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Key messages: 

1. Obesity is an important contributor to the development of insulin resistance via multiple 
mechanisms, particularly ectopic fat deposition.  

2. The increasing understanding of the pathogenesis of insulin resistance allowed the 
development of several agents targeting difference aspects of the pathogenesis of insulin 
resistance 

3. The development of these agents has been relatively slow due to the complexity of insulin 
resistance pathogenesis and that many components of the insulin signalling pathway are 
involved in other pathways such as cell survival and apoptosis.  

4. Lifestyle interventions and treating obesity remain the cornerstone of treating insulin 
resistance 

5. Sleep-related disorders are an increasingly recognised treatment target for insulin resistance 
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Abstract 

Insulin resistance play an important role in the pathogenesis of Type 2 diabetes and cardiovascular 

disease. Obesity is a major risk factor for the development of insulin resistance. Hence, treating 

obesity with lifestyle interventions is the cornerstone of managing insulin resistance. However, when 

lifestyle interventions fail to produce sustainable impact, then pharmacotherapy and/or bariatric 

surgery can produce significant improvements in weight, insulin resistance and glycaemic measures. 

Ectopic fat in the liver and muscle is one of the main mechanisms via which obesity impact on insulin 

sensitivity. Hence, there are currently multiple therapeutic interventions in development that aim to 

improve ectopic fat which.  With better understanding of the insulin signalling pathways, multiple 

agents are under development targeting different components of this pathway from the level of 

insulin receptor to the level of protein kinase B activation and the translocation of glucose 

transporters. The development of these agents has been slow due to the complexity of the insulin 

signalling pathway, the multiple negative feedback signals and that the molecules involved in insulin 

signalling are also involved in other pathways such as cell survival and apoptosis. Sleep-related 

disorders are increasingly recognised as independent risk factor for the development of insulin 

resistance and Type 2 diabetes; targeting sleep-related disorders as a treatment strategy for insulin 

resistance is under evaluation. In this article, I will briefly review the future treatments of insulin 

resistance that are in the pipeline and I will also briefly review the role of bariatric surgery and sleep-

related disorders in the treatment of insulin resistance.  

 

 

 

 

 

 

 

 

 

 



Introduction 
 
Type 2 diabetes (T2D) is characterised by chronic hyperglycaemia caused by reduction in insulin 

secretion as a result of β-cell dysfunction and impaired insulin action as a result of insulin resistance 

(IR)1. IR results in impaired glucose uptake in the muscle, liver and adipose tissue, reduced glycogen 

synthesis in the liver and muscle, increased hepatic gluconeogenesis and increased lipolysis and 

release of fatty acids (FA) and glycerol2. Glycerol and FA contribute to and worsen IR, 

gluconeogenesis and ectopic fat accumulation in the liver and the muscle2. IR also contributes to the 

development of cardiovascular disease as it is associated with hypertension, dyslipidaemia, 

hypercoagulability, sympathetic activation and reduced insulin-dependent nitric oxide production 

and increased endothelin-13-5. Hence, IR is an important treatment-target in patients with T2D6. 

Metformin and pioglitazone are the main available pharmacological agents to improve insulin 

sensitivity in patients with T2D, both are associated with variety of adverse events, have multiple 

contradications and their efficacy is not sustainable on the long run7. Hence there is a need for more 

therapies targeting IR in line with the improvements in the understanding of IR pathogenesis. 

However, it must be emphasised that lifestyle interventions and weight loss remains the cornerstone 

of managing IR and T2D8.  

 In this article, I will provide an overview of the pathogenesis of IR and how this is related to the 

development of new treatments. In addition, I will briefly highlight the importance of targeting 

obesity and more novel life style factors that can impact on IR such sleep-related disorders. A more 

detailed review of IR pathogenesis can be found in2;9. 

The pathogenesis of insulin resistance 

In brief, insulin binding to the α-subunit of the insulin receptor results in the phosphorylation of the 

insulin receptor substrates1 and 2 (IRS-1 & -2) which leads, via several intermediary steps, to 

activation of protein kinase B (AKT)8. AKT activation results in the translocation of the glucose 

transporters (GLUTs) to the cell surface, allowing glucose entry, and the activation of glycogen 

synthase to stimulate the storage of glucose as glycogen9. IR can result from deficits in any part of 

the insulin signalling pathway resulting in inadequate response to insulin (Figure 1)7.  

IR results from complex and multifactorial interactions between the genes and the environment10; 

but obesity remains the major risk factor for development of IR and T2D10. Obesity contributes to 

the development of IR via several mechanisms (Figure 2) 2;9;10.  



