA recordings were screen captured and stored 197 

as video files for offline analysis (70). A minimum of 10 consecutive cardiac cycles 198 

were used to determine extracranial blood flow measurements. In 2 older study 199 

participants ICA images were on insufficient quality, thus ICA analysis in this cohort 200 

is based on n=7. Volumetric blood flow was calculated using the following formula:  201 

 202 

CCA	or	ICA	flow =
CCA	or	ICA	Peak	Envelope	Velocity	

2 ∙ [𝜋	(0.5	 ∙ Diameter)C] 203 

 204 

Cerebrovascular conductance (CVC) was calculated for intracranial arteries and 205 

extracranial arteries using the following formula: 206 

 207 
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MCA, PCA, CCA	or	ICA	CVC	 =
MCA𝑣HIJK, PCA𝑣HIJK, CCA	flow	or	ICA	flow

MAP  208 

 209 

Several indices of CCA and ICA stiffness were calculated in accordance with recently 210 

published methods (33, 34). β-stiffness index = ln(SBP-DBP)/[(DIAsys-211 

DIAdia)/DIAdia], Elastic modulus = [(SBP-DBP)·DIAdia]/(DIAsys-DIAdia), arterial 212 

compliance = (DIAsys-DIAdia)/(SBP-DBP) and arterial distensibility = (DIAsys-213 

DIAdia)/[(SBP-DBP)·DIAdia], where SBP; systolic blood pressure, DBP; diastolic 214 

blood pressure, DIAmax; maximum diameter and DIAmin; minimum diameter.  215 

 216 

Study protocol 217 

Study participants visited the laboratory on a single occasion. Prior to 218 

instrumentation all study participants were carefully familiarized with the study 219 

design and measurements. Thereafter the carotid, internal carotid and vertebral 220 

arteries were scanned in each participant in order to exclude individuals with any 221 

stenosis. After instrumentation and a resting period of at least 5 min, a 3-min baseline 222 

was recorded prior to the start of the CPT. The CPT consisted of a 3-min immersion 223 

of the left foot into ice cold water (0.8±0.3°C) followed by a 3-min recovery. The foot 224 

was chosen, rather than the hand, in order to keep the upper body still and facilitate 225 

the acquisition of high quality ultrasound images. Throughout the CPT, isocapnia was 226 

maintained using an end-tidal forcing system (Air-force, GE Foster, Kelowna, BC, 227 

Canada) described in detail elsewhere (49). Briefly, PetCO2, PetO2, inspiratory and 228 

expiratory tidal volume were sampled on a breath-by-breath basis and with the help of 229 

a feedback control, and using independent gas solenoid valves for O2, CO2 and N2, 230 

desired end-tidal gases were maintained at baseline values. In order to assess whether 231 

there are any age-related alterations in thermal perception which may subsequently 232 
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contribute to any differences in CPT responses, each study participant was asked to 233 

provide a rating of the perceived pain, experienced at the onset and the end of the CPT 234 

using a Borg scale ranging from 0 (no pain) to 10 (worst pain). 235 

 236 

Data and statistical analysis 237 

Baseline (BL) values for the cardiovascular, respiratory and cerebrovascular 238 

variables measured were taken as an average over the last minute of the resting phase 239 

prior to the CPT. Thereafter, the last 20s of each minute was averaged during the CPT 240 

(CPT1, CPT2, CPT3) and throughout recovery (RE1, RE2, RE3). A repeated two-way 241 

ANOVA, was used to test for differences in the cardiovascular, respiratory and 242 

cerebrovascular responses with respects to experimental phase (BL, CPT1, CPT2, 243 

CPT3, RE1, RE2, RE3) and age (young, older). Data were expressed in absolute 244 

terms and as a percentage change from baseline, thus permitting us to compare the 245 

extra- and intra-cranial responses to the CPT and to ascertain the influence of age on 246 

these cerebrovascular responses. A repeated two-way ANOVA was used to determine 247 

whether perceived pain responses to the CPT were different with respects to 248 

experimental phase (CPT1, CPT2) and age (young, older). Finally, the existence of 249 

differences in arterial stiffness between experimental phases (BL, CPT) and age 250 

(young, older) was evaluated using a repeated two-way ANOVA. Tukey post hoc 251 

tests were used to examine significant main effects and interactions. Data are given as 252 

mean ± S.D unless otherwise indicated. Statistical significance was set at P < 0.05. 253 

Statistical analyses were performed using SAS Enterprise Guide (4.3, SAS Institute, 254 

