UNIVERSITY^{OF} BIRMINGHAM

Research at Birmingham

Extra and intra-cranial blood flow regulation during the cold pressor test

Flück, Daniela; Ainslie, Philip N; Bain, Anthony R; Wildfong, Kevin W; Morris, Laura Emily; Fisher, James

DOI: 10.1152/japplphysiol.00224.2017

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Flück, D, Ainslie, PN, Bain, AR, Wildfong, KW, Morris, LE & Fisher, JP 2017, 'Extra and intra-cranial blood flow regulation during the cold pressor test: influence of age', Journal of Applied Physiology. https://doi.org/10.1152/japplphysiol.00224.2017

Link to publication on Research at Birmingham portal

Publisher Rights Statement: The article is not to be used for commercial purposes.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	Extra and intra-cranial blood flow regulation during the cold pressor
2	test: influence of age
3	
4	Authors: Daniela Flück ¹ , Philip N Ainslie ¹ , Anthony R Bain ¹ , Kevin W Wildfong ¹ ,
5	Laura E Morris ¹ , James P Fisher ²
6	
7	Author contributions:
8	D.F. contributed to the study design, data acquisition, data analysis, data interpretation
9	and drafted the manuscript. A.R.B., K.W.W. and L.E.M. contributed to the data
10	acquisition and critical review of the manuscript. P.N.A. contributed to the study
11	design, data interpretation and critical review of the manuscript. J.P.F. contributed to
12	the study design, data acquisition, data interpretation and drafted the manuscript. All
13	authors approved the final version of the manuscript.
14	
15	Affiliations: ¹ Centre for Heart, Lung and Vascular Health, School of Health and
16	Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British
17	Columbia, Canada; ² School of Sport, Exercise and Rehabilitation Sciences, College of
18	Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham,
19	UK.
20	
21	
22	Running head: Cold pressor test and cerebral blood flow
23	
24	
25	Address for correspondence: Daniela Flück, Centre for Heart, Lung and Vascular
26	Health, School of Health and Exercise Sciences, University of British Columbia -
27	Okanagan 3333 University Way, Kelowna, British Columbia Canada, V1V 1V7
28	Email: daniela.flueck@ubc.ca

29 <u>ABSTRACT</u>

30 We determined how the extra- and intra-cranial circulations respond to 31 generalized sympathetic activation evoked by a cold pressor test (CPT) and whether 32 this was affected by healthy aging. Ten young $(23\pm2 \text{ yr}; \text{mean}\pm\text{SD})$ and nine older 33 (66±3 yr) individuals performed a 3-min CPT by immersing the left foot into 34 0.8±0.3°C water. Common carotid artery (CCA) and internal carotid artery (ICA) 35 diameter, velocity and flow were simultaneously measured (duplex ultrasound), along 36 with middle cerebral artery and posterior cerebral artery mean blood velocity (MCAv_{mean} and PCAv_{mean}), and cardiorespiratory variables. The increases in heart rate 37 38 (~6 bpm) and mean arterial blood pressure (~14 mmHg) were similar in young and 39 older groups during the CPT (P<0.01 vs. baseline). In the young group, the CPT 40 elicited a \sim 5% increase in CCA diameter (*P*<0.01 vs. baseline) and tendency for an 41 increase in CCA flow (~12%; P=0.08); in contrast, both diameter and flow remained unchanged in the older group. Although ICA diameter was not changed during the 42 43 CPT in either group, ICA flow increased ($\sim 8\%$; P=0.02) during the first minute of the CPT in both groups. While the CPT elicited an increase in MCAv_{mean} and PCAv_{mean} in 44 45 the young group (by $\sim 20\%$ and $\sim 10\%$, respectively; P < 0.01 vs. baseline), these intra-46 cranial velocities were unchanged in the older group. Collectively, during the CPT, 47 these findings suggest a differential mechanism(s) of regulation between the ICA 48 compared to the CCA in young individuals, and a blunting of the CCA and intra-

49 cranial responses in older individuals.

50 New & Noteworthy

51	Sympathetic	activation ev	voked by a	cold pressor	test elicits	heterogeneous	extra- and
----	-------------	---------------	------------	--------------	--------------	---------------	------------

- 52 intra-cranial blood vessel responses in young individuals that may serve an important
- 53 protective role. The extra- and intra-cranial responses to the cold pressor test are
- 54 blunted in older individuals.
- 55
- 56 **Keywords**: Brain blood flow, elderly, sympathetic nerve activity
- 57
- 58
- 59

60 **INTRODUCTION**

61 The cold pressor test (CPT) has been widely employed for the assessment of 62 human autonomic function (13, 17), peripheral vascular reactivity (7, 45, 53, 72) and 63 cardiovascular risk stratification (6, 38, 61). However, the cerebrovascular responses 64 to the CPT remain poorly understood, particularly in healthy aging and chronic 65 disease. This issue is compounded by the controversy surrounding the sympathetic 66 regulation of the extra- and intra-cranial blood vessels (1, 58). During the CPT, 67 signals from activated cutaneous thermoreceptor and nociceptor afferents are rapidly 68 integrated within the central nervous system (principally the hypothalamic and 69 medullary regions) and lead to the activation of cortical sites (10). This activation 70 elevates peripheral vascular resistance, HR and blood pressure (23) on account of the 71 characteristic autonomic efferent response, consisting of a robust increase in 72 sympathetic nerve activity (SNA) [e.g., increased plasma noradrenaline (19) and 73 muscle sympathetic nerve activity (65)], and potentially a decrease in cardiac 74 parasympathetic nerve activity [e.g., decreased HR variability (16)]. Cerebral blood 75 flow may be affected by several mechanisms during the CPT, including neurovascular 76 coupling, a hydraulic pressure effect even in the absence of a change in vascular 77 resistance, local autoregulatory mechanisms, and by the sympathetic modulation of 78 extra- and intra-cranial blood vessels.

In animal studies, innervation of the CCA, ICA and intra-cranial vasculature by postganglionic sympathetic nerve fibers has been identified (12, 37, 42); electrical stimulation of sympathetic nerves can evoke cerebral vasoconstriction (2, 66); and norepinephrine causes vasoconstriction in cerebral microvessels (36, 59). In humans, the spillover of noradrenaline from the brain into the internal jugular vein has been reported (43); clinically indicated upper thoracic sympathectomy increases ICA

85	diameter and flow (26); and stellate ganglion blockade reportedly increases cerebral
86	perfusion (62), although this is not been a universal finding (27). The effect of CPT-
87	evoked sympathoexcitation on cerebral perfusion has principally been evaluated in
88	terms of intra-cranial artery mean blood flow velocity and usually within the middle
89	cerebral artery (MCAv _{mean}). Intriguingly, both reductions $(3, 41)$ and elevations $(46, 46)$
90	47, 56, 73) in cerebral perfusion have been reported during the CPT, possibly due to
91	differences in the partial pressure of arterial carbon dioxide (P _a CO ₂). With respects to
92	the regulation of extra-cranial blood flow during the CPT, an increase in common
93	carotid artery (CCA) diameter by ~8% is reported in young healthy individuals (28,
94	34, 53). In contrast, CCA diameter is reduced during the CPT in patients with
95	coronary artery disease, possibly due to the greater sensitivity of the α -adrenergic
96	receptors (53). Unfortunately, to date no assessment has been made of internal carotid
97	artery (ICA) diameter or volumetric flow during the CPT, but these are essential in
98	order to understand the implications for cerebral blood flow (as opposed to blood flow
99	to the head and scalp via the external carotid artery). It would seem unlikely that the
100	same responses were observed in the CCA and ICA during the CPT. In accordance
101	with Poiseuille's Law, small changes in diameter have a major effect on flow (e.g.,
102	flow α (diameter/2) ⁴). Accordingly, if the ICA were to dilate to a similar degree as the
103	CCA (e.g., ~8%) brain blood flow would increase markedly. Given that the brain
104	seems to be particularly effective at protecting itself from over-perfusion (68) and that
105	the ICA (and vertebral arteries) are known to be integral to the regulation of cerebral
106	blood flow through modifying vascular resistance (14, 22, 29, 39, 40), it seems
107	reasonable to expect that different responses occur in the CCA and ICA during the
108	CPT.

