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Abstract 9 

In this study, different multi-bed water adsorption systems have been used to generate cooling and 10 

electricity at the same time using 9 different cases including 7 bed configurations and 7 time ratios (R = 11 

total switching and adsorption time /the total switching and desorption time) utilizing advanced 12 

adsorption materials such as AQSOA-Z02 and MOF Aluminium-Fumarate additionally to traditional 13 

Silica-gel. A MATLAB Simulink program of multi-bed adsorption system for cooling and power 14 

generation has been developed to investigate the effect of using different cases on the overall system 15 

performance. Results showed that using three-bed configuration with time ratio of (R=1/2) produced the 16 

highest specific cooling power (SCP) and specific power (SP) for Silica-gel (for all heat source 17 

temperature range), Aluminium-Fumarate (for heat source temperature higher than 120 °C) and AQSOA-18 

Z02 (at heat source temperature of 160 °C). Moreover, using two-bed configuration with time ratio of 19 

(R=1) generates the highest coefficient of performance (COP) for all adsorption materials within the 20 

range of heat source temperature used in this study. Results also, showed that maximum COP of 0.64 can 21 

be achieved using Silica-gel, while maximum SCP, SP and adsorption power efficiency of 650 W/kgads, 22 

64 W/kgads, 4.6 % can be achieved using AQSOA-Z02. 23 

Keywords: Multi-bed, Time Ratio, Adsorption, Cooling and Electricity, AQSOA-Z02, Aluminium-24 
Fumarate, Silica-gel  25 

1. Introduction 26 

Nowadays, searching for alternative energy sources becomes an essential aim because of the large energy 27 

consumption around the world, while electricity is still mainly generated by burning fossil fuel which 28 

rises CO2 emissions. In hot countries, refrigeration and air conditioning equipment used in houses and 29 

offices consume a large amount of electricity, while millions of people, especially in poor countries still 30 

face difficulties to access low-cost and reliable energy sources. Adsorption technology offers the potential 31 

of using low-grade heat sources such as solar, geothermal and waste heat from industrial processes to 32 

produce cooling and electricity simultaneously. Fossil fuel is still the main source of energy since 33 

decades; however, the abundant renewable resources such as low-grade heat from solar energy or waste 34 
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heat from industrial processes can be converted into useful cooling and electricity using promising clean 35 

energy technologies like absorption, adsorption and Organic Rankine cycle (ORC). Such renewable 36 

technologies can be improved to face the serious concerns of the global warming around the world and 37 

reduce the emissions of the CO2. A number of researchers investigated the absorption cooling technology 38 

experimentally [1] and numerically [2], while many researchers investigated means of improving the 39 

adsorption cooling technology using multi-bed [3], multi-stages [4], utilizing a number of working pairs 40 

[5] through modelling [6] and experimental work [7]. Gonzalez-Gil et al [8] experimentally studied a 41 

solar air-conditioning water/lithium bromide absorption system and reported a COP of about 0.6 with a 42 

cooling capacity between 2 and 3.8 kW. Wang [9] used new ideas to integrate heat pipes with adsorption 43 

water chiller achieving average cooling and COP of 10 kW and 0.4 using heat source temperature of 85 44 

°C. Gong et al [10] examined experimentally the cooling effect of lithium chloride and Silica-gel 45 

composite adsorption chiller with methanol. Results showed that, compared to the Silica-gel/water unit, 46 

the SCP and COP of the composite were increased by 16.3% and 24.2%.  47 

Generating power (electricity) at high efficiency using low-grade heat sources like solar energy, 48 

geothermal energy and waste heat from industrial processes is still a strategic goal for many researchers. 49 

Kalina cycle and Organic Rankine cycle (ORC) have the capability of generating electricity using such 50 

low-grade heat sources [11, 12]. Le et al. [13] investigated a number of ORC fluids to optimize the 51 

performance of basic and regenerative supercritical ORC utilizing heat source temperature of 150 °C. 52 

Results showed that the maximum efficiencies of the basic and regenerative were 11.6 % and 13.1 % 53 

respectively using R152a, while the maximum power generated  was 4.1 kW using R1234ze.  54 

In order to achieve both cooling and electricity at the same time, a number of researchers designed and 55 

investigated combined systems for cooling and electricity utilizing low-grade heat sources. 56 

Vijayaraghavan and Goswami [14] studied two configurations to combine an absorber and a turbine in 57 

one system to generate cooling and electricity. Results showed that efficiency can be enhanced by up to 58 

25%, while exergy analysis showed that RUE (resource utilization efficiency) can be improved. Liu and 59 

Zhang [15] have proposed a cogeneration system consisting of ammonia/water Rankine cycle and an 60 

ammonia absorption refrigeration cycle utilizing heat source temperature of around 450 oC to generate 61 

cooling and power simultaneously. Results showed that maximum exergy efficiency of 58% can be 62 
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achieved and the energy consumption can be reduced by 18.2% compared to conventional separate 63 

systems. Zheng et al. [16] have suggested a combined absorption cooling and power system based on 64 