Cary, NC).  255 
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RESULTS 256 

Cardiovascular and respiratory variables during baseline, CPT and recovery in 257 

young and older participants are presented in Table 1. During the CPT, MAP 258 

increased from baseline in both groups (P<0.01), but absolute values were higher in 259 

the older group throughout (P=0.03). In both groups, HR was increased similarly at 260 

CPT1 (P<0.01 vs. baseline) and declined thereafter. The PetCO2 was successfully 261 

kept at baseline values during the CPT by the end-tidal forcing system. Rating of 262 

perceived pain was not different between young and older groups at the onset (Young: 263 

5.8±1.4, Older: 4.6±2.6) and the end of the CPT (Young 4.4±2.1, Older: 5.4±2.6).  264 

During the CPT, MCAvmean and PCAvmean increased in the younger 265 

participants (by 19±19 and 11±12% at CPT2, respectively), whereas no changes from 266 

baseline were observed in the older participants (Figure 1). The CCA diameter 267 

increased in the young during CPT (by 5±3% at CPT1), whereas no change from 268 

baseline in CCA diameter was observed in the older participants (P<0.01, Figure 2). 269 

No changes from baseline in CCA velocity were observed in either age group, while 270 

CCA flow tended (P=0.08) to be increased in the young group. Both ICA diameter 271 

and ICA velocity were unchanged from baseline during the CPT, while ICA flow was 272 

increased from baseline at CPT1 (P=0.03). During the CPT, the percentage increase in 273 

CCA flow and MCAvmean were significantly greater than ICA flow in the young group 274 

(CCA vs. ICA P=0.02, CCA vs. MCA P=0.70, ICA vs. MCA P<0.01; Figure 3). 275 

However, in the older group the percentage increase in ICA flow and MCAvmean were 276 

significantly greater than CCA flow (CCA vs. ICA P=0.02, CCA vs. MCA P=0.05, 277 

ICA vs. MCA P=0.83). In the young group CPT evoked a greater velocity response in 278 

the MCA compared to the PCA (17±14% vs 10±10%, P<0.01), whereas no difference 279 

was seen in the older group (4±7% vs 3±7%, P=0.72). 280 
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Figure 4 provides the CVC values for the MCA, PCA, CCA and ICA during 281 

baseline, CPT and recovery in young and older participants. A significant interaction 282 

between age and experimental phase was observed for MCA CVC. Although MCA 283 

CVC was numerically lower in the older group across all experimental phases, post 284 

hoc analyses showed only a trend towards an age difference at CPT2 (P=0.07) with no 285 

significant differences from baseline in either group. 286 

Table 2 presents arterial stiffness indices for the CCA and ICA. Arterial 287 

stiffness in the CCA was greater in the older group compared to the young 288 

individuals, whereas ICA stiffness was not different. No index of arterial stiffness was 289 

altered during the CPT.   290 
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DISCUSSION 291 

The first major novel finding of the present study is that in young individuals 292 

there is a differential response to the CPT within the extra-cranial blood vessels (CCA 293 

vs. ICA) and also discrepant responses between the extra- and intra-cranial 294 

circulations. The second major novel finding is that in older individuals there is a 295 

blunting of the extra- and intra-cranial responses to the CPT. The physiological and 296 

clinical significance of these findings are considered below. 297 

 298 

1) Extra- and intra-cranial blood flow regulation during the cold pressor test:  299 

In accordance with earlier work in young individuals (53) we observed a 300 

significant increase in CCA diameter during the CPT. However, in contrast, and in 301 

accordance with our hypothesis, we observed no change in ICA diameter during the 302 

CPT. Despite this lack of change in ICA diameter and only a transient increase in ICA 303 

flow during the first minute of CPT, we observed that the CPT evoked a marked and 304 

persistent increase in MCAvmean – a finding in contrast to Bramanti et al. (3), but in 305 

agreement with several previous studies (46, 47, 56, 73). This may imply a differential 306 

regulation of the extra- and intra-cranial arteries that could serve an important 307 

protective role. There is evidence that the extra-cranial arteries (at the level of the ICA 308 

and vertebral arteries) are integral to the regulation of cerebral blood flow through 309 

modifying vascular resistance (14, 22, 29, 39, 40). Furthermore a MRI study reported 310 

decreased cerebral blood volume in response to sympathoexcitatory reflexes (69). In 311 

response to a sympathetically mediated hypertensive insult, the buffering function of 312 