109 Increased age is associated with a multitude of structural, functional and 110 regulatory alterations throughout the cardiovascular system (30, 31), including the 111 brain (5, 54). Age-related increases in arterial stiffness (28, 33), impairments in 112 endothelial vasodilator function and altered α - and β -adrenergic receptors signaling 113 within the peripheral vasculature have been identified in humans (4, 11). However, 114 the extent to which age modifies the cerebral blood flow responses to sympathetic 115 stimulation remains unclear.

116 The purpose of this study was two-fold. First, to comprehensively describe the extra- (CCA, ICA) and intra-cranial (MCA) blood flow responses to the CPT. Second, 117 118 to ascertain the influence of age on these cerebrovascular responses to the CPT. To 119 achieve these goals, in both younger and older subjects, simultaneous measurements 120 of CCA and ICA diameter, velocity and flow were made along with MCAv_{mean} and 121 posterior cerebral artery mean blood flow velocity (PCAv_{mean}) during the CPT under 122 conditions of controlled isocapnia. We hypothesized that there would be less of an 123 increase in ICA diameter compared to the CCA during the CPT in young individuals. 124 In addition, we anticipated that the extra- and intra-cranial responses to the CPT 125 would be blunted in older individuals.

126

127 MATERIALS AND METHODS

128 <u>Ethical Approval</u>

129 All experimental protocols and procedures were approved by the University of

130 British Columbia Research Ethics Board (H15-01951) and conformed to the

131 Declaration of Helsinki. Prior to participation a detailed verbal and written

132 explanation of the study was provided and each participant completed written

133 informed consent.

135 <u>Participants</u>

136 Nineteen study participants, ten young (2 women, 23 ± 2 years, 176 ± 7 cm, 137 73 ± 9 kg, mean \pm SD) and nine older (2 women, 66 ± 3 years, 176 ± 8 cm, 78 ± 13 kg) took part in the study. As determined by a written screening questionnaire and oral 138 139 confirmation, no study participants had a history of cardiovascular, cerebrovascular or 140 respiratory disease. None of our participants were active smokers, except one of the 141 older participants had a history of smoking. Participants were not taking prescription 142 or over-the-counter medications, except for two of the older male study participants 143 who were using either Tamsulosin (0.4mg/day) due to enlarged prostate or 144 Ciclesonide (400µg/day) due to mild asthma, and the two young women who were 145 taking oral contraceptives and were tested on day 1 and 2 of their self-reported 146 menstrual cycle. The two older women were both postmenopausal and not taking 147 hormone replacements. Participants abstained from alcohol, caffeine and exercise for 148 at least 12 hr prior to the experimental session. 149 150 Experimental measures 151 *Cardiorespiratory measures* 152 Heart rate (HR) was assessed using a 3-lead electrocardiogram (ECG; ADI 153 BioAmp ML132), and beat-to-beat blood pressure using a finger 154 photoplethysmography (Finometer PRO, Finapres Medical Systems, Amsterdam, 155 Netherlands). Mean arterial pressure (MAP) was calculated from the Finometer 156 reconstructed brachial waveform after values were back calibrated to the average of 157 three automated brachial blood pressure measurements made over 3-min (Tango+; SunTech, Morrisville, NC). Stroke volume (SV) was estimated using the Modelflow 158

139	method (FMS, Amsterdam, The Netherlands), which simulates abrue now waveforms
160	from an arterial pressure signal using a non-linear three-element model of the aortic
161	input impedance. Cardiac output (CO) was calculated as SV x HR, and total
162	peripheral resistance (TPR) as MAP / CO. Both the partial pressure of end-tidal CO_2
163	$(PetCO_2)$ and O_2 $(PetO_2)$ were sampled at the mouth and recorded by a calibrated gas
164	analyzer (model ML206, ADInstruments). A pneumotachograph (model HR 800L,
165	Hans Rudolph, Shawnee, KS) connected to a bacterial filter was used to assess minute
166	ventilation (VE). All cardiorespiratory variables were sampled continuously at 1000
167	Hz using an analogue-to-digital converter (Powerlab, 16/30; ADInstruments,
168	Colorado Springs, CO, USA) and data were interfaced with LabChart (Version 7), and
169	analyzed offline.

The Netherlands) addies simulates a stic flam and fam.

170

150

171 Cerebrovascular measures

172 Transcranial Doppler Ultrasound (2MHz, TCD, Spencer Technologies, 173 Seattle, WA) was used to simultaneously assess the right MCAv_{mean} and left 174 PCAv_{mean}, in accordance with standard guidelines (67). A 2 MHz wavelength 175 provides the optimal resolution-to-penetration depth ratio for imaging the deep 176 cerebral vessels. The transmitted ultrasound beam contacts the red blood cells within the target vessel and a portion of the signal is reflected back to the transducer. 177 178 The difference between the emitted and received frequency signals (i.e., Doppler 179 shift) is processed through a fast Fourier transformation to produce a velocity trace 180 and an envelope surrounding this is then exported in real time into LabChart (Version 181 7) for offline analyses. For anatomical reasons, in two older individuals the 182 orientation was switched such that the left MCAv_{mean} and right PCAv_{mean} were 183 insonated. Despite switching side in one individuals a clear image was impossible,

184	therefore $PCAv_{mean}$ is based on $n = 8$. The bilaterally placed probes were secured in
185	place by being attached to a headpiece (model M600 bilateral head frame, Spencer
186	Technologies). The MCA and PCA were insonated through the middle trans-
187	temporal window, using previously described locations and standardization
188	techniques (67). Blood velocity and vessel diameter of the left common carotid artery
189	(CCA, right CCA n=3) and right internal carotid artery (ICA, left ICA n=3) were
190	measured using a 10 MHz multi-frequency linear array vascular ultrasound (Terason
191	T3200, Teratech, Burlington, MA). Due to anatomical reasons a clear image of the
192	target artery was not possible in three study participants and therefore the side of
193	insonation was switched. Only in two study participants were the ICA and MCA
194	insonated contralaterally. B-mode imaging was used to measure arterial diameter,
195	while pulse-wave mode was used to simultaneously measure peak blood velocity.
196	Extracranial blood flow measurements were made in accordance with recent technical
197	recommendations (60). All CCA and ICA recordings were screen captured and stored
198	as video files for offline analysis (70). A minimum of 10 consecutive cardiac cycles
199	were used to determine extracranial blood flow measurements. In 2 older study
200	participants ICA images were on insufficient quality, thus ICA analysis in this cohort
201	is based on n=7. Volumetric blood flow was calculated using the following formula:
202	

203 CCA or ICA flow =
$$\frac{\text{CCA or ICA Peak Envelope Velocity}}{2} \cdot [\pi (0.5 \cdot \text{Diameter})^2]$$

205 Cerebrovascular conductance (CVC) was calculated for intracranial arteries and
206 extracranial arteries using the following formula:

