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Prospects & Overviews

Mitochondrial heterogeneity, metabolic
scaling and cell death

Juvid Aryaman1), Hanne Hoitzing1), Joerg P. Burgstaller1)2)3), Iain G. Johnston4)� and
Nick S. Jones1)�

Heterogeneity in mitochondrial content has been previ-

ously suggested as a major contributor to cellular noise,

with multiple studies indicating its direct involvement in

biomedically important cellular phenomena. A recently

published dataset explored the connection between

mitochondrial functionality and cell physiology, where a

non-linearity between mitochondrial functionality and cell

size was found. Using mathematical models, we suggest

that a combination of metabolic scaling and a simple

model of cell death may account for these observations.

However, our findings also suggest the existence of

alternative competing hypotheses, such as a non-linearity

between cell death and cell size. While we find that the

proposed non-linear coupling between mitochondrial

functionality and cell size provides a compelling alternative

to previous attempts to link mitochondrial heterogeneity

and cell physiology, we emphasise the need to account for

alternative causal variables, including cell cycle, size,

mitochondrial density and death, in future studies of

mitochondrial physiology.

Keywords:.cell death; cell size; heterogeneity; metabolic scaling;

mitochondria; mitochondrial membrane potential

: Additional supporting information may be found in the

online version of this article at the publisher’s web-site.

Introduction

Non-genetic heterogeneity describes observable differences
between genetically identical cells, and is a fundamental
observation in cell biology [1–3], with implications for
important biological phenomena including development [4,
5], bacterial persistence [6], cancer malignancy and drug
resistance [7]. It is becoming increasingly recognised that
variability in cellular populations of mitochondria – organ-
elles of central bioenergetic importance – is a significant
source of cellular heterogeneity in eukaryotes. As indicated
experimentally by Das Neves et al. [8], and theoretically by
Johnston et al. [9], mitochondrial variability could be a major
driver of noise in global transcription rate which, in turn, is a
key contributor to the extrinsic cellular noise observed in a
wide range of downstream processes [10–14]. Indeed, recent
studies have suggested that variability in mitochondrial
content plays a direct role in various stochastic cellular
processes, such as differentiation [15, 16], cancer metastatic
potential [17] and chemotherapeutic resistance [18]; metabolic
heterogeneity has also been observed to underlie fluctuations
in prokaryotic systems [19]. These associations underscore the
importance of continuing to expand our understanding of the
origins and consequences of mitochondrial heterogeneity.

The sources of mitochondrial variability are diverse. For
instance, mitochondrial membrane potential (DC) is hetero-
geneous in both intracellular mitochondrial populations [20]
and at the aggregate level between cells [8]. For intracellular
mitochondrial populations, organelles with lower DC are less
likely to join the mitochondrial network and tend to be
eliminated by mitophagy [20], suggesting that DC is a
measure of mitochondrial functionality. Disruption of mito-
chondrial fusion can also lead to intracellular heterogeneity in
DC [21]. While the precise function of mitochondrial networks
is unclear [22], it is likely that a wide range of cellular
functions will depend non-linearly on the degree of
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mitochondrial fusion. It is therefore reasonable to speculate
that cell-to-cell variability in the mitochondrial network state
may have non-trivial consequences for cellular heterogeneity,
for instance, via intermediates such as ATP or reactive oxygen
species production.

Since mitochondria possess their own genomes, which are
replicated, degraded and stochastically partitioned during cell
division [23], variability in copy number and sequence of
mitochondrial DNA (mtDNA) are also important sources of
bioenergetic variability, most dramatically illustrated by the
profound phenotypes associated with mtDNA diseases [24].
Given theexistenceof twoco-existingmtDNAvariants,andstable
mean copy numbers of each species, mathematical modelling
suggests that the variance in mutant load (or heteroplasmy) of
mitochondrial DNA inevitably increases over time [25]. Thus,
given the existence of more than one mtDNA variant, mtDNA
heteroplasmy is also a contributor to mitochondrial variability.