the larger cerebral and large pial arterioles, but not the cerebral microcirculation, 313 

serves as a first line of defense in regulating cerebral perfusion pressure. Our data 314 
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indicate that the responses of the CCA are different from the ICA and MCA during 315 

the CPT, at least in younger individuals.  316 

Elevations in sympathetic vasoconstrictor activity and MAP produced by the 317 

CPT have at least three effects on cerebral blood flow. First, is the obvious hydraulic 318 

effect of MAP that increases flow even if vascular resistance is unchanged. Second, 319 

and the one commonly either neglected or misunderstood, is the autoregulatory effect 320 

of an increase in perfusion pressure to increase vascular resistance and minimise the 321 

increase in flow. A likely third effect is the influence of SNA on extra- and intra-322 

cranial blood flow regulation. Thus, appreciation of the effects of the CPT on factors 323 

such as the hydraulic effect and potential shear patterns of elevations in MAP, as well 324 

as the concomitant changes in SNA and autoregulation, likely explain the apparent 325 

differential mechanisms of regulation apparent between the CCA®ICA®MCA.  326 

Although the sympathetic regulation of the cerebral blood vessels in humans 327 

remains a controversial issue (1, 58), we did observe a decrease in MCA CVC (a 328 

finding consistent with other studies (21, 52)) and demonstrate for the first time that 329 

the CPT reduces CCA, ICA and PCA CVC. These latter changes in CVC are possibly 330 

indicative of sympathetically-mediated cerebral vasoconstriction or autoregulatory 331 

mediated. Bramanti et al. (3) demonstrated a reduction in MCAvmean during the CPT 332 

(by ~23%) the magnitude of which was approximately halved following intrathecal 333 

administration of the α2-adrenergic receptor agonist clonidine. These findings support 334 

the role of a central noradrenergic mechanism in the cerebrovascular responses to the 335 

CPT. However, although not measured in this study, differences in PaCO2 may 336 

explain these conflicting findings. In the present study, a dynamic end-tidal forcing 337 

system was used in an attempt to maintain PetCO2 near baseline, thus permitting the 338 
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effect of the generalized sympathetic activation associated with the CPT to be 339 

observed.  340 

Along with MCAvmean we determined the PCAvmean responses to CPT. There 341 

are known anatomical and physiological differences between anterior and posterior 342 

circulations. For example, the PCA may have less sympathetic innervation than the 343 

anterior cerebral portion (12, 20) and CO2 reactivity is reduced (51). We observed that 344 

the temporal pattern of response PCAvmean and MCAvmean was similar, however 345 

interestingly the magnitude of response was greater in the MCA compared to the PCA 346 

in the young (17±14% vs. 10±10%).  347 

 348 

2) Blunting of the extra- and intra-cranial responses during the CPT in older 349 

individuals: 350 

In contrast to the younger group, the changes in both the extra and intra-351 

cranial resistance and flow were generally blunted in the older group during the CPT. 352 

This is significant because dysfunctional CCA and coronary artery responses to the 353 

CPT have been associated with atherosclerotic disease (45, 53, 72). Since the MAP 354 

‘stimulus’ or hydraulic effect was comparable, it seems reasonable that the differential 355 

extra and intra-cranial responses in young and older individuals reflect some 356 

fundamental differences in potential shear patterns induced via the elevations in MAP, 357 

as well as the influences of SNA, humoral factors, endothelial vasodilator function, 358 

autoregulation and parasympathetic control. Rubenfire et al. (53), speculated that a b-359 

adrenergic mechanism accounted for the increase of CCA diameter during the CPT in 360 

healthy individuals, whereas the reduction in CCA diameter in coronary artery disease 361 

patients was due to greater sensitivity of the a-adrenergic receptors. This shift from a 362 

b-adrenergic vasodilatory response to an a-adrenergic vasoconstrictor one may be 363 
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related to underlying endothelial damage and dysfunction (71). Endothelial 364 

dysfunction is well established to occur within the peripheral vasculature of healthy 365 

elderly individuals and its extension to the cerebral vasculature might explain the 366 

present findings. Age-related alterations in arterial stiffness may also have contributed 367 

to the cerebrovascular responses reported. CCA stiffness was elevated in the older 368 

individuals at baseline, but in accordance with previous literature none of the 369 

calculated arterial stiffness indices was modified by the CPT (28, 33). Unfortunately, 370 

on the basis of our data set we cannot delineate the mechanism(s) for the blunting of 371 