208 MCA, PCA, CCA or ICA CVC =
$$\frac{MCAv_{mean}, PCAv_{mean}, CCA \text{ flow or ICA flow}}{MAP}$$

210	Several indices of CCA and ICA stiffness were calculated in accordance with recently
211	published methods (33, 34). β -stiffness index = ln(SBP-DBP)/[(DIAsys-
212	DIAdia)/DIAdia], Elastic modulus = [(SBP-DBP)·DIAdia]/(DIAsys-DIAdia), arterial
213	compliance = (DIAsys-DIAdia)/(SBP-DBP) and arterial distensibility = (DIAsys-
214	DIAdia)/[(SBP-DBP)·DIAdia], where SBP; systolic blood pressure, DBP; diastolic
215	blood pressure, DIAmax; maximum diameter and DIAmin; minimum diameter.
216	
217	Study protocol
218	Study participants visited the laboratory on a single occasion. Prior to
219	instrumentation all study participants were carefully familiarized with the study
220	design and measurements. Thereafter the carotid, internal carotid and vertebral
221	arteries were scanned in each participant in order to exclude individuals with any
222	stenosis. After instrumentation and a resting period of at least 5 min, a 3-min baseline
223	was recorded prior to the start of the CPT. The CPT consisted of a 3-min immersion
224	of the left foot into ice cold water ($0.8\pm0.3^{\circ}$ C) followed by a 3-min recovery. The foot
225	was chosen, rather than the hand, in order to keep the upper body still and facilitate
226	the acquisition of high quality ultrasound images. Throughout the CPT, isocapnia was
227	maintained using an end-tidal forcing system (Air-force, GE Foster, Kelowna, BC,
228	Canada) described in detail elsewhere (49). Briefly, PetCO ₂ , PetO ₂ , inspiratory and
229	expiratory tidal volume were sampled on a breath-by-breath basis and with the help of
230	a feedback control, and using independent gas solenoid valves for O_2 , CO_2 and N_2 ,
231	desired end-tidal gases were maintained at baseline values. In order to assess whether
232	there are any age-related alterations in thermal perception which may subsequently

233	contribute to any differences in CPT responses, each study participant was asked to
234	provide a rating of the perceived pain, experienced at the onset and the end of the CPT
235	using a Borg scale ranging from 0 (no pain) to 10 (worst pain).
236	
237	Data and statistical analysis
238	Baseline (BL) values for the cardiovascular, respiratory and cerebrovascular
239	variables measured were taken as an average over the last minute of the resting phase
240	prior to the CPT. Thereafter, the last 20s of each minute was averaged during the CPT
241	(CPT1, CPT2, CPT3) and throughout recovery (RE1, RE2, RE3). A repeated two-way
242	ANOVA, was used to test for differences in the cardiovascular, respiratory and
243	cerebrovascular responses with respects to experimental phase (BL, CPT1, CPT2,
244	CPT3, RE1, RE2, RE3) and age (young, older). Data were expressed in absolute
245	terms and as a percentage change from baseline, thus permitting us to compare the
246	extra- and intra-cranial responses to the CPT and to ascertain the influence of age on
247	these cerebrovascular responses. A repeated two-way ANOVA was used to determine
248	whether perceived pain responses to the CPT were different with respects to
249	experimental phase (CPT1, CPT2) and age (young, older). Finally, the existence of
250	differences in arterial stiffness between experimental phases (BL, CPT) and age
251	(young, older) was evaluated using a repeated two-way ANOVA. Tukey post hoc
252	tests were used to examine significant main effects and interactions. Data are given as
253	mean \pm S.D unless otherwise indicated. Statistical significance was set at $P < 0.05$.
254	Statistical analyses were performed using SAS Enterprise Guide (4.3, SAS Institute,
255	Cary, NC).

RESULTS

257	Cardiovascular and respiratory variables during baseline, CPT and recovery in
258	young and older participants are presented in Table 1. During the CPT, MAP
259	increased from baseline in both groups ($P < 0.01$), but absolute values were higher in
260	the older group throughout ($P=0.03$). In both groups, HR was increased similarly at
261	CPT1 (P <0.01 vs. baseline) and declined thereafter. The PetCO ₂ was successfully
262	kept at baseline values during the CPT by the end-tidal forcing system. Rating of
263	perceived pain was not different between young and older groups at the onset (Young:
264	5.8±1.4, Older: 4.6±2.6) and the end of the CPT (Young 4.4±2.1, Older: 5.4±2.6).
265	During the CPT, $MCAv_{mean}$ and $PCAv_{mean}$ increased in the younger
266	participants (by 19±19 and 11±12% at CPT2, respectively), whereas no changes from
267	baseline were observed in the older participants (Figure 1). The CCA diameter
268	increased in the young during CPT (by 5±3% at CPT1), whereas no change from
269	baseline in CCA diameter was observed in the older participants (P <0.01, Figure 2).
270	No changes from baseline in CCA velocity were observed in either age group, while
271	CCA flow tended ($P=0.08$) to be increased in the young group. Both ICA diameter
272	and ICA velocity were unchanged from baseline during the CPT, while ICA flow was
273	increased from baseline at CPT1 (P=0.03). During the CPT, the percentage increase in
274	CCA flow and $MCAv_{mean}$ were significantly greater than ICA flow in the young group
275	(CCA vs. ICA <i>P</i> =0.02, CCA vs. MCA <i>P</i> =0.70, ICA vs. MCA <i>P</i> <0.01; Figure 3).
276	However, in the older group the percentage increase in ICA flow and $\text{MCAv}_{\text{mean}}$ were
277	significantly greater than CCA flow (CCA vs. ICA P=0.02, CCA vs. MCA P=0.05,
278	ICA vs. MCA $P=0.83$). In the young group CPT evoked a greater velocity response in
279	the MCA compared to the PCA (17 \pm 14% vs 10 \pm 10%, P<0.01), whereas no difference
280	was seen in the older group $(4\pm7\% \text{ vs } 3\pm7\%, P=0.72)$.

281 Figure 4 provides the CVC values for the MCA, PCA, CCA and ICA during 282 baseline, CPT and recovery in young and older participants. A significant interaction 283 between age and experimental phase was observed for MCA CVC. Although MCA 284 CVC was numerically lower in the older group across all experimental phases, post 285 hoc analyses showed only a trend towards an age difference at CPT2 (P=0.07) with no 286 significant differences from baseline in either group. 287 Table 2 presents arterial stiffness indices for the CCA and ICA. Arterial 288 stiffness in the CCA was greater in the older group compared to the young 289 individuals, whereas ICA stiffness was not different. No index of arterial stiffness was

altered during the CPT.

291 **DISCUSSION**

The first major novel finding of the present study is that in young individuals there is a differential response to the CPT within the extra-cranial blood vessels (CCA vs. ICA) and also discrepant responses between the extra- and intra-cranial circulations. The second major novel finding is that in older individuals there is a blunting of the extra- and intra-cranial responses to the CPT. The physiological and clinical significance of these findings are considered below.