Kalina cycle’s principles. The cycle produced cooling and power at the same time with an overall thermal 65 

and exergy efficiencies of 24.2% and 37.3% respectively. Zhang and Lior [17] investigated an 66 

ammonia/water cogeneration system to produce cooling and power at the same time. The system works in 67 

parallel mode with an ammonia/water Rankine cycle and an ammonia refrigeration cycle. Energy and 68 

exergy efficiencies were assessed and they had the values of 27.7% and 55.7%, respectively using heat 69 

source temperature of 450 °C. Absorption technology can generate cooling and electricity simultaneously, 70 

however, such systems have large size, besides ammonia is a toxic material which may cause serious 71 

health risks. On the other hand, adsorption technology has robust construction, ease of installation, and in 72 

many cases, is considered to be more advantageous than absorption systems. In addition, There are no 73 

opportunities of crystallization, corrosion, risky leaks and the power consumption is negligible [18]. 74 

Adsorption is promising technology that recently used to generate cooling and electricity at the same time 75 

utilizing low-grade heat sources. This technology has a number of advantages like very few moving parts, 76 

high reliability, capability over a wide range of heat source temperatures with appropriate adsorption 77 

materials, and environmentally friendly refrigerants [19]. Jiang et al. [20] have introduced a resorption 78 

cogeneration system to generate cooling and power simultaneously. Results showed that with using heat 79 

recovery the cycle can achieve electrical efficiency and COP of 9.5–15.8% and 0.416–0.691 respectively. 80 

Wang et al. [21] have presented a novel resorption cogeneration cycle for cooling and electricity 81 

simultaneously based on ammonia adsorption cooling technology. Results showed that utilizing a driving 82 

temperature higher than 100 oC can produce a maximum overall exergy efficiency of 0. 9 and a COP of 83 

0.77. Bao et al. [22] have studied an adsorption cogeneration prototype to generate power and cooling 84 

simultaneously. The COP and the exergy efficiency of the cycle are 0.57 and 0.62 respectively.  Bao et al. 85 

[23] built chemisorption cogeneration prototype using calcium chloride and activated carbon was to 86 

generate power and cooling simultaneously. Results showed that the system could achieve a minimum 87 

value of 5.4 °C at the evaporator and it could produce 490 W of power. L. Jiong et al. [24] have designed 88 

and studied a resorption cogeneration cycle for cooling and power using a scroll expander with MnCl2-89 

CaCl2-NH3. Results showed that maximum power of 300W and cooling of 2kW as well as 91 min of cold 90 
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storage function can be achieved. Yiji Lu et al [25] improved the ammonia resorption cogeneration cycle 91 

proposed by Wang et al with mass and heat recovery using twelve different working pairs. Results 92 

showed that COP increased by 38% and 35% utilizing NiCl2 and MnCl2 respectively. The efficiency of 93 

electricity has also been improved from 8% to 12% and the second law efficiency reached 41% using 94 

BaCl2–MnCl2. Al- Mousawi et al. [26] simulated a two-bed adsorption system to generate cooling and 95 

power simultaneously using AQSOA-Z02/water, MIL101Cr/water and Silica-gel/water using heat source 96 

temperature between 80 and 160 °C. Results showed that, the system can generate SP of 73 W/kgads, and 97 

SCP of 681 W/kgads (using AQSOA-Z02) and maximum efficiency of 67%. Al-Mousawi el al. [27] 98 

designed and modelled a small scale radial inflow turbine with efficiency of 82% to generate electricity of 99 

785 W in addition to cooling from a two-bed adsorption system utilizing AQSOA-Z02/water using heat 100 

source temperature of 160 °C. Al-Mousawi et al. [28] studied integrated adsorption-ORC system to 101 

simultaneously generate cooling and electricity. Results showed that system can achieve efficiency, SP 102 

and SCP of 70%, 208 W/kgads and 616 W/kgads respectively.   103 

In adsorption cooling systems, as the cycle time increases the coefficient of performance increases, and 104 

this decreases the specific cooling power (SCP) [29]. Many researchers have studied the performance 105 

optimisation of two-bed adsorption cooling systems [29, 30] and three-bed adsorption cycles [31]. 106 

Glaznev and Aristov [32] found experimentally that desorption process is faster than adsorption process 107 

by 2.2 to 3.5. Sapienza et al. [33] experimentally found that the best performance can be achieved with 108 

the adsorption time is 7 times longer than desorption timer using driving temperature of 90 °C. 109 

Zajaczkowski [34] found that in a three-bed adsorption system and for switching time 30 s and adsorption 110 

time 300 s, the desorption/adsorption time ratio is almost 0.6 gives the highest improvement in SCP and 111 

COP. Graf et al. [35] showed that the adsorption and desorption times can affect the COP and SCP and 112 

they found that the maximum values of COP and SCP are 268 W/kg and 0.51 respectively using 113 

adsorption time of 200 s and desorption time of 125 s. 114 

None of the previous work studied the effect of using different bed configurations and bed arrangement 115 

either in series or in parallel besides the effect of adsorption/desorption time ratio on the overall 116 

performance of the adsorption system for cooling and electricity.  In this paper, 9 different cases 117 

including 7 different configurations and 7 time ratios have been investigated. Different cases are 118 
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compared to the two-bed adsorption system for cooling and electricity in terms of system coefficient of 119 

performance (COP), specific cooling power (SCP), specific power generated (SP) and adsorption power 120 

efficiency. In addition, advanced adsorption pairs of AQSOA-ZO2/water and Aluminium-Fumarate 121 