the extra- and intra-cranial responses during the CPT in older individuals, but our 372 

findings provide direction for future studies.  373 

 374 

3) Methodological considerations:  375 

There are a number of methodological considerations that should be 376 

considered in the context of our study and related interpretation of the findings.   377 

a) Discrepancies of flow and velocity during the CPT: The assessment of 378 

cerebrovascular responses during a myriad of physiological interventions has been 379 

dominated by the use of transcranial Doppler over the last 30 years. However, this 380 

approach operates on the assumption (also its primary limitation) that the insonated 381 

vessel (PCA, MCA) remains at a constant diameter. Older studies have partially 382 

corroborated that under various stimuli (e.g., orthostasis, CO2 changes), MCAvmean 383 

accurately reflected the magnitude of changes in MCA blood flow as diameter 384 

remained unchanged (55), however, recent high resonance imaging studies have 385 

challenged this assumption of constant vessel diameter during marked changes in 386 

PaCO2 or PaO2 (8, 9, 64) or exercise-induced sympathetic activation (63). 387 

Furthermore, as recently reviewed (24), it is not known if the MCA diameter changes 388 
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during elevations in blood pressure. At least during hypertension (35) and 389 

hypotension (32), discrepancies between ICA flow and MCAvmean have been reported. 390 

Similarly, in the present study we observed that the percentage increase in ICA flow 391 

was less marked than MCAvmean during the CPT. The effects of CO2 and blood 392 

pressure on PCA diameter are unknown.  393 

b) Flow vs. conductance:  To account for MAP in the analysis of extra vs. 394 

intra-cranial cerebrovascular responses, CVC is commonly used. However, as 395 

outlined above, increases in MAP produced by the CPT may affect cerebral blood 396 

flow by several independent and interacting mechanisms (e.g., hydraulic effect, 397 

autoregulation, shear stress). As such, CVC is not likely to accurately account for the 398 

CPT-induced elevations in MAP during the CPT, and consideration of these 399 

mechanisms will be needed to fully understand the apparent differential regulation of 400 

the CCA®ICA®MCA.  401 

c) CPT recovery: We included recovery data in our analyses to verify that the 402 

cardiovascular, respiratory and cerebrovascular variables of interest returned to 403 

baseline following the CPT. In all instances the measured parameters did successfully 404 

recover. Interestingly, an elevated systolic blood pressure recovery from the CPT is an 405 

important predictor of a future elevation in systolic blood pressure (57). Whether there 406 

is any prognostic significance to the cerebrovascular response to or following the CPT 407 

remains to be investigated. 408 

 d) Study limitations: Roatta et al. (52), reported that the MCAvmean increases 409 

during hand CPT were slightly but significantly greater on the contralateral side 410 

(+4.4%) compared to the ipsilateral side (+2.4%). However, as the aim of our study 411 

was to simultaneous assess CCA, ICA, MCA and PCA responses to the CPT 412 

measurements were necessitated on both the contralateral and ipsilateral sides, thus 413 
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unfortunately it was not practical to account for any potential lateralization of the 414 

cerebral hemodynamic response to the CPT. In addition, hydration status was not 415 

assessed, which may be a limitation as this has recently been reported to modify the 416 

cerebrovascular response to the CPT (47). We cannot exclude the possibility that age-417 

related differences in thermoreceptor sensitivity contributed to the CPT responses we 418 

observed (15), although ratings of perceived pain were not different in the young and 419 

old groups during the CPT. One older individual was taking the α1A adrenoreceptor 420 

antagonist tamsulosin for an enlarged prostate. Although these receptors are present in 421 

the ureter, they are less well expressed in the peripheral vasculature (44, 50). This 422 

individual displayed cerebral perfusion similar responses to the rest of the older 423 

group, and their removal did not affect the results of the statistical analyses.  424 

It should be noted that our findings can only be directed to young and older 425 

healthy volunteers and that the regulation of cerebral blood flow may further differ in 426 

patients with cerebrovascular disease. Nevertheless, to be able to interpret the 427 

pathophysiological significance of these observations, a clear understanding of the 428 

normal responses of the cerebral circulation must first be obtained before extension 429 

can be made to pathological groups. Given that risk factors for coronary artery disease 430 

are associated with the extra-cranial blood vessel responses (53), future studies should 431 

explore the cerebrovascular responses in individuals at risk or in those that have 432 

experienced cerebrovascular events.  433 

 434 

4) Clinical implications:  435 

The CPT has been widely employed for cardiovascular risk stratification (6, 436 

38, 61). Likewise, an attenuated cerebrovascular reactivity is indicative of an 437 