298

299 1) Extra- and intra-cranial blood flow regulation during the cold pressor test:

300 In accordance with earlier work in young individuals (53) we observed a 301 significant increase in CCA diameter during the CPT. However, in contrast, and in 302 accordance with our hypothesis, we observed no change in ICA diameter during the 303 CPT. Despite this lack of change in ICA diameter and only a transient increase in ICA 304 flow during the first minute of CPT, we observed that the CPT evoked a marked and 305 persistent increase in MCAv_{mean} – a finding in contrast to Bramanti *et al.* (3), but in agreement with several previous studies (46, 47, 56, 73). This may imply a differential 306 307 regulation of the extra- and intra-cranial arteries that could serve an important 308 protective role. There is evidence that the extra-cranial arteries (at the level of the ICA 309 and vertebral arteries) are integral to the regulation of cerebral blood flow through 310 modifying vascular resistance (14, 22, 29, 39, 40). Furthermore a MRI study reported 311 decreased cerebral blood volume in response to sympathoexcitatory reflexes (69). In 312 response to a sympathetically mediated hypertensive insult, the buffering function of 313 the larger cerebral and large pial arterioles, but not the cerebral microcirculation, 314 serves as a first line of defense in regulating cerebral perfusion pressure. Our data

indicate that the responses of the CCA are different from the ICA and MCA duringthe CPT, at least in younger individuals.

317 Elevations in sympathetic vasoconstrictor activity and MAP produced by the 318 CPT have at least three effects on cerebral blood flow. First, is the obvious hydraulic 319 effect of MAP that increases flow even if vascular resistance is unchanged. Second, 320 and the one commonly either neglected or misunderstood, is the autoregulatory effect 321 of an increase in perfusion pressure to increase vascular resistance and minimise the 322 increase in flow. A likely third effect is the influence of SNA on extra- and intra-323 cranial blood flow regulation. Thus, appreciation of the effects of the CPT on factors 324 such as the hydraulic effect and potential shear patterns of elevations in MAP, as well 325 as the concomitant changes in SNA and autoregulation, likely explain the apparent 326 differential mechanisms of regulation apparent between the CCA \rightarrow ICA \rightarrow MCA.

Although the sympathetic regulation of the cerebral blood vessels in humans 327 328 remains a controversial issue (1, 58), we did observe a decrease in MCA CVC (a 329 finding consistent with other studies (21, 52)) and demonstrate for the first time that 330 the CPT reduces CCA, ICA and PCA CVC. These latter changes in CVC are possibly 331 indicative of sympathetically-mediated cerebral vasoconstriction or autoregulatory 332 mediated. Bramanti et al. (3) demonstrated a reduction in MCAv_{mean} during the CPT 333 (by ~23%) the magnitude of which was approximately halved following intrathecal 334 administration of the α_2 -adrenergic receptor agonist clonidine. These findings support 335 the role of a central noradrenergic mechanism in the cerebrovascular responses to the 336 CPT. However, although not measured in this study, differences in PaCO₂ may 337 explain these conflicting findings. In the present study, a dynamic end-tidal forcing 338 system was used in an attempt to maintain PetCO₂ near baseline, thus permitting the

effect of the generalized sympathetic activation associated with the CPT to beobserved.

341	Along with $MCAv_{mean}$ we determined the $PCAv_{mean}$ responses to CPT. There
342	are known anatomical and physiological differences between anterior and posterior
343	circulations. For example, the PCA may have less sympathetic innervation than the
344	anterior cerebral portion (12, 20) and CO_2 reactivity is reduced (51). We observed that
345	the temporal pattern of response $PCAv_{mean}$ and $MCAv_{mean}$ was similar, however
346	interestingly the magnitude of response was greater in the MCA compared to the PCA
347	in the young (17±14% vs. 10±10%).

348

349 2) Blunting of the extra- and intra-cranial responses during the CPT in older
350 individuals:

351 In contrast to the younger group, the changes in both the extra and intra-352 cranial resistance and flow were generally blunted in the older group during the CPT. 353 This is significant because dysfunctional CCA and coronary artery responses to the 354 CPT have been associated with atherosclerotic disease (45, 53, 72). Since the MAP 355 'stimulus' or hydraulic effect was comparable, it seems reasonable that the differential 356 extra and intra-cranial responses in young and older individuals reflect some 357 fundamental differences in potential shear patterns induced via the elevations in MAP, 358 as well as the influences of SNA, humoral factors, endothelial vasodilator function, 359 autoregulation and parasympathetic control. Rubenfire *et al.* (53), speculated that a β -360 adrenergic mechanism accounted for the increase of CCA diameter during the CPT in 361 healthy individuals, whereas the reduction in CCA diameter in coronary artery disease 362 patients was due to greater sensitivity of the α -adrenergic receptors. This shift from a β -adrenergic vasodilatory response to an α -adrenergic vasoconstrictor one may be 363

364 related to underlying endothelial damage and dysfunction (71). Endothelial 365 dysfunction is well established to occur within the peripheral vasculature of healthy elderly individuals and its extension to the cerebral vasculature might explain the 366 367 present findings. Age-related alterations in arterial stiffness may also have contributed 368 to the cerebrovascular responses reported. CCA stiffness was elevated in the older 369 individuals at baseline, but in accordance with previous literature none of the 370 calculated arterial stiffness indices was modified by the CPT (28, 33). Unfortunately, 371 on the basis of our data set we cannot delineate the mechanism(s) for the blunting of 372 the extra- and intra-cranial responses during the CPT in older individuals, but our 373 findings provide direction for future studies.

374

375 3) Methodological considerations:

376 There are a number of methodological considerations that should be 377 considered in the context of our study and related interpretation of the findings. 378 *a) Discrepancies of flow and velocity during the CPT*: The assessment of 379 cerebrovascular responses during a myriad of physiological interventions has been 380 dominated by the use of transcranial Doppler over the last 30 years. However, this 381 approach operates on the assumption (also its primary limitation) that the insonated 382 vessel (PCA, MCA) remains at a constant diameter. Older studies have partially 383 corroborated that under various stimuli (e.g., orthostasis, CO₂ changes), MCAv_{mean} 384 accurately reflected the magnitude of changes in MCA blood flow as diameter 385 remained unchanged (55), however, recent high resonance imaging studies have 386 challenged this assumption of constant vessel diameter during marked changes in 387 PaCO₂ or PaO₂ (8, 9, 64) or exercise-induced sympathetic activation (63).

388 Furthermore, as recently reviewed (24), it is not known if the MCA diameter changes

389 during elevations in blood pressure. At least during hypertension (35) and

390 hypotension (32), discrepancies between ICA flow and MCAv_{mean} have been reported.

391 Similarly, in the present study we observed that the percentage increase in ICA flow

392 was less marked than MCAv_{mean} during the CPT. The effects of CO_2 and blood

393 pressure on PCA diameter are unknown.

b) Flow vs. conductance: To account for MAP in the analysis of extra vs.
intra-cranial cerebrovascular responses, CVC is commonly used. However, as
outlined above, increases in MAP produced by the CPT may affect cerebral blood
flow by several independent and interacting mechanisms (e.g., hydraulic effect,
autoregulation, shear stress). As such, CVC is not likely to accurately account for the
CPT-induced elevations in MAP during the CPT, and consideration of these
mechanisms will be needed to fully understand the apparent differential regulation of

401 the CCA \rightarrow ICA \rightarrow MCA.