MOF/water have been investigated and compared to Silica-gel/water, while environmentally friendly 122 

fluid of water has been used as adsorption working fluid. 123 

2. Two-bed adsorption system for cooling and electricity 124 

Figure 1(a) shows a schematic diagram of a basic cooling adsorption system (BCAS) which contains two 125 

adsorption beds, condenser, and evaporator. Adsorption is an exothermic process, as a result cooling is 126 

needed to cool the adsorber (cold bed) during the adsorption process using cooling source CS in order to 127 

adsorb the refrigerant from the evaporator and produce the cooling capacity. Desorption is an 128 

endothermic process, so heating is needed during the desorption process to release the refrigerant (water 129 

vapour) from the desorber (hot bed) using heating source HS like solar energy or waste heat. 130 

Subsequently, condenser cools the hot refrigerant coming from the desorber to feed the evaporator with 131 

liquid refrigerant that needed to produce cooling continuously.  132 

Figure 1(b) shows a schematic diagram of the adsorption system for cooling and electricity as described 133 

by a number of literature [22, 26, 27, 36] which consisting of adsorber, desorber, condenser, evaporator 134 

and expander (turbine) located between the hot bed (desorber) and the condenser to extract the kinetics 135 

energy from the refrigerant vapour at high temperature and pressure. Figure 2(a) shows the P-T diagram 136 

of BCAS, process 1-2 is isosteric heating (preheating switching), processes (2-3’/2-3) are isobaric 137 

desorption/condensation, process 3’-4’ is isosteric cooling (precooling switching) and finally processes 138 

(4’-1/4-1) are isobaric adsorption/evaporation. Figure 2(b) shows the P-T diagram of the adsorption 139 

system for cooling and electricity and in this system, the pressure of the condenser have to be lower than 140 

the pressure of the hot bed to make the pressure difference required to generate power (electricity) in the 141 

expander (turbine). Process 1-2 is isosteric heating same as in BCAS, while process 2-3 is expansion 142 

process from the bed pressure (maximum pressure) to the condenser pressure, process 3-4 is isobaric 143 

condensation while the rest processes are similar to BCAS. 144 
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 145 

Figure 1: Schematic diagram of (a) Basic cooling adsorption system (BCAS) (b) Adsorption system for cooling and 146 
electricity. 147 

 148 

 149 

Figure 2: P-T diagram (a) Basic cooling adsorption system (BCAS) (b) Adsorption system for cooling and electricity. 150 

3. Multi-bed  adsorption system for cooling and electricity 151 

Multi-bed adsorption system for cooling and electricity has the same principle of work for the two-bed 152 

adsorption system for cooling and electricity as discussed in section 2. Instead of using only two 153 

adsorption beds, a number of adsorption beds are used in the same system. Usually when two-bed is used 154 

in the adsorption system the total adsorption time (adsorption time +switching time) is equal to the total 155 
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desorption time (desorption time +switching time) .i.e. the time ratio R=1. This study aims to investigate 156 

the effect of using multi-bed configurations with a number of time ratios (R) on the overall system 157 

performance. For example, in the three-bed adsorption system with R=1/2 shown in Figure 3 (a), bed 1 158 

starts with desorption phase (20s switching time + 140s net desorption) as shown in Figure 4 with zero 159 

delay time, then it switches to adsorption phase (20s switching time + 300s net adsorption). Bed 2 and 160 

bed 3 work in similar way as shown in Figure 4, but with delay times of 160s and 320s respectively. The 161 

same concept can be used for the four, five and six-beds systems as shown in Figure 3 (b), (c) and (d) 162 

with R of 1/3, 1/4 and 1/5 respectively.  163 

Besides two (2B), three (3B), four (4B), five (5B) and six-bed (6B) systems another two configurations 164 

are investigated in this study. The first one is the four-bed system which consisting of a pair of two beds 165 

working in parallel with R=1 as shown in Figure 3(e), while the other one is six-bed which consisting of a 166 

pair of three beds working in parallel with R=1/2 as shown in Figure 3(f). Thus in this work, 9 different 167 

cases including 7 different bed configurations and 7 adsorption/desorption ratios are investigated to find 168 

the best configuration and adsorption/desorption ratio in terms of performance, specific cooling and 169 

specific power output. 170 

 171 
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 175 

Figure 3: Schematic diagram of multi bed adsorption system for cooling and electricity (a) three-bed (b) four-bed in series 176 
(c) five-bed (d) six-bed in series (e) four-bed in parallel and (f) six-bed in parallel. 177 

 178 

 179 

Figure 4: Time allocation of the three-bed adsorption system for cooling and electricity with R=1/2. 180 
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4. Mathematical Modelling  185 

In this study, new advanced adsorption pairs of AQSOA-Z02/water and Aluminium-Fumarate/water are 186 

used and compared to Silica-gel/water. The adsorption equilibrium for AQSOA-ZO2/water can be written 187 

as [37]  188 

𝑥𝑒𝑒 = 𝑥𝑜 �
𝑘(𝑃𝑠(𝑇𝑤)

𝑃𝑠(𝑇𝑎))
𝑛

1+(𝑘−1)(𝑃𝑠(𝑇𝑤)
𝑃𝑠(𝑇𝑎))