Recent work by Miettinen and Bj€orklund [26] has
generated a rich dataset probing the relationship between
mitochondrial functionality and cell size, as an additional axis
of cellular heterogeneity. The authors also explore the
connection with other cellular features such as apoptosis,
cell cycle and metabolism. In this paper, we consider a set of
quantitative arguments that could account for this dataset. We
invoke several models for bioenergetic scaling, the dynamics
of cell proliferation and death, and the coupling between cell
physiology and mitochondrial content. Amongst the insights
gained from these models, we find that:

� Cell size scaling of cellular power demand may explain the
observed reduction in mitochondrial functionality with
increasing cell size, in large cells;

� The cell’s characteristic (or ‘optimal’) size may be largely set
by a particular form of intrinsic cell growth dynamics,
rather than mitochondrial functionality;

� Cell death alone may be used to explain the observed non-
linearity in mitochondrial functionality with cell size, if
mitochondrial functionality is considered a passive indica-
tor of the health of a cell;

� A non-heritable, non-linear relationship between mito-
chondrial functionality and cell size, as illustrated by
Miettinen and Bj€orklund, is compatible with a wider set of
single-cell data [8] and provides a compelling alternative to
link mitochondrial heterogeneity and cell physiology.

By demonstrating the existence of multiple competing
hypotheses which may account for the data of Miettinen and
Bj€orklund [26], we highlight the importance of considering
variables such as cell cycle, volume, mitochondrial density
and cell death in future studies of mitochondrial heterogene-
ity. We propose further experiments to distinguish these
models and further elucidate the coupling between mito-
chondria and cell dynamics.

Linking mitochondrial heterogeneity and
cell size

Mitochondrial membrane potential is often considered a
measure of mitochondrial functionality, since a higher

membrane potential may support a larger respiratory rate
and ATP/ADP ratio [27, 28], as well as its role in quality
control [20] (although this correspondence may not hold
under all conditions, since inhibiting ATP synthase can cause
membrane potential to increase [28, 29]). It is important to
distinguish between total DC, which is expected to scale with
a characteristic size of the system (e.g. the size of the
mitochondrial population, total cellular protein or some
measure of the size of the cell itself, e.g. the radius), and a
measure ofDCwhich is normalised to account for this scaling.
We denote a relative measure of DCwith rDCm, rDCp or rDCr

for normalisations by mitochondrial mass, total cellular
protein and cell radius, respectively.

ThemainprobewhichMiettinenandBj€orklund [26]used for
normalisingDCwasthelipophiliccationicdye JC-1 [30]. JC-1can
pass cellular membranes and accumulates in regions of
negative potential, such as the mitochondrial matrix. JC-1 is
green-emitting in its monomeric form; however, if its concen-
trationexceedsa thresholdvalue then it formsaggregateswhich
are red-emitting [30]. By taking the ratio of red to green signals,
JC-1 is consideredasa semi-quantitativemeasureof rDCm.Perry
et al. [29] have suggested several complexities in using this
probe. Since aggregates form according to threshold effects
based on the concentration of monomers, JC-1 may be ill-suited
to detecting subtle gradations in DC and has been recom-
mended to be used as a binary indicator of high/low DC.
Furthermore, it has been shown that aggregate formation is
sensitive to loading concentration [31], suggesting that cellular
surface-to-volume ratiomay have an effect on aggregation rate.
This is of particular relevance to the data of Miettinen and
Bj€orklund [26] sincevariations incell sizeareof interest. Finally,
equilibration times tend to be long for JC-1, as canbe seen in [26]
Fig. S2E (although the qualitative observations of this particular
experiment appeared to hold throughout the staining kinetics).