402 *c) CPT recovery:* We included recovery data in our analyses to verify that the 403 cardiovascular, respiratory and cerebrovascular variables of interest returned to 404 baseline following the CPT. In all instances the measured parameters did successfully 405 recover. Interestingly, an elevated systolic blood pressure recovery from the CPT is an 406 important predictor of a future elevation in systolic blood pressure (57). Whether there 407 is any prognostic significance to the cerebrovascular response to or following the CPT 408 remains to be investigated.

d) Study limitations: Roatta et al. (52), reported that the MCAv_{mean} increases
during hand CPT were slightly but significantly greater on the contralateral side
(+4.4%) compared to the ipsilateral side (+2.4%). However, as the aim of our study
was to simultaneous assess CCA, ICA, MCA and PCA responses to the CPT
measurements were necessitated on both the contralateral and ipsilateral sides, thus

414 unfortunately it was not practical to account for any potential lateralization of the 415 cerebral hemodynamic response to the CPT. In addition, hydration status was not 416 assessed, which may be a limitation as this has recently been reported to modify the 417 cerebrovascular response to the CPT (47). We cannot exclude the possibility that age-418 related differences in thermoreceptor sensitivity contributed to the CPT responses we 419 observed (15), although ratings of perceived pain were not different in the young and 420 old groups during the CPT. One older individual was taking the α_{1A} adrenoreceptor 421 antagonist tamsulosin for an enlarged prostate. Although these receptors are present in 422 the ureter, they are less well expressed in the peripheral vasculature (44, 50). This 423 individual displayed cerebral perfusion similar responses to the rest of the older 424 group, and their removal did not affect the results of the statistical analyses.

425 It should be noted that our findings can only be directed to young and older 426 healthy volunteers and that the regulation of cerebral blood flow may further differ in 427 patients with cerebrovascular disease. Nevertheless, to be able to interpret the 428 pathophysiological significance of these observations, a clear understanding of the 429 normal responses of the cerebral circulation must first be obtained before extension 430 can be made to pathological groups. Given that risk factors for coronary artery disease 431 are associated with the extra-cranial blood vessel responses (53), future studies should 432 explore the cerebrovascular responses in individuals at risk or in those that have 433 experienced cerebrovascular events.

434

435 *4) Clinical implications:*

The CPT has been widely employed for cardiovascular risk stratification (6,
38, 61). Likewise, an attenuated cerebrovascular reactivity is indicative of an
increased risk for all cause and cardiovascular (inclusive of stroke) mortality (48). The

439	magnitude of the vasomotor response in the extracranial (ICA, vertebral artery) and
440	intracranial arteries (MCA, PCA) to a CPT perturbation may be indicative of
441	cerebrovascular health (i.e., endothelial function), much like peripheral flow mediated
442	dilation is indicative of cardiovascular risk (18, 25). Thus future studies are needed to
443	further explore vasomotor responses to CPT in individuals at risk of or who have
444	experienced cerebrovascular events. Consequently, the CPT may serve as a simple
445	diagnostic tool to predict cerebrovascular events and reduce related disabilities and
446	mortality.
447	

In conclusion, during the CPT, for the first time we reveal; 1) differential
mechanism(s) of regulation between the ICA compared to the CCA in young
individuals; 2) a blunting of the extra- and intra-cranial responses in older individuals;
and 3) irrespective of age, there were discrepancies in the magnitude of change in
CCA flow, ICA flow and MCAv_{mean} during the CPT.

453 ACKNOWLEDGEMENTS

- We appreciate the time and effort spent by our volunteer participants in the presentstudy.
- 456

457 **<u>GRANTS</u>**

- 458 This research was supported by a National Sciences and Engineering Research
- 459 Council Discovery Grant (20150821-01; P.N.A.), Canadian Research Chair in
- 460 Cerebrovascular Physiology (950-230970; P.N.A.), the Swiss National Science
- 461 Foundation (P2ZHP3_158576; D.F.), National Institute for Health Research Efficacy
- 462 and Mechanism Evaluation (12/10/19; J.P.F) and British Heart Foundation
- 463 (PG/15/45/31579; J.P.F.).

464

465 **DISCLOSURES**

466 No conflicts of interest, financial or otherwise, are declared by the author(s).

468 **<u>REFERENCES</u>**

- 469
- 470 1. Ainslie PN, and Brassard P. Why is the neural control of cerebral
 471 autoregulation so controversial? *F1000Prime Rep* 6: 14, 2014.
- 472 2. Auer LM, Edvinsson L, and Johansson BB. Effect of sympathetic nerve
 473 stimulation and adrenoceptor blockade on pial arterial and venous calibre and on
 474 intracranial pressure in the cat. *Acta Physiol Scand* 119: 213-217, 1983.
- Bramanti P, Mariani CA, D'Aleo G, and Malara A. The first in vivo
 experience of the effects of the continuous intrathecal infusion of clonidine on the
 locus coeruleus in the regulation of cerebral blood flow: a TCD study. *Ital J Neurol Sci* 18: 139-144, 1997.
- 479
 4. Bühler FR, Kiowski W, van Brummelen P, Amann FW, Bertel O,
 480
 481
 481
 481
 482
 482
 483
 483
 484
 484
 485
 485
 485
 486
 486
 486
 487
 487
 488
 488
 488
 489
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 481
 481
 481
 482
 483
 482
 483
 484
 485
 485
 485
 486
 486
 487
 487
 487
 488
 488
 488
 488
 488
 489
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 481
 481
 481
 482
 483
 481
 482
 483
 481
 482
 483
 482
 483
 483
 484
 485
 485
 485
 486
 487
 487
 487
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
- Burgmans S, Gronenschild EH, Fandakova Y, Shing YL, van Boxtel MP,
 Vuurman EF, Uylings HB, Jolles J, and Raz N. Age differences in speed of
 processing are partially mediated by differences in axonal integrity. *Neuroimage*55: 1287-1297, 2011.
- 488
 6. Carroll D, Davey Smith G, Willemsen G, Sheffield D, Sweetnam PM,
 489
 489 Gallacher JE, and Elwood PC. Blood pressure reactions to the cold pressor test
 490 and the prediction of ischaemic heart disease: data from the Caerphilly Study. J
 491 Epidemiol Community Health 52: 528-529, 1998.
- 492 7. Corretti MC, Plotnick GD, and Vogel RA. Correlation of cold pressor and
 493 flow-mediated brachial artery diameter responses with the presence of coronary
 494 artery disease. *Am J Cardiol* 75: 783-787, 1995.
- 495
 496
 496
 496
 497
 497
 498
 497
 498
 497
 498
 499
 499
 499
 490
 490
 490
 490
 491
 491
 492
 493
 494
 494
 495
 495
 495
 495
 496
 497
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 497
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
- 498
 498
 9. Coverdale NS, Lalande S, Perrotta A, and Shoemaker JK. Heterogeneous 499 patterns of vasoreactivity in the middle cerebral and internal carotid arteries. *Am J* 500 *Physiol Heart Circ Physiol* 308: H1030-1038, 2015.
- 501 10. Di Piero V, Ferracuti S, Sabatini U, Pantano P, Cruccu G, and Lenzi GL. A
 502 cerebral blood flow study on tonic pain activation in man. *Pain* 56: 167-173,
 503 1994.
- 504 11. Dinenno FA, Dietz NM, and Joyner MJ. Aging and forearm postjunctional
 505 alpha-adrenergic vasoconstriction in healthy men. *Circulation* 106: 1349-1354,
 506 2002.