𝑛�                                                                                                                         (1)  189 

k = αexp �n(Qst − hfg)/(R𝑇𝑏𝑏𝑏)�                                                                                                            (2) 190 

Where, Ps(Tw) and Ps(Ta) are the saturation vapour pressure at water vapour temperature and adsorbent 191 

temperature respectively and the constants  xo, α, n and  Qst are taken from [26].  192 

For Aluminium-Fumarate/water, the adsorption equilibrium of equation (3) is obtained from [38] and 193 
listed in Table 1. 194 

𝑥𝑒𝑒=f (A)                                                                                                                                                    (3) 195 
 196 
Where  197 

𝐴 = −𝑅𝑇𝑏𝑒𝑏𝑙𝑛(𝑃𝑠(𝑇𝑤)
𝑃𝑠(𝑇𝑎)

)                                                                                                                                (4)                                                                                                                                                                                                        198 

Table 1: Aluminium-Fumarate/water isotherms of Eq. (3) 199 
A< 2900 𝑥𝑒𝑒  = 0.5948-3.12E-4A+1.68302E-7A2- 3.124455E-11A3    
A> 3987 𝑥𝑒𝑒 =  0.111993EXP(-0.000258797A) 
2900≤A≤3987 𝑥𝑒𝑒  = 2.36129-9.93768E-4A+ 1.05709E-7A2  

 200 
For Silica-gel/water, the modified Freundlich equation is used to present the adsorption equilibrium     201 

[39-41] as: 202 

𝑥𝑒𝑒 = 𝐴(𝑇𝑠) �𝑃𝑠(𝑇𝑤)
𝑃𝑠(𝑇𝑎)

�
𝐵(𝑇𝑠)

                                                                                                                           (5) 203 

where  204 

𝐴(𝑇𝑠) = 𝐴𝑜 + 𝐴1𝑇𝑠 + 𝐴2𝑇𝑠2 + 𝐴3𝑇𝑠3                                                                                                         (6) 205 

𝐵(𝑇𝑠) = 𝐵𝑜 + 𝐵1𝑇𝑠 + 𝐵2𝑇𝑠2 + 𝐵3𝑇𝑠3                                                                                                          (7)  206 

The constants of equations (6) and (7) are obtained from [41, 42].  207 

Linear driving force (LDF) equation is used to describe the adsorption/desorption rate as [39, 40, 43]  208 

𝑏𝑑
𝑏𝑑

= 𝑘𝑜𝑏𝑥𝑒 �−
𝐸𝑎
𝑅𝑇
� �𝑥𝑒𝑒 − 𝑥�                                                                                                                     (8)    209 
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The kinetics constants (ko and Ea) of equation (8) are taken from reference [44] for AQSOA-ZO2/water, 210 

from reference [38] for Aluminium-Fumarate/water and from references [39, 40] for Silica-gel/water. 211 

Lumped model method is used define the energy balance in adsorption beds, where the adsorbent, the 212 

adsorbate and the bed materials are assumed to be at the same temperature during the cycle time [43, 45, 213 

46].                                                                                                                                                                                   214 

�Mcpeff
bed� dT

bed

dt
+ �𝑀𝑎𝑥𝑖𝑏𝑒𝑏𝑐𝑝�

𝑏𝑇𝑖
𝑏𝑏𝑏

𝑏𝑑
= 𝜑𝑀𝑎 �

𝑏𝑑𝑖
𝑏𝑏𝑏

𝑏𝑑
� (𝑄𝑠𝑑) − ��̇�𝑐𝑝�𝑗�𝑇𝑗,𝑜 − 𝑇𝑗,𝑖𝑖�                              (9)                      215 

Flag 𝜑 equals to 0 at switching time and equals to 1 at adsorption/desorption process and the bed outlet 216 

temperature is given by [43, 45].    217 

Tj,o = 𝑇𝑖𝑏𝑒𝑏 + �Tj,in − 𝑇𝑖𝑏𝑒𝑏�exp �−(𝑈𝐴𝑟)𝑖
𝑏𝑏𝑏

(�̇�𝑐𝑝)𝑗
�                                                                                            (10)                                                                                     218 

The energy balance equations for the condenser can be expressed by [46, 47].      219 

�Mcpeff
cond� dT

cond

dt
= φℎ𝑓𝑓Ma

dxdes
bed

dt
− (ṁcp)cond�Tw,o − Tw,i� − �cp�𝑤(𝑇𝑏𝑒𝑏−Tcond)Ma

dxdes
bed

dt
                           (11)        220 

The condenser outlet temperature is given by [46, 47].         221 

Tw,o = Tcond + �Tw,in − Tcond�exp �−(U𝐴𝑟)cond

(ṁcp)cond
�                                                                                    (12)                                                                         222 

The energy balance in the evaporator is expressed as [46, 47].          223 

�Mcpeff
evap� dT

evap

dt
= φhfgMa

dxads
bed

dt
− (ṁcp)evap�Tchill,o − Tchill,i� − (cp)w(Tcond − Tevap)Ma

dxdes
bed

dt
           (13)       224 

The outlet temperature of the chilled water can be written as [40, 46, 47].           225 