Despite these complexities, many of the key insights of
Miettinen and Bj€orklund [26] were reproduced with other
means of normalising mitochondrial membrane potential.
Throughout their experiments, the authors used flow
cytometry to measure cell size using forward scatter (FSC).
Calibration of FSC is important for its rigorous interpreta-
tion [32]. Upon binning cells by diameter, with bin width of
�100 nm, the authors found good correlation between FSC
and cell radius across the binned populations. DC was
measured with TMRE (another lipophilic cationic dye) and
total cellular protein content using CellTrace FarRed
stain [33] which covalently binds to cytosolic proteins. The
ratio of these signals yields rDCp. The authors found that
rDCp initially increased and subsequently decreased (hence-
forth referred to as ‘turning behaviour’) with increasing cell
radius, which was qualitatively similar to rDCm found via JC-
1 ([26] Fig. S2K, 1C). The authors also used MitoTracker Red as
a measure of DC and MitoTracker Green as a measure of
mitochondrial mass ([26] Fig. 1D). Their data suggested that
rDCr shows turning behaviour with increasing cell radius; re-
analysis of these data also suggests that rDCm shows turning
behaviour with either increasing cell radius or volume (see
Supporting Information Fig. S1).

While the precise interpretation of JC-1 ratio remains
somewhat unclear due to the complexities above, the
empirical observation that median JC-1 monomer
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fluorescence closely tracks median total cell protein suggests
that it is appropriate for normalisation by cell size [26]. The
orthogonal validation experiments suggest some degree of
qualitative similarity between rDCm, rDCp and rDCr, all of
which show turning behaviour with increasing cell radius.
The qualitative agreement between median JC-1 ratio and
these validation experiments suggest that JC-1 ratio is a
qualitative measure of system-size-normalised mitochondrial
membrane potential. We, therefore, use the notation rDC to
denote JC-1 measurements, which the data of [26] suggests
has qualitative similarity to rDCm, rDCp and rDCr. This
turning behaviour was found with the JC-1 probe in immortal
cell lines from human (Jurkat), fly (Kc167) and chicken
(DT40) as well as primary rat hepatocytes and human
primary HUVECs (i.e. non-immortalized cells, [26] Fig. S2L),
providing some evidence that this observation may hold
beyond immortalized cell cultures.

Miettinen and Bj€orklund [26] found that the maximum
rDC over cell size approximately coincided with the modal
cell size – see Fig. 1. The distribution of rDCwas also invariant
to cell cycle stage for cells of an approximately fixed size. The
authors therefore postulated that non-linearity in

mitochondrial functionality results in
an ‘optimal’ cell size [26], indepen-
dently of cell cycle stage.

Cell physiological models
coupled to cell death

Miettinen and Bj€orklund speculate
that an allometric decline causes
reduction in mitochondrial function-
ality with increasing cell size [26, 34],
citing the West, Brown and Enquist
(WBE) model of allometric scaling of
metabolism with body size [35].
Briefly, this model suggests that
transport of materials through fractal
space-filling networks explains the
relationship between organismalmass

and metabolic activity (see Box 1 for a discussion of this
hypothesis). In contrast, the authors speculate that small cells
display low rDC due to a ‘newborn effect’ whereby daughter
cells inherit the low mitochondrial functionality of their
parents, which itself originates from the allometric decline in
the final stages of growth in parent cells. Intermediate-sized
cells were postulated to ‘reset’ their metabolic activity,
increasing it during early stages of growth [26, 34]. However,
both the ‘newborn’ and metabolic ‘reset’ arguments suggest
differences in rDC at different stages of the cell cycle, which
was not observed using JC-1 ([26] Fig. 2D, S3C and D). We note
that the lack of cell-cycle dependence in rDC was not
reproduced independently of the qualitative JC-1 probe, so the
newborn/reset hypothesis remains possible.

Here,we take the approachof first considering a combination
of metabolic scaling and cell death as a possible link between
mitochondrial behaviour and cell physiology. We will later
consider an alternative purely involving cell death as the
underlying causal variable of the observed non-linearity.

A bioenergetic proposal: A combination of
scaling of cellular power demand with cell size,
and cell death, may account for observed
patterns of mitochondrial functionality

In Box 2, we propose that metabolic scaling with a particular
model of cell death may recover the turning behaviour in rDC
with cell radius observed by Miettinen and Bj€orklund [26]. The
model suggests that, under non-pathophysiological circum-
stances, cells alter theirmitochondrial functionality tomaintain
energy supply/demand balance at different cell volumes (v).