- 507 12. Edvinsson L, Owman C, and Siesjo B. Physiological role of cerebrovascular
 508 sympathetic nerves in the autoregulation of cerebral blood flow. *Brain Res* 117:
 509 519-523, 1976.
- 510 13. Ewing DJ, and Clarke BF. Diagnosis and management of diabetic autonomic
 511 neuropathy. *Br Med J (Clin Res Ed)* 285: 916-918, 1982.
- 512 14. Faraci FM, Heistad DD, and Mayhan WG. Role of large arteries in regulation
 513 of blood flow to brain stem in cats. *J Physiol* 387: 115-123, 1987.
- 514 15. Farage MA, Miller KW, Elsner P, and Maibach HI. Characteristics of the
 515 Aging Skin. Adv Wound Care (New Rochelle) 2: 5-10, 2013.
- 516 16. Florian JP, Simmons EE, Chon KH, Faes L, and Shykoff BE. Cardiovascular
 517 and autonomic responses to physiological stressors before and after six hours of
 518 water immersion. *J Appl Physiol (1985)* 115: 1275-1289, 2013.
- 519 17. Freeman R, and Chapleau MW. Testing the autonomic nervous system. *Handb* 520 *Clin Neurol* 115: 115-136, 2013.
- 521 18. Green DJ, Jones H, Thijssen D, Cable NT, and Atkinson G. Flow-mediated
 522 dilation and cardiovascular event prediction: does nitric oxide matter?
 523 *Hypertension* 57: 363-369, 2011.
- Halter JB, Stratton JR, and Pfeifer MA. Plasma catecholamines and
 hemodynamic responses to stress states in man. *Acta Physiol Scand Suppl* 527:
 31-38, 1984.
- 527 20. Hamel E, Edvinsson L, and MacKenzie ET. Heterogeneous vasomotor
 528 responses of anatomically distinct feline cerebral arteries. *Br J Pharmacol* 94:
 529 423-436, 1988.
- 530 21. Hartwich D, Fowler KL, Wynn LJ, and Fisher JP. Differential responses to
 531 sympathetic stimulation in the cerebral and brachial circulations during rhythmic
 532 handgrip exercise in humans. *Exp Physiol* 95: 1089-1097, 2010.
- 533 22. Heistad DD, Marcus ML, and Abboud FM. Role of large arteries in regulation
 534 of cerebral blood flow in dogs. *J Clin Invest* 62: 761-768, 1978.
- 535 23. Hines EA, and Brown G. A standard test measuring the variability of blood
 536 pressure. Its significance as an index of the prehypertensive state. *Annals of* 537 *Internal Medicine* 209-217, 1933.
- 538 24. Hoiland RL, and Ainslie PN. CrossTalk proposal: The middle cerebral artery
 539 diameter does change during alterations in arterial blood gases and blood
 540 pressure. *J Physiol* 2016.
- 541 25. Inaba Y, Chen JA, and Bergmann SR. Prediction of future cardiovascular
 542 outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. *Int* 543 *J Cardiovasc Imaging* 26: 631-640, 2010.

544 26. Jeng JS, Yip PK, Huang SJ, and Kao MC. Changes in hemodynamics of the 545 carotid and middle cerebral arteries before and after endoscopic sympathectomy 546 in patients with palmar hyperhidrosis: preliminary results. J Neurosurg 90: 463-547 467, 1999. 548 27. Kang CK, Oh ST, Chung RK, Lee H, Park CA, Kim YB, Yoo JH, Kim DY, 549 and Cho ZH. Effect of stellate ganglion block on the cerebrovascular system: 550 magnetic resonance angiography study. Anesthesiology 113: 936-944, 2010. 28. Kawano H, Tanimoto M, Yamamoto K, Sanada K, Gando Y, Tabata I, 551 Higuchi M, and Miyachi M. Resistance training in men is associated with 552 increased arterial stiffness and blood pressure but does not adversely affect 553 554 endothelial function as measured by arterial reactivity to the cold pressor test. *Exp* 555 Physiol 93: 296-302, 2008. 556 29. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, and 557 Patterson JL, Jr. Responses of cerebral arteries and arterioles to acute 558 hypotension and hypertension. Am J Physiol 234: H371-383, 1978. 559 30. Lakatta EG, and Levy D. Arterial and cardiac aging: major shareholders in 560 cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular 561 disease. Circulation 107: 139-146, 2003. 562 31. Lakatta EG, and Levy D. Arterial and cardiac aging: major shareholders in 563 cardiovascular disease enterprises: Part II: the aging heart in health: links to heart 564 disease. Circulation 107: 346-354, 2003. 565 32. Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, and Ainslie PN. 566 Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci (Lond) 129: 169-178, 2015. 567 568 33. Lim J, Pearman ME, Park W, Alkatan M, Machin DR, and Tanaka H. 569 Impact of blood pressure perturbations on arterial stiffness. Am J Physiol Regul 570 Integr Comp Physiol 309: R1540-1545, 2015. 571 34. Liu J, Cao TS, Duan YY, Yang YL, and Yuan LJ. Effects of cold pressorinduced sympathetic stimulation on the mechanical properties of common carotid 572 573 and femoral arteries in healthy males. Heart Vessels 26: 214-221, 2011. 574 35. Liu J, Zhu YS, Hill C, Armstrong K, Tarumi T, Hodics T, Hynan LS, and 575 Zhang R. Cerebral autoregulation of blood velocity and volumetric flow during 576 steady-state changes in arterial pressure. Hypertension 62: 973-979, 2013. 36. Liu Y, Yang X, Gong H, Jiang B, Wang H, Xu G, and Deng Y. Assessing the 577 578 effects of norepinephrine on single cerebral microvessels using optical-resolution 579 photoacoustic microscope. J Biomed Opt 18: 76007, 2013. 37. Lowe RF, and Gilboe DD. Demonstration of alpha and beta adrenergic receptors 580 581 in canine cerebral vasculature. Stroke 2: 193-200, 1971.

582 38. Matthews KA, Katholi CR, McCreath H, Whooley MA, Williams DR, Zhu S, 583 and Markovitz JH. Blood pressure reactivity to psychological stress predicts 584 hypertension in the CARDIA study. Circulation 110: 74-78, 2004. 585 39. McHedlishvili GI. Vascular Mechanisms Pertaining to the Intrinsic Regulation 586 of the Cerebral Circulation. Circulation 30: 597-610, 1964. 587 40. McHedlishvili GI, Mitagvaria NP, and Ormotsadze LG. Vascular mechanisms controlling a constant blood supply to the brain ("autoregulation"). Stroke 4: 742-588 589 750, 1973. 590 41. Micieli G, Tassorelli C, Bosone D, Cavallini A, Viotti E, and Nappi G. 591 Intracerebral vascular changes induced by cold pressor test: a model of 592 sympathetic activation. Neurol Res 16: 163-167, 1994. 593 42. Mineta Y, Morimoto M, Harano K, and Totoki T. [Sympathetic 594 postganglionic innervation of external carotid artery, internal carotid artery, common carotid artery and aorta in the dog--experimental study using HRP and 595 596 WGA-HRP]. Masui 41: 547-553, 1992. 597 43. Mitchell DA, Lambert G, Secher NH, Raven PB, van Lieshout J, and Esler 598 **MD**. Jugular venous overflow of noradrenaline from the brain: a neurochemical 599 indicator of cerebrovascular sympathetic nerve activity in humans. J Physiol 587: 600 2589-2597, 2009. 601 44. Murata S, Taniguchi T, Takahashi M, Okada K, Akiyama K, and Muramatsu I. Tissue selectivity of KMD-3213, an alpha(1)-adrenoreceptor 602 603 antagonist, in human prostate and vasculature. J Urol 164: 578-583, 2000. 604 45. Nabel EG, Ganz P, Gordon JB, Alexander RW, and Selwyn AP. Dilation of 605 normal and constriction of atherosclerotic coronary arteries caused by the cold 606 pressor test. Circulation 77: 43-52, 1988. 607 46. Panerai RB, Dawson SL, Eames PJ, and Potter JF. Cerebral blood flow 608 velocity response to induced and spontaneous sudden changes in arterial blood 609 pressure. Am J Physiol Heart Circ Physiol 280: H2162-2174, 2001. 610 47. Perry BG, Bear TL, Lucas SJ, and Mundel T. Mild dehydration modifies the 611 cerebrovascular response to the cold pressor test. Exp Physiol 101: 135-142, 612 2016. 613 48. Portegies ML, de Bruijn RF, Hofman A, Koudstaal PJ, and Ikram MA. 614 Cerebral vasomotor reactivity and risk of mortality: the Rotterdam Study. Stroke 615 45: 42-47, 2014. 49. Querido JS, Ainslie PN, Foster GE, Henderson WR, Halliwill JR, Ayas NT, 616 617 and Sheel AW. Dynamic cerebral autoregulation during and following acute 618 hypoxia: role of carbon dioxide. J Appl Physiol (1985) 114: 1183-1190, 2013. 619 50. Rajpathy J, Aswathaman K, Sinha M, Subramani S, Gopalakrishnan G, and Kekre NS. An in vitro study on human ureteric smooth muscle with the alpha1-620 621 adrenoceptor subtype blocker, tamsulosin. BJU Int 102: 1743-1745, 2008.