Tchill,o = Tevap + �Tchill,in − Tevap�exp �−(U𝐴𝑟)evap

(ṁcp)evap
�                                                                              (14)                                                                       226 

The mass balance in the adsorption evaporator can be written as [40, 43, 45, 46].   227 

dMref
dt

= −Ma �
dxdes

bed

dt
+ dxads

bed

dt
�                                                                                                                     (15)      228 

Mechanical work produced in the expander (turbine), can be written as below:  229 
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𝑊𝑒𝑑𝑝 = ∫ η𝑏𝑒𝑝 �̇�𝑎𝑏𝑠∆hdt
𝑡𝑐𝑐𝑐𝑐𝑏
0

𝑑𝑐𝑐𝑐𝑐𝑏
                                                                                                                          (16) 230 

Where ∆h is the enthalpy difference through the adsorption expander and �̇�𝑎𝑏𝑠 is the water mass flow 231 

rate through the expander, while η𝑒𝑑𝑝 is the expansion efficiency which is assumed to be ideal for this 232 

thermodynamic study. The overall performance of the adsorption system for cooling and electricity can 233 

be defined using the terms SCP, SP, COP, adsorption power efficiency (ηads), COPe and SCPe and written 234 

in equations (17-21). 235 

𝑆𝑆𝑃 =
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑏𝑑

𝑡𝑐𝑐𝑐𝑐𝑏
0
𝑀𝑎𝑑𝑐𝑐𝑐𝑐𝑏

                                                                                                    (17) 236 

𝑆𝑃 = ∫ η𝑏𝑒𝑝 �̇�𝑎𝑏𝑠∆hdt
𝑡𝑐𝑐𝑐𝑐𝑏
0

𝑀𝑎𝑑𝑐𝑐𝑐𝑐𝑏
                                                                                                                          (18) 237 

η𝑎𝑏𝑠 = ∫  η𝑏𝑒𝑝�̇�𝑎𝑏𝑠∆hdt
𝑡𝑐𝑐𝑐𝑐𝑏
0

(ṁcp)h ∫ �Th,o−Th,i�𝑏𝑑
𝑡𝑐𝑐𝑐𝑐𝑏
0

                                                                                                                (19)  238 

𝑆𝐶𝑃𝑏 =
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑏𝑑

𝑡𝑐𝑐𝑐𝑐𝑏
0 +F[∫ η𝑏𝑒𝑝 �̇�𝑎𝑏𝑠 ∆hdt

𝑡𝑐𝑐𝑐𝑐𝑏
0 ]

(ṁcp)h ∫ �Th,o−Th,i�𝑏𝑑
𝑡𝑐𝑐𝑐𝑐𝑏
0

     (20)                                                                                   239 

  240 

𝑆𝑆𝑃𝑏 =
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑏𝑑

𝑡𝑐𝑐𝑐𝑐𝑏
0 +F[∫ �̇�𝑎𝑏𝑠∆hdt

𝑡𝑐𝑐𝑐𝑐𝑏
0 ]

𝑀𝑎𝑑𝑐𝑐𝑐𝑐𝑏
                                                                     (21)  241 

The term (ηads) is used to represent the power generation efficiency of the adsorption system i.e. the ratio 242 

of the amount of power generated through the expander (turbine that incorporated within the adsorption 243 

system) to the total heat consumed by the adsorption beds. The terms COPe (equivalent coefficient of 244 

performance) and SCPe (equivalent specific cooling power) are used to compare the performance of 245 

adsorption system for cooling and electricity to the two-bed basic cooling adsorption system (BCAS). F is 246 

the typical COP for compression refrigeration system, which is assumed to be (3) in this work i.e. the 247 

power generated, by adsorption system can be converted into cooling again and in order to compare 248 

between adsorption system for cooling and electricity system and the basic cooling adsorption system 249 

(BCAS).  250 
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The Exergy efficiency depending on the second law of thermodynamic can be defined as the ratio 251 

between the exergy output to the exergy input and it is used to highlight the different grade of cooling and 252 

electricity generated by the adsorption system used in this paper. The exergy efficiency can be defined as 253 

[17, 48]: 254 

Ƞ𝑒𝑑=
𝑊𝑏𝑒𝑝+𝐸𝑏𝑒𝑎𝑝

𝐸𝑖𝑖
                                                                                                                                        (22) 255 

Where Eevap is the cooling exergy through the evaporator and can be defined as [49-51]: 256 

𝐸𝑒𝑒𝑎𝑝=
(ṁcp)evap ∫ �Tchill,o−Tchill,i�𝑏𝑑

𝑡𝑐𝑐𝑐𝑐𝑏
0

𝑑𝑐𝑐𝑐𝑐𝑏
�𝑇

𝑎𝑎𝑏

𝑇𝑏𝑒𝑎𝑝
− 1�                                                                                  (23) 257 

While, Ein is the exergy input to the system and can be defined as [17, 48]: 258 

𝐸𝑖𝑖=�̇�ℎ��ℎℎ,𝑖𝑖 − ℎℎ,𝑜� − 𝑇𝑎𝑚𝑏(𝑠ℎ,𝑖𝑖 − 𝑠ℎ,𝑜)�                                                                                         (24) 259 

5. Results and discussions        260 

Table 2 (a) shows the main operating conditions used in this work, while Table 2 (b) and (c) show the 261 

features of the main components characteristics (bed, condenser, and evaporator) used in this study. 262 