Ectopic fat and lipids accumulation in the liver (non-alcoholic fatty liver disease (NAFLD)) and skeletal 

muscle (intramyocellular lipid IMCL) plays an important role in the pathogenesis of IR2;9. IMCL has 

been shown to be a better predictor of IR than fat mass and several studies have shown that IMCL 

blocks glucose entry to the muscles in obese and lean individuals with and without T2D2. The impact 

of IMCL and NAFLD on IR is mediated via diacylglycerol (DAG) accumulation leading to protein kinase 

C (PKC) activation which impairs insulin-stimulated tyrosine phosphorylation of IRS-1 and the 

consequent activation of phosphatidylinositol 3-kinase (PI3K) resulting in reduction in AKT2;11.  

Ectopic fat accumulation is caused by increased supply of FA as a result of increased lipolysis caused 

by increased adipose tissue inflammation11.  FA are esterified upon cellular entry to form 

acylglycerols or ceramides, which can reduce AKT activation9;12 . In addition, the inflammation 

associated with obesity can activate JNK-1, that can bock the IRS-1, and IKK that can lead to 

increased ceramides9.  

Pharmacotherapy for Insulin resistance under development 
 
Improving insulin sensitivity can be achieved by addressing the causes of IR (such as obesity, 

sedentary behaviour or more emerging factors such sleep disorders), or the mechanisms via which 

obesity impact on IR (such as ectopic fat, inflammation or adipokines) or the deficits in the insulin 

signalling pathway (such as activating the insulin receptor or potentiating the phosphorylation that 

occur following the insulin receptor activation). Currently available treatments for IR exert their 

impact by combinations of the above-mentioned mechanisms. For example, metformin increases 

the phosphorylation of the insulin receptor by increasing the β-subunit tyrosine kinase activity (TKA) 

and activation of adenosine 5’-monophosphate-activated protein kinase (AMPK), which inhibits 

tyrosine phosphatases that are responsible for the dephosphorylation of the insulin receptor13;14. In 

addition, AMPK activation results in decreased lipolysis in adipose tissue, decreased hepatic 

lipogenesis, increased fatty acid oxidation in the liver and muscle and increased glucose uptake13. 

Thiazolidinediones improve IR by reducing inflammation, increasing adiponectin production and 

increasing lipogenesis in the subcutaneous depots resulting in reduction in FA release and 

improvements in ectopic fat14. 

Targeting mechanisms linking obesity to insulin resistance 

Targeting ectopic fat 

Fibroblast growth factor 21 (FGF21) has been gaining much interest recently as a regulator for lipid 

and glucose metabolism that can reduce ectopic fat and as a result improve IR. Rodents studies have 

shown that FGF21 can reduce hepatic and peripheral IR and liver triglycerides in chow- and high-fat 



fed wild-type mice15. These improvements in IR were associated with increased whole body energy 

expenditure and reduction in hepatocellular and myocellular DAG content and PKC activation in liver 

and skeletal muscle with no effect on ceramides15. LY2405319 is a FGF21 analogue that has reached 

clinical development. In a Phase Ib 28-day RCT, 47 obese patients with T2D (44% Whites, diabetes 

duration 7.4 years, age 57.7 years, BMI 32.1 kg/m2, HbA1c 7.96%) were randomised to placebo vs. 

multiple doses of LY240531916. The results of this RCT were consistent with the rodent studies and 

showed that LY2405319 (compared to placebo) reduced fasting glucose (by 0.4-0.6 mmol/l) and 

insulin levels and increase adiponectin levels16. In addition, LY2405319 resulted in modest decrease 

in weight (by 1.5-1.8 kg) and improved lipid profile (reduced LDL by 20-30% and triglycerides by 44-

46% and increased HDL by 15-20%)16. In a more recent study using ob/ob mice and a methionine- 

and choline-deficient (MCD) diet to induce steatohepatitis, LY2405319 attenuated non-alcoholic 

steatohepatitis (NASH) progression and enhanced hepatic mitochondrial function17.  

Another therapeutic option to address NAFLD is the inhibition of Acetyl-CoA carboxylase (ACC). ACC 

catalyses the ATP-dependent carboxylation of Acetyl-CoA to malonyl-CoA, which is the rate-limiting 

step in FA synthesis and also plays a role in FA oxidation18. ACC has two isozymes; ACC1 which is a 

cytosolic enzyme present in the liver and adipose tissue, and ACC2 which is associated with the 

mitochondria and present in the liver, heart, and skeletal muscle18.  In the liver, the malonyl-CoA 

formed in the cytoplasm by ACC1 is used primarily for FA synthesis while the malonyl-CoA formed at 

the mitochondrial surface by ACC2 regulate mitochondrial FA oxidation18. Several rodent studies 

have shown favourable impact of ACC inhibition on NAFLD and T2D2. ND-630, an ACC inhibitor, has 

been shown to reduce FA synthesis and stimulate FA oxidation in human hepatic HepG2 cells18. 