- 622 51. Reinhard M, Waldkircher Z, Timmer J, Weiller C, and Hetzel A. Cerebellar
 623 autoregulation dynamics in humans. *J Cereb Blood Flow Metab* 28: 1605-1612,
 624 2008.
- 52. Roatta S, Micieli G, Bosone D, Losano G, Bini R, Cavallini A, and Passatore
 M. Effect of generalised sympathetic activation by cold pressor test on cerebral
 haemodynamics in healthy humans. *Journal of the Autonomic Nervous System*71: 159-166, 1998.
- 629 53. Rubenfire M, Rajagopalan S, and Mosca L. Carotid artery vasoreactivity in
 630 response to sympathetic stress correlates with coronary disease risk and is
 631 independent of wall thickness. *J Am Coll Cardiol* 36: 2192-2197, 2000.
- 54. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, and Fox NC. A
 longitudinal study of brain volume changes in normal aging using serial
 registered magnetic resonance imaging. *Arch Neurol* 60: 989-994, 2003.
- 55. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, and Bondar RL. MRI
 measures of middle cerebral artery diameter in conscious humans during
 simulated orthostasis. *Stroke* 31: 1672-1678, 2000.
- 638 56. Sohn YH. Cerebral hemodynamic changes induced by sympathetic stimulation
 639 tests. *Yonsei Med J* 39: 322-327, 1998.
- 57. Stewart JC, and France CR. Cardiovascular recovery from stress predicts
 longitudinal changes in blood pressure. *Biol Psychol* 58: 105-120, 2001.
- 58. Strandgaard S, and Sigurdsson ST. Point:Counterpoint: Sympathetic activity
 does/does not influence cerebral blood flow. Counterpoint: Sympathetic nerve
 activity does not influence cerebral blood flow. *J Appl Physiol* 105: 1366-1367;
 discussion 1367-1368, 2008.
- 59. Takahashi R, Sakai T, Furuyama Y, Kondo Y, Inoue CN, Onuma S, and
 Iinuma K. The vasocontractive action of norepinephrine and serotonin in deep arterioles of rat cerebral gray matter. *Tohoku J Exp Med* 190: 129-142, 2000.
- 649 60. Thomas KN, Lewis NC, Hill BG, and Ainslie PN. Technical recommendations
 650 for the use of carotid duplex ultrasound for the assessment of extracranial blood
 651 flow. *Am J Physiol Regul Integr Comp Physiol* 309: R707-720, 2015.
- 652 61. Treiber FA, Kamarck T, Schneiderman N, Sheffield D, Kapuku G, and
 653 Taylor T. Cardiovascular reactivity and development of preclinical and clinical
 654 disease states. *Psychosom Med* 65: 46-62, 2003.
- 655 62. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, and Hanaoka
 656 K. Changes in cerebral blood flow estimated after stellate ganglion block by
 657 single photon emission computed tomography. *J Auton Nerv Syst* 50: 339-346,
 658 1995.
- 659 63. Verbree J, Bronzwaer A, van Buchem MA, Daemen M, van Lieshout JJ, and
 660 van Osch M. Middle cerebral artery diameter changes during rhythmic handgrip
 661 exercise in humans. J Cereb Blood Flow Metab 271678X16679419, 2016.

- 662 64. Verbree J, Bronzwaer AS, Ghariq E, Versluis MJ, Daemen MJ, van Buchem
 663 MA, Dahan A, van Lieshout JJ, and van Osch MJ. Assessment of middle
 664 cerebral artery diameter during hypocapnia and hypercapnia in humans using
 665 ultra-high-field MRI. *J Appl Physiol (1985)* 117: 1084-1089, 2014.
- 666 65. Victor RG, Leimbach WN, Jr., Seals DR, Wallin BG, and Mark AL. Effects
 667 of the cold pressor test on muscle sympathetic nerve activity in humans.
 668 *Hypertension* 9: 429-436, 1987.
- 669 66. Wagerle LC, Heffernan TM, Sacks LM, and Delivoria-Papadopoulos M.
 670 Sympathetic effect on cerebral blood flow regulation in hypoxic newborn lambs.
 671 Am J Physiol 245: H487-494, 1983.
- 672 67. Willie CK, Colino FL, Bailey DM, Tzeng YC, Binsted G, Jones LW,
 673 Haykowsky MJ, Bellapart J, Ogoh S, Smith KJ, Smirl JD, Day TA, Lucas
 674 SJ, Eller LK, and Ainslie PN. Utility of transcranial Doppler ultrasound for the
 675 integrative assessment of cerebrovascular function. *J Neurosci Methods* 196: 221676 237, 2011.
- 677 68. Willie CK, Tzeng YC, Fisher JA, and Ainslie PN. Integrative regulation of
 678 human brain blood flow. *J Physiol* 592: 841-859, 2014.
- 679 69. Wilson TD, Shoemaker JK, Kozak R, Lee TY, and Gelb AW. Reflex680 mediated reduction in human cerebral blood volume. *J Cereb Blood Flow Metab*681 25: 136-143, 2005.
- 70. Woodman RJ, Playford DA, Watts GF, Cheetham C, Reed C, Taylor RR,
 Puddey IB, Beilin LJ, Burke V, Mori TA, and Green D. Improved analysis of
 brachial artery ultrasound using a novel edge-detection software system. *J Appl Physiol (1985)* 91: 929-937, 2001.
- 686 71. Young MA, and Vatner SF. Enhanced adrenergic constriction of iliac artery
 687 with removal of endothelium in conscious dogs. *Am J Physiol* 250: H892-897,
 688 1986.
- 72. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, and Just H. Coronary
 vasomotion in response to sympathetic stimulation in humans: importance of the
 functional integrity of the endothelium. *J Am Coll Cardiol* 14: 1181-1190, 1989.
- 73. Zvan B, Zaletel M, Pretnar J, Pogacnik T, and Kiauta T. Influence of the cold
 pressor test on the middle cerebral artery circulation. *J Auton Nerv Syst* 74: 175178, 1998.
- 695

697 **FIGURE CAPTIONS**

698 Figure 1

- 699 Middle cerebral artery mean blood flow velocity (MCAv_{mean}) and posterior cerebral
- artery mean blood flow velocity (PCAv_{mean}) in young (n=10, black circles) and old
- 701 (n=9, n=8 for PCAv_{mean}, grey triangles) at baseline (BL), during a three-minute cold
- 702 pressor test (CPT1, CPT2, CPT3) and followed by a three-minute recovery (RE1,
- RE2, RE3). Values are means±SEM. *P* values represent repeated two-way ANOVA

704 results. *P < 0.05 vs. BL; ^d P < 0.05 vs. CPT1; ⁺ P < 0.05 vs. CPT2; [§] P < 0.05 vs.