Figure 5 shows the values of COP/COPe, SCP/SCPe and exergy efficiency for two-bed basic cooling 263 

adsorption system (BCAS) and adsorption system for cooling and electricity (with two-bed configuration) 264 

for Silica-gel, AQSOA-Z02, and Aluminium-Fumarate with a range of heat source temperature. For most 265 

cases, COPe achieved by the adsorption system for cooling and electricity using Silica-gel, Aluminium-266 

Fumarate, and AQSOA-Z02 is higher than the COP of BCAS and this is because additional electricity is 267 

generated in adsorption system for cooling and electricity. However, for AQSOA-Z02 with heat source 268 

temperature of 120 °C (or less), the COP of  BCAS is higher than COPe of adsorption system for cooling 269 

and electricity and this is due to AQSOA- Z02 shows low performance with adsorption system for 270 

cooling and electricity at low heat source temperatures. Moreover, SCPe achieved by the adsorption 271 

system for cooling and electricity is higher than that produced by BCAS for most cases using Silica-gel, 272 

Aluminium-Fumarate, and AQSOA-Z02 (except for Silica-gel at 80 °C and AQSOA-Z02 at 120 °C or 273 

less and this is because less power is generated with low heat source temperatures). At high heat source 274 

temperatures the mass flow rate of refrigerant (water) is higher because of high adsorption/desorption 275 
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rate. In addition, at high heat source temperatures, high pressure ratio can be obtained through the 276 

expander (turbine) which means more electricity can be generated. As the grade of electricity is higher 277 

than cooling (i.e. each 1kW of electricity produces about 3 kW of cooling depending on the typical COP 278 

for compression refrigeration system, which is assumed to be three in this study), SCPe of adsorption 279 

system for cooling and electricity is higher than that of BCAS at heat source temperature higher than 120 280 

°C. For all adsorption materials and heat source temperatures used, the exergy efficiency achieved by 281 

adsorption system for cooling and electricity is higher than that for BCAS and this is because the electric 282 

power generated by the former has high grade than cooling. The maximum exergy efficiency of 54% is 283 

achieved using Silica-gel at heat source temperature of 80 °C, results also show that using adsorption 284 

system for cooling and electricity can enhance the exergy efficiency of BCAS by up to 2.5 times when 285 

using Al-Fumarate at heat source temperature of 160 °C. Also, results showed that, different adsorption 286 

materials presented different values of COP/COPe, SCP/SCPe, and exergy efficiency. For example, 287 

Silica-gel showed the highest COP and exergy efficiency, while AQSOA-Z02 showed the highest SCP 288 

with heat source temperature of 140 °C or higher. COP is the most important coefficient of any heat 289 

pump, because high COP values means less energy used. However, if the energy used is infinite or semi-290 

infinite source like solar energy or geothermal energy, SCP can be the most important criterion, because 291 

high SCP means more cooling is generated using the same heat pump size. For system generating cooling 292 

and electricity, exergy efficiency is essential because the electricity has different grade compared to 293 

cooling, so it helps to make a good comparison between BCAS system and the adsorption system for 294 

cooling and electricity. 295 

Figure 6, Figure 7, and Figure 8 show the cooling and power (electricity)  generated using 7 different 296 

configurations utilizing Silica-gel, AQSOA-Z02 and Aluminium-Fumarate with heat source temperature 297 

of 120 ̊C. Results show that cooling and electricity can be generated at the same time however, the 298 

amount of cooling and electricity generated is varied from one configuration to another and from one 299 

material to another. As the number of beds increases the amount of cooling and electricity increases 300 

because of more adsorption materials are added to the system and more uptake and mass flow can be 301 

generated. In addition, as the number of beds increases, more continuity in cooling and electricity can be 302 

noticed i.e. the cooling and electricity with less fluctuation which is more preferable. A significant gain in 303 

cooling and electricity can be noticed between 2B (two-beds) and 3B (three-bed) configurations where 304 
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more cooling and electricity can be generated with configuration 3B. Configuration 6B (six-beds) in 305 

parallel with R=1/2 gives the highest average cooling and electricity generated as shown Figure 6, Figure 306 

7, and Figure 8 for  Silica-gel, AQSOA-Z02, and Aluminium-Fumarate respectively.  307 

Figure 9 shows the COP of different configurations and R ratios utilizing Silica-gel, AQSOA-Z02, and 308 

Aluminium-Fumarate with a range of heat source temperature between 80 and 160 °C. The maximum 309 

COP achieved in this investigation is 0.64 using Silica-gel at heat source temperature of 80 °C with 2B 310 

configuration and R=1. Compared to other materials at heat source temperature between 80-120 °C, 311 

Silica-gel shows the highest COP and this is due to the high cooling capacity achieved with this material 312 

as a result of high water uptake (high adsorption/desorption rate). Silica-gel’s isotherms which has linear 313 

and uniform shape, besides its good kinetics helps to generate such high uptake rate and this can explain 314 

the high water and the high cooling capacity produced by this material. Regarding the heat source 315 

temperature, at 80 °C the amount of heat consumed is the lowest which leads to highest COP. In terms of 316 

the number of beds and R ratio used, the configuration 2B with R=1 shows the maximum COP and this is 317 

due to less amount of heat when using 2B configuration. 318 

 Figure 10 shows SCP of different configurations and R ratios utilizing Silica-gel, AQSOA-Z02and 319 