The model makes the non-intuitive assumption that cells do
not alter their mitochondrial density in response to volume-
dependent changes in cellular energy demands: one may
speculate that this is due to the timescale of changes in rDC
being able to match cellular energy demands, whereas
mitochondrial mass (n) may not. Proportionality between n
and v has found some support in the literature [37–39].
Indeed, recent mathematical modelling [46] of the cell-
physiological consequences of heteroplasmy in a deleterious

Figure 1. Summary of findings of Miettinen and Bj€orklund. The
authors binned cells by size of windows approximately 100 nm in
diameter. For each bin, the authors measured total mitochondrial
membrane potential, normalised by cell size, (rDC) using the
ratiometric probe JC-1, and reported its median (red curve). A:
Approximate coincidence between the mode of the cell radius
distribution (grey histogram), determined through forward scatter
with flow cytometry, and median rDC. B: Although cells were gated
for cell death using propidium iodide, the smallest cells in the
population were high in an alternative annexin-based sensor of cell
death (pSIVA) after normalisation by cell protein content, suggesting
that these were early apoptotic cells. Observations A and B do not
exclusively rely on JC-1 measurements. C: For approximately fixed
cell size, the authors showed that the distribution of rDC was
approximately invariant across different cell cycle stages (red, blue,
orange histograms), suggesting that the variation in rDC is more
strongly informed by cell volume than cell cycle stage. Note that this
observation was not validated independently of JC-1. Based on
figures from [26].
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mtDNA mutation associated with MELAS [47] has suggested
that failure to maintain the cytoplasmic density of wild-type
mitochondrial DNA is associated with a pathophysiological
response in vitro. However, the data of [26] (neglecting JC-1

measurements) did not strongly constrain the precise
relationship between n and v so other scaling relationships
are feasible, see Supporting Information Section S2 for further
discussion.

The scaling argument culminating in Equation (3) suggests
that rDC decreases with cell volume. This is because
mitochondrial mass has been taken to scale proportionately
with volume but power demands do not (Equation (1)). Small
cells have lower mitochondrial mass, and must therefore have
higher mitochondrial functionality to satisfy the constant
component of power demand placed by, e.g. the nucleus (kn).
As cells become larger and have higher mitochondrial mass,
power demand from thenucleusmaybemore easily satisfied, so
mitochondrial functionality reduces towardsaconstantvaluekv.

This model alone suggests that rDC is a purely decreasing
function of cell volume: however, Miettinen and Bj€orklund
observeda turningpoint in the relationshipbetween rDCand v.
Thedata in [26] show increasedcell death in the smallest cells in
the population [26] (Fig. 3C), and potentially also a subtle
increase in the largest cells. Furthermore, the authors observed
adepolarizedsubpopulationofcellsat lowJC-1monomervalues
([26] Fig. S2G), potentially indicative of a subset of cellswith low
mitochondrial functionality at low cell sizes. Cell shrinkage is
associated with apoptosis [48], as is loss of mitochondrial
membrane potential [49]. Hence, we suggest that smaller cells
have a higher cell death rate, and that mitochondrial
functionality is a passive indicator of cell death under these
circumstances (Fig. 2A). The result of simulating thismodel in a
proliferating population of cells undergoing ‘adder’ dynam-
ics [50, 51],wherebycellsaddaconstant amountof volumeeach
cell cycle, is presented in Fig. 2.

As can be seen in the distribution of cell volumes (Fig. 2C),
adder dynamics imposes a characteristic cell size associated
with themodeof thedistribution,which isoftenreferred toasan
‘optimal’ cell size. Thewidthof thefinaldistribution is set by the
variability in partitioning of volume between daughters at
division (althoughother sources of variabilitymaybeenvisaged
such as noise in the growth rate or the amount of volume added
per cell cycle [54], which are neglected here). Under these
simulation dynamics, themodal cell volume and themaximum
value of rDC are essentially independent (Fig. 2C) and can be
tuned relatively to each other through appropriate choices of
modelparameters.The lackofalignmentbetweenthemodalcell
size and maximal rDC could also be achieved with ‘sizer’
dynamics, where cells divide once exceeding a maximal cell
size. The coefficient of variation (CV) in rDC also showed a
minimum(Fig. 2D), inqualitative agreementwith [26], although
theminimumCVwasconstrainedtocoincidewith theminimum
rDC (see Supporting Information Section S4 for further
discussion). It is therefore largely compatible with the data
of [26] to suggest that a cell’s characteristic size is set by a
particular form of intrinsic cell dynamics, rather than requiring
a direct link with rDC as proposed in [26].