increased risk for all cause and cardiovascular (inclusive of stroke) mortality (48). The 438 
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magnitude of the vasomotor response in the extracranial (ICA, vertebral artery) and 439 

intracranial arteries (MCA, PCA) to a CPT perturbation may be indicative of 440 

cerebrovascular health (i.e., endothelial function), much like peripheral flow mediated 441 

dilation is indicative of cardiovascular risk (18, 25). Thus future studies are needed to 442 

further explore vasomotor responses to CPT in individuals at risk of or who have 443 

experienced cerebrovascular events. Consequently, the CPT may serve as a simple 444 

diagnostic tool to predict cerebrovascular events and reduce related disabilities and 445 

mortality.  446 

 447 

In conclusion, during the CPT, for the first time we reveal; 1) differential 448 

mechanism(s) of regulation between the ICA compared to the CCA in young 449 

individuals; 2) a blunting of the extra- and intra-cranial responses in older individuals; 450 

and 3) irrespective of age, there were discrepancies in the magnitude of change in 451 

CCA flow, ICA flow and MCAvmean during the CPT.   452 
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FIGURE CAPTIONS 697 

Figure 1 698 

Middle cerebral artery mean blood flow velocity (MCAvmean) and posterior cerebral 699 

artery mean blood flow velocity (PCAvmean) in young (n=10, black circles) and old 700 

(n=9, n=8 for PCAvmean, grey triangles) at baseline (BL), during a three-minute cold 701 

pressor test (CPT1, CPT2, CPT3) and followed by a three-minute recovery (RE1, 702 

RE2, RE3). Values are means±SEM. P values represent repeated two-way ANOVA 703 

results.  *P < 0.05 vs. BL; d P < 0.05 vs. CPT1; + P < 0.05 vs. CPT2; § P < 0.05 vs. 704 

CPT3. 705 

 706 

Figure 2 707 

Common carotid (CCA) diameter, internal carotid (ICA) diameter, CCA velocity, 708 

ICA velocity, CCA flow and ICA flow in young (n=10, black circles) and old (n=9, 709 

n=7 for ICA, grey triangles) at baseline (BL), during a three-minute cold pressor test 710 

(CPT1, CPT2, CPT3) and followed by a three-minute recovery (RE1, RE2, RE3). 711 

Values are means±SEM. P values represent repeated two-way ANOVA results.  *P < 712 

0.05 vs. BL; d P < 0.05 vs. CPT1; + P < 0.05 vs. CPT2; § P < 0.05 vs. CPT3. 713 

 714 

Figure 3 715 

Percentage change from baseline (BL) in common carotid (CCA) flow, internal 716 

carotid (ICA) flow, and middle cerebral artery mean blood flow velocity (MCAvmean) 717 

in young (n=10, black symbols) and old (n=9, n=7 for ICA, grey symbols) during a 718 

three-minute cold pressor test (CPT1, CPT2, CPT3) and followed by a three-minute 719 

recovery (RE1, RE2, RE3). Values are means±SEM. P values represent repeated two-720 

way ANOVA results.   721 
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 722 

Figure 4 723 

Middle cerebral artery cerebrovascular conductance (MCA CVC), posterior cerebral 724 

artery (PCA) CVC, common carotid (CCA) CVC and internal carotid (ICA) CVC, in 725 

young (n=10, black symbols) and old (n=9, n=7 for ICA, grey symbols) at baseline 726 

(BL), during a three-minute cold pressor test (CPT1, CPT2, CPT3) and followed by a 727 

three-minute recovery (RE1, RE2, RE3). Values are means±SEM. P values represent 728 

repeated ANOVA results.  *P < 0.05 vs. BL; d P < 0.05 vs. CPT1; + P < 0.05 vs. 729 

CPT2; § P < 0.05 vs. CPT3730 



TABLES 

Table 1. Cardiovascular and respiratory parameters at baseline (BL), at each minute of a three minute cold pressor test (CPT1, CPT2, CPT3) and at each minute 
during a three-minute recovery (RE1, RE2, RE3). 