Chronic administration of ND-630 to rats with diet-induced obesity reduced hepatic fat and 

improved insulin sensitivity and lipids profile18. When ND-630 was administered to Zucker diabetic 

fatty rats, it reduced hepatic steatosis, and improved HbA1c by 0.9%18. 

Another novel therapeutic approach to improve hepatic steatosis is to increase hepatic 

mitochondrial uncoupling by promoting hepatic triglyceride oxidation, but older generations of 

these agents were associated with unaccepted adverse events profile including death but newer 

agents are showing better safety profile19. Controlled-release mitochondrial protonophore (CRMP), 

that produces mild hepatic mitochondrial uncoupling, reduced hypertriglyceridemia, insulin 

resistance, hepatic steatosis, and liver fibrosis19. Similarly, Niclosamide, which is FDA approved as an 

anthelmintic drug, has been shown to have favourable impact on IR and hepatic steatosis high-fat 

diet mice and it improved glycemic control in the db/db mice20.  



Adipokines 

Adiponectin is an insulin sensitizing adipokine that improves insulin sensitivity by activating AMPK 

and Peroxisome proliferator-activated receptor (PPAR)-α21.  AdipoRon, an orally active adiponectin 

receptors 1 and 2 agonist, improved IR and glucose levels in high-fat diet-fed (HFD) mice and 

ameliorated diabetes in db/db mice22. Apelin is another adipokine that also improves insulin 

sensitivity by AMPK activation23.  Apelin administration in HFD obese mice for 4 weeks improved fat 

mass, glycaemia, and triglycerides and were protected from hyperinsulinemia compared with 

placebo24. 

Resveratrol: 

Resveratrol is a phytophenol found in many plants, especially red grape and is a potent sirtuin 1 

activator. Sirtulin 1 improves several processes that are involved in IR pathogenesis including 

inflammation and oxidative stress25. Resveratol has been shown to activate AMPK, increase PPAR-

gamma coactivator (PGC-1α) levels, increase mitochondrial activity and respiration and to reduce  

intramyocellular and intrahepatic lipid content26. In addition, resveratol has been shown to reduce 

lipolysis and FA levels post prandially26. A meta-analysis of 11 RCTs showed that resveratrol had no 

effect on IR or glycaemic measures in people without diabetes but lowered HbA1c (average 0.8%) 

and IR in patients with T2D27. However, only 2 of these RCTs were in patients with T2D, the sample 

sizes were < 70 patients for these studies and the treatment duration was for 3 months. So more 

well-designed RCTs of larger sample size and adequate longer follow up are needed. 

Inhibitor kappa-B kinase-beta (IKKB ) inhibitors  

Inflammatory cytokines activate IKKB which results in dephosphorylation of the Akt by increasing 

cermaides production9. Administration of IKKB inhibitor (IMD-0354) to KKAy mice receiving HFD 

improved hyperglycaemia, IR and iadiponectin levels after 7 days of treatment28.   

Targeting the insulin receptor 
These compounds can generally be divided into agents that can stimulate the insulin receptor 

independently of insulin binding to the receptor and agents that can potentiate the insulin-initiated 

tyrosine phosphorylation of the insulin receptor β subunit and the IRS 1/2, or prevent their 

dephosphorylation29. Some of these agents can be given orally7;8. 

 Demethylasterriquinone and its derivatives 

Demethylasterriquinone (DMAQ) B1 (L-783,281 or compound 1) is a benzoquinone derivative 

derived from the fungus Pseudomassari30. It binds to the β subunit of the insulin receptor and 

initiate the insulin signalling pathways without the need of insulin31. However, this compound had a 

quinone moiety that when in contact with high energy that resulted in the production of free 



radicals, which made it unsuitable for humans13;32.  As a result, non-quinone DMAQ B1 derivatives 

were developed. One example is D-410639, which is 128 fold less cytotoxic than DMAQ B1 and was 

able to activate the recombinant human insulin receptor on the CHO cell line30. In addition, D-

410639 inhibited epidermal growth factor receptor (EGF-R/ErbB1) which is involved in vascular 

dysfunction in patients with diabetes; which suggests that this compound might have vascular 

benefits33. Another promising compound is compound 5,8-diacetyloxy-2,3-dichloro-1,4-

naphthoquinone which also binds to the kinase domain of the insulin receptor to trigger insulin 

action34. This oral compound improved glucose levels  in wild-type C57BL/6J mice and db/db and 

ob/ob mice without evidence of toxicity34.  