In Supporting Information Section S5, we explore an
alternative hypothesis where cell death rate is a non-linear
function of cell size, and that mitochondrial membrane
potential is a passive readout of cell death rate over all values
of cell volume. We found that this is also a compatible
interpretation of the data presented in [26]. However, the
causality of this model may also be inverted, where

Box 1

Allometric scaling hypothesis of
cellular power demands

The WBE model of allometric scaling [35] claims that the
power-law relationship linking an organism’s metabolic
rate (B) and mass (M) is B / M3/4 and can be derived by
considering the transport of materials through space-
filling fractal networks of branching tubes, for instance
the cardiovascular network of most vertebrates. The
theory was subsequently extended to explain the
metabolic requirements of single cells in terms of
mitochondrial output [36]. Assuming that cell mass
and volume (v) are proportional, through constant
cellular density, and that the power demand (D) of a
cell equates to its metabolic output, the WBE model
suggests that the power demand of single cells scales as
D / v3/4. We model mitochondrial power supply (S) in
terms of mitochondrial mass density (r¼n/v, for
mitochondrial mass n) and mitochondrial functionality
(f) as S / rvf. Miettinen and Bj€orklund [26], as well as
other authors [37–39], suggest that n / v (i.e. r¼ const)
and therefore S / v(rDC) (see Main Text for further
discussion of r variation with v), where we have
interpreted f/ rDC. Using S¼D results in the prediction
that rDC / v�1/4, in contrast to the model we suggest in
Equation (3).

Over the relatively small dynamic range of cell
volume in a population of cells, the rDC / v�1/4

relationship of the WBE model and Equation (3) are
unlikely to make large differences in their predictions.
However, there are some conceptual difficulties in
accepting the WBE model above a simpler energetic
scaling argument. Whilst mitochondria do form fractal-
like networks [40], and the level of fusion of these
networks might have non-linear effects on metabolic
output [22], it is not clear that a system of static,
hierarchical, tubes with fluid flow is an appropriate
modelling framework to describe energy transportation
within single cells. Because of this, and the criticisms
sometimes levelled at allometric scaling [41–43], we
have considered a scaling argument which focusses on
the potential bioenergetic demands from different
specific cellular compartments [44]. Nevertheless, the
fusion status of the mitochondrial network remains an
appealing potential explanation for the mechanism by
which cells alter their mitochondrial functionality to
maintain energetic homeostasis with varying cell vol-
ume. It therefore remains an interesting area of further
study to quantify the extent of mitochondrial fusion and
fission [45] as a function of cell volume to explain the rDC
variations observed by Miettinen and Bj€orklund [26].
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mitochondrial functionality is a non-linear function of cell
volume, and cell death rate is linearly related to mitochondrial
functionality. This interpretation aligns more closely with that
of Miettinen and Bj€orklund [26], who suggest that the

non-linearity between rDC and v underlies their observations.
This highlights the importance of excluding cell death as a
potential confounding variable in future confirmatory studies
so that these hypotheses may be disambiguated.

Future verification studies may include gating cells in
FACS analysis based on the pSIVA cell death probe used
in [26]. Alternatively, fluorescence labelling of upstream
apoptosis markers, such as cytochrome-c, may allow detec-
tion of cells in early stages of cell death [55]. Combining this
with fluorescence microscopy and tracking mitochondrial
membrane potential, mitochondrial mass and cell volume,
may allow early-apoptotic cells to be excluded and verification
of the non-linearity between cell volume and relative
mitochondrial membrane potential.