705 CPT3.

706

- 707 Figure 2
- 708 Common carotid (CCA) diameter, internal carotid (ICA) diameter, CCA velocity,
- 709 ICA velocity, CCA flow and ICA flow in young (n=10, black circles) and old (n=9,
- 710 n=7 for ICA, grey triangles) at baseline (BL), during a three-minute cold pressor test
- 711 (CPT1, CPT2, CPT3) and followed by a three-minute recovery (RE1, RE2, RE3).
- 712 Values are means \pm SEM. *P* values represent repeated two-way ANOVA results. **P* <

713 0.05 vs. BL; ^d P < 0.05 vs. CPT1; ⁺ P < 0.05 vs. CPT2; [§] P < 0.05 vs. CPT3.

714

715 **Figure 3**

- 716 Percentage change from baseline (BL) in common carotid (CCA) flow, internal
- 717 carotid (ICA) flow, and middle cerebral artery mean blood flow velocity (MCAv_{mean})
- in young (n=10, black symbols) and old (n=9, n=7 for ICA, grey symbols) during a
- three-minute cold pressor test (CPT1, CPT2, CPT3) and followed by a three-minute
- recovery (RE1, RE2, RE3). Values are means±SEM. P values represent repeated two-
- 721 way ANOVA results.

- 723 **Figure 4**
- 724 Middle cerebral artery cerebrovascular conductance (MCA CVC), posterior cerebral
- artery (PCA) CVC, common carotid (CCA) CVC and internal carotid (ICA) CVC, in
- young (n=10, black symbols) and old (n=9, n=7 for ICA, grey symbols) at baseline
- 727 (BL), during a three-minute cold pressor test (CPT1, CPT2, CPT3) and followed by a
- three-minute recovery (RE1, RE2, RE3). Values are means±SEM. *P* values represent
- 729 repeated ANOVA results. *P < 0.05 vs. BL; ^d P < 0.05 vs. CPT1; ⁺ P < 0.05 vs.
- 730 CPT2; ${}^{\$} P < 0.05$ vs. CPT3

TABLES

Table 1. Cardiovascular and respiratory parameters at baseline (BL), at each minute of a three minute cold pressor test (CPT1, CPT2, CPT3) and at each minute during a three-minute recovery (RE1, RE2, RE3).

				Eve	arimantal pho	160				P voluos	
			Experimental phase						P values		
		BL	CPT1	CPT2	CPT3	RE1	RE2	RE3	Age	Phase	Age Phas
MAP (mmHg)	Y (n=10)	93±7	109±9	108±10	104±9	96±7	93±7	94±9	0.026	<0.001	0.79
(mmig)	O (n=9)	101±7	114±10	114±9	112±8	104±6	102±5	103±5			
HR (bpm)	Y (n=10)	73±12	81±18	77±17	73±15	67±12	69±13	68±11	0.105	<0.001	0.26
	O (n=9)	64±9	68±9	67±6	65±6	62±8	61±9	61±9			
SV (ml)	Y (n=10)	96±42	93±42	90±41	90±42	94±43	94±42	95±42	0.271	0.046	0.85
	O (n=9)	93±30	89±28	88±28	86±26	89±27	90±27	87±27			
CO	Y (n=10)	7.4±1.1	8.0±2.0	7.3±1.6	7.2±1.3	6.8±1.1	7.0±0.9	6.9±1.0	0.005	0.002	0.50
(I·min)	O (n=9)	5.6±2.0	5.5±1.5	5.4±1.4	5.1±1.3	5.1±1.5	5.2±1.5	5.0±1.6			
TPR (mmHg∙	Y (n=10)	12.8±1.9	14.4±3.7	15.3±3.1	14.9±2.8	14.3±2.6	13.5±2.2	13.8±2.3	0.003	<0.001	0.80
min ml ⁻¹)	O (n=9)	20.4±7.3	22.9±7.6	22.9±6.8	23.6±6.3	22.3±6.8	21.5±6.5	22.6±6.8			
VE	Y (n=10)	14.6±3.8	18.4±5.4	18.2±5.0	18.1±4.8	16.1±3.7	14.8±3.1	15.1±3.2	0.038	<0.001	0.27
(l·min)	O (n=9)	12.1±3.6	14.5±4.5	13.7±3.4	13.2±3.9	11.7±3.6	11.4±3.6	11.7±3.3			
PetCO ₂	Y (n=10)	41.5±2.8	41.2±2.4	41.3±2.9	41.4±2.9	41.3±2.7	41.4±2.7	41.0±2.4	0.201	0.212	0.04
(mmHg)	O (n=9)	40.1±2.5	39.65±3.0	39.3±3.0	39.1±2.8	39.9±2.7	39.7±2.5	40.2±2.7 [§]			

Abbreviations: MAP, mean arterial pressure; HR, heart rate; SV, stroke volume; CO, cardiac output; VE, ventilation; PetCO₂, end-tidal partial pressure of CO. Y, young; O, old. Values are mean±SD. *P* values represent two-way repeated ANOVA results (Age: young and old; Phase: BL, CPT1, CPT2, CPT3, RE1, RE RE3). $^{\$}P < 0.05$ versus CPT3.

		Young	Old	P - value		
		C		Age	Phase	Age*Phase
CCA β stiffness	BL	5.5±1.1	7.6±2.3	0.001	0.980	0.843
	CPT	5.6±1.1	7.5±1.9			
ICA β stiffness	BL	8.5±4.2	6.7±2.6	0.676	0.635	0.419
	CPT	8.0±4.9	8.6±2.2			
CCA Elastic modulus (mmHg)	BL	555.9±129.5	796.3±198.2	<0.001	0.131	0.910
	CPT	636.9±126.1	890.2±219.1			
ICA Elastic modulus (mmHg)	BL	846.6±384.4	698.4±264.9	0.879	0.227	0.383
	CPT	896.5±496.2	1000.8±269.5		0.227	
CCA Arterial compliance (cm·mmHg ⁻¹)	BL	0.012±0.003	0.010±0.003	0.023	0.191	0.998
	CPT	0.011±0.002	0.009 ± 0.002			
ICA Arterial compliance (cm·mmHg ⁻¹)	BL	0.008±0.003	0.011 ± 0.006	0.499	0.856	0.256
	CPT	0.009 ± 0.005	0.009 ± 0.005			
CCA Arterial distensibility (mmHg ⁻¹)	BL	0.002 ± 0.000	0.001 ± 0.001	0.002	0.234	0.947
	CPT	0.002 ± 0.000	0.001 ± 0.000			
ICA Arterial distensibility (mmHg ⁻¹)	BL	0.002 ± 0.001	0.002 ± 0.001	0.467	0.562	0.343
	СРТ	0.003 ± 0.006	0.001 ± 0.000			

Table 2. Arterial stiffness indices in young and old individuals at baseline (BL) and during the cold pressure test (CPT)

Abbreviations: CCA, common carotid artery; ICA, internal carotid artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; BL, baseline; CPT, cold pressor test. *P* values represent two-way repeated ANOVA results (Age: young and old; Phase: BL, CPT1, CPT2, CPT3, RE1, RE2, RE3)