   Experimental phase  
 P values 

   
BL CPT1 CPT2 CPT3 RE1 RE2 RE3 

 
Age Phase Age* 

Phase 
              

MAP 
(mmHg) 

Y (n=10)  93±7 109±9 108±10 104±9 96±7 93±7 94±9  0.026 <0.001 0.79 
O (n=9)  101±7 114±10 114±9 112±8 104±6 102±5 103±5  

HR (bpm) Y (n=10)  73±12 81±18 77±17 73±15 67±12 69±13 68±11  0.105 <0.001 0.268 
O (n=9)  64±9 68±9 67±6 65±6 62±8 61±9 61±9  

SV (ml) Y (n=10)  96±42 93±42 90±41 90±42 94±43 94±42 95±42  0.271 0.046 0.855 
O (n=9)  93±30 89±28 88±28 86±26 89±27 90±27 87±27  

CO  
(l·min-1) 

Y (n=10)  7.4±1.1 8.0±2.0 7.3±1.6 7.2±1.3 6.8±1.1 7.0±0.9 6.9±1.0  0.005 0.002 0.505 
O (n=9)  5.6±2.0 5.5±1.5 5.4±1.4 5.1±1.3 5.1±1.5 5.2±1.5 5.0±1.6  

TPR  
(mmHg· 
min ml-1) 

Y (n=10)  12.8±1.9 14.4±3.7 15.3±3.1 14.9±2.8 14.3±2.6 13.5±2.2 13.8±2.3  0.003 <0.001 0.806 
O (n=9)  20.4±7.3 22.9±7.6 22.9±6.8 23.6±6.3 22.3±6.8 21.5±6.5 22.6±6.8  

VE  
(l·min-1) 

Y (n=10)  14.6±3.8 18.4±5.4 18.2±5.0 18.1±4.8 16.1±3.7 14.8±3.1 15.1±3.2  0.038 <0.001 0.273 
O (n=9)  12.1±3.6 14.5±4.5 13.7±3.4 13.2±3.9 11.7±3.6 11.4±3.6 11.7±3.3  

PetCO2 
(mmHg) 

Y (n=10)  41.5±2.8 41.2±2.4 41.3±2.9 41.4±2.9 41.3±2.7 41.4±2.7 41.0±2.4  0.201 0.212 0.047 
O (n=9)  40.1±2.5 39.65±3.0 39.3±3.0 39.1±2.8 39.9±2.7 39.7±2.5 40.2±2.7§  

              
Abbreviations: MAP, mean arterial pressure; HR, heart rate; SV, stroke volume; CO, cardiac output; VE, ventilation; PetCO2, end-tidal partial pressure of CO2; 
Y, young; O, old. Values are mean±SD. P values represent two-way repeated ANOVA results (Age: young and old; Phase: BL, CPT1, CPT2, CPT3, RE1, RE2, 
RE3). §P < 0.05 versus CPT3. 
 



                      Table 2. Arterial stiffness indices in young and old individuals at baseline (BL) and during the cold pressure test (CPT) 

                       Abbreviations: CCA, common carotid artery; ICA, internal carotid artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; BL, baseline;   
                            CPT, cold pressor test. P values represent two-way repeated ANOVA results (Age: young and old; Phase: BL, CPT1, CPT2, CPT3, RE1, RE2, RE3) 

 
 

 

   
Young 

 
Old 

 P - value 

     Age Phase Age*Phase 

CCA β stiffness BL  5.5±1.1  7.6±2.3  0.001 0.980 0.843 
CPT  5.6±1.1  7.5±1.9  

ICA β stiffness BL  8.5±4.2  6.7±2.6  0.676 0.635 0.419 
CPT  8.0±4.9  8.6±2.2  

CCA Elastic modulus (mmHg) BL  555.9±129.5  796.3±198.2  <0.001 0.131 0.910 
CPT  636.9±126.1  890.2±219.1  

ICA Elastic modulus (mmHg) BL  846.6±384.4  698.4±264.9  0.879 0.227 0.383 
CPT  896.5±496.2  1000.8±269.5  

CCA Arterial compliance (cm·mmHg-1) BL  0.012±0.003  0.010±0.003  0.023 0.191 0.998 
CPT  0.011±0.002  0.009±0.002  

ICA Arterial compliance (cm·mmHg-1) BL  0.008±0.003  0.011±0.006  0.499 0.856 0.256 
CPT  0.009±0.005  0.009±0.005  

CCA Arterial distensibility (mmHg-1) BL  0.002±0.000  0.001±0.001  0.002 0.234 0.947 
CPT  0.002±0.000  0.001±0.000  

ICA Arterial distensibility (mmHg-1) BL  0.002±0.001  0.002±0.001  0.467 0.562 0.343 
CPT  0.003±0.006  0.001±0.000  

          