XMetA 

XMetA is a high affinity, allosteric, human monoclonal antibody to the insulin receptor that does not 

compete with insulin binding35. It activates the insulin receptor but not the IGF1 receptor and it 

mimics the glucoregulatory but not the mitogenic actions of insulin35. In diet-induced obese mice, 

XMetA normalised fasting glucose, corrected glucose tolerance and improved non-high density 

lipoprotein cholesterol with no weight gain or hypoglycaemia35. Similar results were found recently 

in a study in diabetic cynomolgus monkeys36. 

α-lipoic acid (ALA) 

ALA (1, 2-dithiolane-3-pentanoic acid) is a naturally occurring compound synthesized in 

mitochondria from octanoic acid and is a cofactor for mitochondrial a-ketoacid dehydrogenases, and 

thus serves a critical role in mitochondrial energy metabolism8. In rat hepatocytes, ALA directly binds 

to and activates the tyrosine kinase domain of the insulin receptor resulting in activation of the 

insulin signalling pathway and increasing GLUT-4 translocation37. In a small RCT (n=107) of patients 

with T2D who were randomised to supplements including ALA vs. placebo for 3 months, ALA 

improved HbA1c by 0.6%, and lowered LDL and triglycerides and HOMA-IR without an effect on 

weight38. 

Protein tyrosine phosphatase 1B (PTP-1B) Inhibitors 

PTP-1B terminates the insulin receptor activity by dephosphorylating the insulin receptor β-subunit, 

and the IRS1/2; hence inhibiting PTP-1B would potentiate insulin action when insulin is bound to the 

α-subunit13. Several studies using different compounds showed that PTP-1B inhibition 

increased insulin receptor and IRS phosphorylation, enhanced insulin actions, improved IR, and 

improved hyperglycaemia in rodent studies 8;39. However, the clinical development of these agents 

proved to be challenging due to adverse events and lack of selectivity29. High selectivity is essential 



as  PTP1B and T-cell protein tyrosine phosphatase (TCPTP), which is abundantly expressed in 

hematopoietic cells, share more than 70% amino acid sequence identity in the catalytic domain40. 

PKC inhibitors: 

As discussed above, PKC activation via increase DAG reduces insulin-mediated IRS and AKT 

phosphorylation and PI3K activation leading to IR41.  Studies in obese and diabetic rodents showed 

that treatment with Ruboxistaurin (LY333531), a selective PKCβ inhibitor, improved insulin-

stimulated Akt phosphorylation and IR and insulin stimulated vascular contraction42.  

 

Targeting post insulin receptor signalling 

PTEN inhibitors: 

The Phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) to phosphatidylinositol 4,5-bisphosphate (PIP2) causing a reduction in AKT 

phosphorylation43.  PTEN is a tumour suppresser protein43. Patients with Cowden syndrome, a rare 

cancer predisposing condition with PTEN loss of function mutation, were found to have increased 

AKT phosphorylation and better insulin sensitivity compared to age, sex and BMI matched healthy 

controls44;45. Similar results were found in rodent studies using PTEN inhibitors46. PTEN inhibitors 

need to be highly specific and only inhibit PTEN partially in order to have an acceptable safety 

profile. 

Inositol phosphatases inhibitors  

Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2) is a member of the inositol 

polyphosphate 5-phosphatase family. SHIP 2 contributes to the conversion of PIP 3 to PIP 2 resulting 

in the inhibition of AKT phosphorylation47. Rodent studies showed that SHIP2 mutations are 

associated with improved insulin sensitivity and increased concentration of GLUT-4 42;48. Inhibiting 

SHIP2 using an antisense oligonucleotide has also been shown to improve IR and AKT 

phosphorylation49. Several studies in humans showed that polymorphisms in the SHIP 2 gene were 

associated with T2D50. 

Inositol derivatives  

Myoinositol forms the structural basis for PIP2 and PIP3. Pinitol (3-O-methyl-chiroinositol), from the 

plant Bougainvillea spectabili, has been shown to improve IR and lower glucose levels in animal 

studies; these effects were inhibited by the presence of PI3K inhibition51. In humans, the results of 

RCTs were not consistent; while some studies showed no effect on hyperglycaemia or IR52, others 

showed reduced HbA1c, and HOMA-IR as well as favourable impacts on LDL/HDL ratio and blood 



pressure53;54. D-chiro-inositol and myo-inositol have been shown to improve IR in women with 

polycystic ovarian syndrome, although this has not translated into better clinical outcomes in terms 

of ovulation and fertility55. In a recent meta-analysis of 5 trials containing 513 participants, myo-

inositol reduced the risk of gestational diabetes (risk ratio 0.29; 95% CI 0.19-0.44)56. 