Aluminium-Fumarate with heat source temperature between 80 and 160 °C. The maximum SCP achieved 320 

is around 650 W/kgads Using AQSOA-Z02 at heat source temperature of 160 °C with three-bed 321 

configuration and R=1/2. Generally, desorption rate is faster than adsorption rate [32] and this is because 322 

the later occurs at relatively low temperature (28 °C in this study as an example), so discharging the 323 

refrigerant (water) from the adsorption material can be faster than charging the materials with the 324 

refrigerant. As a result, there is an optimum R ratio for each case depending on the adsorption material 325 

and the regeneration temperature used. Again, this can explain why the configurations with R>1 have low 326 

SCP compared to other configurations, as the time of adsorption is more than that of desorption. 327 

Figure 11 shows SP of different configurations and R ratios utilizing Silica-gel, AQSOA-Z02 and 328 

Aluminium-Fumarate with heat source temperature between 80 and 160 °C. Maximum SP generated in 329 

this study is about 64 W/kg utilizing AQSOA-Z02 at 160 °C with 3B configuration and R=1/2. SP of 64 330 

W/kgads is not very large value compared to the value of cooling (650 W/kgads), however the grade of 331 

electricity is higher than that of cooling because ideally each 1kW of electricity can generate 3kW of 332 

cooling when the typical COP for compression refrigeration system is assumed to be 3. In terms of the 333 
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number of beds and R ratio used, the configuration 3B with R=½ has the maximum SP for Silica-gel and 334 

Aluminium-Fumarate for all the range of heat source temperatures used, while for AQSOA-Z02 this 335 

occurs only with heat source temperature of 160 °C and this can show that there is a specific limit of heat 336 

source temperature, where after such limit the 3B configuration can be the best. The configurations with 337 

R>1 have low SP compared to other configurations, as the time of adsorption is more than that of 338 

desorption.  339 

Figure 12 shows adsorption power efficiency of different configurations and R ratios utilizing Silica-gel, 340 

AQSOA-Z02, and Aluminium-Fumarate with heat source temperature between 80 and 160 °C. The 341 

maximum power efficiency achieved in this study is 4.63 % using AQSOA-Z02 at heat source 342 

temperature of 160 °C with 2B configuration and R=1. As the heat source temperature increases, the mass 343 

flow rate through the expander (turbine) increases because of high desorption rate. Moreover, high heat 344 

source temperature produces more power and then high adsorption power efficiency and this is mainly 345 

because the high pressure difference between the desorber and the condenser. 346 

The main advantage of using multi-bed adsorption system for cooling and electricity is to increase the 347 

values of SCP and SP generated from this system and offer better options to users and designers. Besides 348 

increasing the quantity of the cooling and electricity, they can be generated with less fluctuation and more 349 

continuity. However, using multi-bed adsorption configurations may lead to large size and heavy weight, 350 

but this problem can be solved by developing new adsorption materials with better adsorption capacity, 351 

and improving the design of the bed heat exchanger, besides using lighter and more efficient materials 352 

in the bed heat exchanger. Also, this study shows that four-bed configuration consisting of a pair of two-353 

beds working in parallel produces more COP and SCP than the configuration with a same number of beds 354 

working in series. The same result can be noticed for the six-bed configuration working in parallel 355 

compared to the same number of beds working in series and this is due to R ratio used in each 356 

configuration of R=1/2 and R=1/3 which produce the highest COP and SCP respectively. 357 
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Table 2: 358 
a) Parameters used in simulation 359 

 360 

 361 

 362 

 363 

 364 
 365 

b) Bed heat exchanger characteristics [26] 366 
Parameter  
Fin length m 
Fin width  m 
Fin pitch m 
Module length m 
Finned length m 
No. of module 
No. tubes/module 
Tube OD  m 
Tube thickness m 

Value 
172E-3 
30E-3 
1.2E-3 
450E-3 
370E-3 

4 
6 

15.875E-3 
0.8E-3 

c) Condenser/evaporator characteristics [26] 367 
Parameter  
Pipe length m 
No. tubes 
Tube OD  m 
Tube thickness m 

Value 
5.5 
4 

15.875E-3 
0.8E-3 

 368 

Parameter 
Ambient temperature             oC 
Bed heating fluid temperature oC 
Bed cooling fluid temperature oC 
Condenser cooling temperature oC 
Chilled water temperature oC 
Bed hot fluid mass flow rate kg/s 
Bed cold fluid mass flow rate kg/s 
Condenser mass flow rate kg/s 
Evaporator mass flow rate kg/s 
Adsorption /desorption phase times (2 bed) 
Switching time s 