A parabolic function of mitochondrial
functionality against cell size is compatible with
a mathematical model of mitochondrial variability

A previous model, accounting for the data in [8], described the
cellular consequences of mitochondrial variability in HeLa
cells [9]. That model phenomenologically described mito-
chondrial functionality as a stochastically inherited quantity,
determined through a mean-reverting process (an AR(1)
process). The biological mechanism for the heritability of
mitochondrial functionality was unclear from that study,
although one may speculate that the inherited concentration
of mitochondrial fusion proteins may be a feasible explana-
tion for this. Indeed, recent evidence suggests that the

Figure 2. Power demand scaling, in conjunction with a simple cell
death model, may account for observations of Miettinen et al. Cells
obeying adder dynamics, initialised with random uniform volumes,
were simulated with a volume-dependent death rate. A: Model for
death rate (probability of cell death per unit of simulation time T) as
a function of cell volume. Death rate was assumed to be zero after
cells reach a threshold size for computational convenience. B:
Power demand scaling (black dotted) was determined through a
power supply¼demand relationship in Equation (3). Cell death
scaling (black dashed) was determined through a piecewise linear
relationship in volume (Equation (5)). The mean rDC (grey) was
determined by taking the minimum of the demand scaling and cell
death curves at every point in v (to model switching behaviour which
is continuous in v). Addition of Gaussian noise to the mean
relationship recovers a joint density of v and rDC (red shaded region)
similar to the findings of Miettinen and Bj€orklund ([26] Fig. 1B).
C and D: Cells were binned by volume in silico, and for each bin
the mean and standard deviation of rDC and v were computed. C:
Mean rDC (red points) shows a maximum with respect to volume
which is not aligned with the modal cell volume (grey histogram of
cell volumes), recapitulating the observation of Miettinen and
Bj€orklund ([26] Fig. 1C). D: The coefficient of variation of rDC (red
points) shows a minimum with respect to volume, as observed by
Miettinen and Bj€orklund ([26] Fig. 3A), although the location of the
minimum CV and maximum average rDC are constrained to
coincide in our model (C and D) – see Supporting Information
Section S4 for further discussion. For simulation details, see
Supporting Information Section S3.
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proliferation rate of yeast is heritable, and that slow-growing
cells have higher oxidative stress whose proliferation rate may
be rescued with an anti-oxidant, suggesting a link to
mitochondrial functionality [56]. Further studies are required
to determine whether this is true for a larger class of systems,
including mammalian cells.

The data of Miettinen and Bj€orklund [26] immediately
suggestsanalternativenonlinear relationshipbetween function
and dynamics (see Fig. 1). We hypothesised that this
relationship may be sufficient to account for the data in [8]

without invoking a phenomenological mechanism for the
stochastic inheritance of mitochondrial functionality (though
the stochastic inheritance of mitochondrial mass remains
supported). Briefly, the model of Johnston et al. [9] predicts the
relationship between cell volume, mitochondrial content and
mitochondrial functionality with a pair of coupled ordinary
differential equations. Cells undergo sizer dynamics, and the
population size is controlled to be static over time.

Here, we replace the stochastic inheritance of mitochon-
drial functionality by approximating the result of Miettinen

Box 2

Mathematical model of power demand
scaling and cell death

Wewill relate mitochondrial functionality (rDC(v)) to cellular
volume (v) by modelling rDC as a combination of two
models: the first describes the eventual decrease of rDC(v)
with v using metabolic scaling arguments, denoted by
rDCs. In contrast, the initial increasing part of rDC(v) will be
modelled using cell death arguments and denoted by
rDCm. A combination of rDCs and rDCm will be used to
represent the turning behaviour observed in rDC with cell
volume and therefore also cell radius (as the two are
related through a monotonic relationship).