  

Targeting the underlying causes of insulin resistance 
 
Obesity 

Obesity is a major risk factor for T2D, as a result interventions (lifestyle, pharmacotherapy, bariatric 

surgery) aimed at causing weight loss (from as little as 5%) and reduction in visceral fat result in 

significant improvements in T2D and/or IR8;57. More recently bariatric surgery became an important 

treatment option in patients with T2D resulting in long-term sustained weight loss with significant 

improvements in glycaemic parameters, IR and cardiovascular disease risk factors8;58. The impact of 

bariatric surgery in patients with T2D was superior to medical care in several RCTs59-61. The 

improvements in glycaemic control after bariatric surgery occurred in the context of reduction in the 

use of insulin and other glucose lowering agents. More details about the mechanism of action and 

impact of bariatric surgery in T2D can be found here 62;63. 

Sleep-related disorders 

An emerging important risk factor for the development of IR and T2D is sleep-related disorders. In a 

meta-analysis of 36 studies (including 1,061,555 participants) the pooled relative risks (RR, 95%CI) 

for developing diabetes were 1.48 (95%CI:1.25,1.76), 1.18 (1.10,1.26) and 1.36 (1.12,1.65) for 

sleeping ≤5 hours, 6 h, and ≥9 hours/day respectively. The RR (95%CI) for developing diabetes in 

patients with poor sleep quality, obstructive sleep apnoea (OSA) and shift work were 1.40 

(1.21,1.63), 2.02 (1.57, 2.61) and 1.40 (1.18,1.66), respectively64. Another meta-analysis showed 

similar results in that short sleep duration was associated with increased risk of developing diabetes 

as well as increased risk of mortality, obesity and cardiovascular disease65.  

In patients with T2D, short and long sleep duration and poor sleep quality were associated with 

higher HbA1c as was shown in a recent meta-analysis (weighted mean difference: 0.23% (0.10-0.36); 

0.13% (0.02-0.25), 0.35% (0.12-0.58) for short sleep, long sleep and poor sleep quality respectively66. 

Short sleep duration was also associated with higher HbA1c and higher IR in patients with Type 1 

diabetes (based on hyperinsulinemic euglycemic clamp)67. In laboratory based studies, acute sleep 

restriction in healthy lean individuals resulted in IR and dysglycaemia68.  



Interventional studies assessing the impact of sleep duration manipulation on IR and glycaemic 

control are ongoing but a recent  small study of 10 young adults with habitual sleep duration < 6.5 

hours/night showed that extending sleep duration by 1.6 hours/night for 2 weeks in their home 

environment was associated with 14% decrease in overall appetite and a 62% decrease in desire for 

sweet and salty foods69, suggesting that such interventions might have important metabolic effects. 

OSA is very common in patients with T2D and is associated with IR and worse glycaemic control70. 

Several meta-analyses have shown that OSA treatment (continuous positive airway pressure (CPAP)) 

improves IR in patients with and without T2D71 

Summary and conclusions 

IR plays an important role in the pathogenesis of T2D and associated cardiovascular disease. 

Improving IR is an important treatment target in patients with T2D and pre-diabetes/the metabolic 

syndrome. As our understanding of the pathogenesis of IR improved, new pharmacological agents 

were developed. But many of these agents are in the pre-clinical phase and it remains unclear which 

will progress to clinical trials in humans. Developing new treatments for IR is challenging due to the 

complexity of IR pathogenesis and the presence of multiple feedback loops which makes it difficult 

to predict the consequences of a particular intervention8. For example,  treatments that target 

deficits in proximal locations of the insulin signalling pathway might result in a broader spectrum of 

benefits compared to targeting distal locations; but the impact of the negative feedback exerted by 

distal signalling steps on earlier ones might lessen such benefits7;13. In addition, the insulin signalling 

pathway is involved in cell survival and other functions and hence any interventions need to be 

specific, partial and reversible 6;8;13. Targeting obesity remains a major step in the management of 

patient with T2D and IR, but life style interventions are difficult to maintain on the long term. As a 

result, bariatric surgery is an important option to consider in some patients. Sleep-related disorders 

are also emerging as an important contributor to IR but interventional studies are awaited in relation 

to the impact of sleep duration manipulation on IR. The data about the impact of CPAP on IR in 

patients with OSA are encouraging but CPAP compliance is challenging in real life and the impact of 

CPAP on glycaemic control is controversial. 
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