Value 
36 

80-140 
28 
28  
18  
1.7 
1.6 
0.8 
0.8  

300+20  
20 
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 369 
Figure 5: COP/COPe, SCP/SCPe and Exergy efficiency of basic cooling adsorption system (BCAS) and adsorption system 370 

for cooling and electricity (with two bed) for a range of heat source temperature utilizing Silica-gel, AQSOA-Z02 and 371 
Aluminium-Fumarate. 372 
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 374 
Figure 6: Cooling and electricity generated from multi-bed adsorption system utilizing Silica-gel at heat source 375 

temperature of 120 °C. 376 

 377 
Figure 7: Cooling and electricity generated from multi-bed adsorption system utilizing AQSOA-Z02 at heat source 378 

temperature of 120 °C. 379 
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 380 
Figure 8: Cooling and electricity generated from multi-bed adsorption system utilizing Aluminium-Fumarate at heat 381 

source temperature of 120 °C. 382 

 383 

 384 
Figure 9: COP of different configurations of multi-bed adsorption system and adsorption/desorption ratio (R) utilizing 385 

Silica-gel, AQSOA-Z02 and Aluminium-Fumarate with a range of heat source temperature. 386 
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 388 
Figure 10:  SCP of different configurations of multi-bed adsorption system and adsorption/desorption ratio (R) utilizing 389 

Silica-gel, AQSOA-Z02 and Aluminium-Fumarate with a range of heat source temperature. 390 
 391 

 392 
Figure 11: SP of different configurations of multi-bed adsorption system and adsorption/desorption ratio (R) utilizing 393 

Silica-gel, AQSOA-Z02 and Aluminium-Fumarate with a range of heat source temperature. 394 
 395 
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 397 

Figure 12: Adsorption power efficiency of different configurations of multi-bed adsorption system and 398 
adsorption/desorption ratio (R) utilizing Silica-gel, AQSOA-Z02 and Aluminium-Fumarate with a range of heat source 399 

temperature. 400 

6. Conclusions 401 

In this paper, 9 cases including 7 multi-bed adsorption system configurations and 7 different 402 

adsorption/desorption time ratios for generating cooling and electricity at the same time have been 403 

designed and simulated. Furthermore, advanced adsorption materials of AQSOA-Z02/water, 404 

Aluminium-Fumarate MOF/water, and Silica-gel/water are studied in terms of system performance 405 

and compared to each other. The main results of this study can be listed as: 406 

 407 

1. Adsorption system for cooling and electricity is feasible and can generate cooling and electricity 408 

simultaneously. For example, utilizing 10.76 kg of Silica-gel at 120 °C of heat source temperature 409 

can generate an average cooling of 15.18 kW and an average electricity of 0.94 kW. 410 

2. Adsorption system for cooling and electricity has higher COPe than basic cooling adsorption system 411 

(BCAS) except for AQSOA-Z02 with heat source temperature below 120 °C.  412 

3. For all adsorption material and heat source temperatures used in this study, the exergy efficiency of 413 

adsorption system for cooling and electricity is higher than that for BCAS, and maximum exergy 414 

efficiency of 54% is achieved utilising Silica-gel at 80 °C. 415 

4. Adsorption system for cooling and electricity has higher SCPe than BCAS for Silica-gel with heat 416 

source temperature higher than 100 °C, for AQSOA-Z02 with heat source temperature higher than 417 

140 °C and for Aluminium-Fumarate with all heat source temperature used in this study. 418 

5. Two-bed configuration with R=1 (adsorption/desorption time ratio =1) has the maximum COP for 419 

all adsorption materials and all range of temperatures used in this work. 420 
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6. Three-bed configuration with R=½ has the maximum SCP and SP for Silica-gel and Aluminium-421 

Fumarate for all the range of heat source temperatures used, while for AQSOA-Z02 with heat 422 

source temperature of 160 °C. 423 

7. As the number of beds increases more than two, the COP decreases, while as the number of beds 424 

increases more than two or three (depending on martials and heat source temperature used) the SCP 425 

and SP decrease. 426 

8. As the number of bed increases, more continuity in cooling and electricity can be achieved. 427 

9. Pairs of two-bed (four beds) and pairs of three-bed (six beds) configurations working in parallel 428 

produce more COP and SCP than four-bed and six-bed configurations working in series. 429 

Nomenclature 430 

Symbols   

A adsorption potential, J/mole η efficiency 

Al aluminium α constant used in eq. 2 

Ar area, m2 ρ density kg/m3 
Cp specific heat capacity, J/kg.K 𝜑 flag 
COP coefficient of performance Subscript  
COPe equivalent coefficient of performance ads,a adsorbent  
E Exergy  kW ads adsorption 
ko empirical constant in Eq. (6), 1/s amb ambient temperature 
Ea activation energy, J/kg bed adsorbent bed 
h enthalpy,  J/kg chill chilled water 
hfg evaporation latent heat J/kg cond condenser 
M mass, kg  des desorption 
�̇� mass flow rate, kg/s eff effective 
P pressure, Pa  evap,e evaporator 
Qst isosteric heat of adsorption, J/kg exp expander 
R gas constant (for water vapour), J/kg.K ex exergy 
R  adsorption/desorption time ratio f liquid 
U overall heat transfer coff., W/m2K g gas 
W power generated W i adsorption/desorption 
SP specific power generated W/kgads  in inlet 
SCP specific cooling power W/kgads j cooling / heating  source 
SCPe equivalent specific cooling power W/kgads h hot,heating source 
t time, s n constant used in eq. 2 
T temperature, K o outlet 
x adsorption uptake, kg/kgads s saturation 
xeq equilibrium uptake, kg/kgads w water 
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