We relate mitochondrial functionality (rDC) to cellular
volume (v) by considering total cellular power supply (S)
and demand (D). To represent D, we consider contribu-
tionswhich scale with cell volume (e.g. cytoplasmic protein
content), v, surface area (e.g. work done at the plasma
membrane), v2/3, and constant terms which do not scale
with cell size (e.g. replication of the genome). This may be
written as

D ¼ kvv þ ksv
2=3 þ kc ð1Þ

where ki are positive real constants, which were loosely
based on a study of the power demands of thymocytes [44]
(see Supporting Information Section S3 for further
discussion). In general, we might expect S to be of the
form S/ vr(v)f(v), where r(v) is mitochondrial mass density
(r(v)¼ n(v)/v, where n(v) is mitochondrial mass) and f(v) is a
measure of mitochondrial functionality, in an analogous
form to the bioenergetic driving term in [9]. We interpret f(v)
/ rDC(v), since larger values of rDC support a larger
respiratory rate and ATP/ADP ratio [27, 28]. We take r

(v)¼ const for parsimony (see Main Text for discussion).
Hence,

S / v � rDC ð2Þ

We model power supply as being balanced by power
demand, S¼D, with cells varying rDC to maintain this
relationship for various v. Rearrangement for rDC yields

rDCs vð Þ ¼ kv þ ksv
�1=3 þ kcv

�1 ð3Þ

where the subscript s denotes this metabolic scaling
model for rDC.

For the cell death component of mitochondrial
functionality, we assume that the cell death rate (m(v),
the probability of cell death per unit time of individual cells)
increases amongst cells with smaller volumes. Above a
threshold volume (determined by continuity), cell death is
modelled as negligible. We then model relative membrane
potential as a passive indicator of the cellular death rate m,
since cells which are apoptotic tend to have low
mitochondrial membrane potential [49]. We hence use
the following linear functions,

m ¼ �mmv þ cm; ifv <
cm
mm

0; otherwise

8<
: ð4Þ

rDCm vð Þ ¼ �mcmþ cc ð5Þ

where cm, cc, mm and mc are positive real constants. With
this, we recover an alternative description of rDC which
initially increases with volume because rDCm, m and v are
each connected by negative linear relationships.

We combine rDCs and rDCm through a rule which
ensures continuity in rDC. For mathematical convenience,
we choose rDC(v)¼min{rDCs(v), rDCm(v)} for all v. This
function will show a turning point as cells switch from
having their membrane potential governed by risk of cell
death to power demand scaling, for increasing cell size.
rDC is then observed with Gaussian noise N(0,sc) with
standard deviation (SD) sc, which accounts for technical
and biological sources of noise.

We used a stochastic hybrid systems approach [52] to
simulate a population of exponentially growing cells
undergoing ‘adder’ dynamics [50, 51], whereby cells
add a constant amount of volume (Kv) to their initial volume
(v0) each cell cycle, which has found recent support in
bacteria [53]. Cells are modelled to then divide by
stochastically partitioning their volume, with the first
daughter inheriting volume v1¼N((v0þKv)/2,sv) (with SD
sv), and the second inheriting v2¼ v0þKv� v1 through
conservation of mass. Cell death events occur stochasti-
cally according to the rate m(v) (Equation (4)), see
Supporting Information Section S3 for simulation details.
The results of this model are shown in Fig. 2.
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and Bj€orklund as a non-heritable parabolic relationship
between mitochondrial functionality (which we interpret as
rDC) and cell volume v

rDC / f ¼ fmax � fm
v� vopt
vopt

� �2

ð6Þ

where fmax is the peak value of f, occurring when v¼ vopt, and
fm is the steepness of the parabola. In implementing the
original model from [9], it was found that constraining f>0.1
from the AR(1) process (rather than f>0.01 described in [9])
yielded a better comparison to experimental cell cycle lengths.
The result of replacing the AR(1) process in [9] with the
deterministic relationship in Equation (6) is shown in Fig. 3.

We found that whilst the distributions of cell volume and
mitochondrial mass were relatively unchanged (Fig. 3A and B),
mitochondrial functionality had greater skewness under the

parabolic model (Fig. 3C). The distribution of total mitochon-
drial content nfwas narrower in the parabolicmodel (SD¼ 11.5)
than the original model (SD¼ 17.4) (Fig. 3D) which has poorer
agreement with data from [8]. However, the cell cycle length
distribution in the parabolic model hadmuch better agreement
in its standard deviation (SD¼ 5.07) than the original model
(SD¼ 25.2) compared with data (SD¼ 5.13) (Fig. 3H). The low
degree of correlation between cell cycle lengths between parent
and daughter cells was also retained (Original: R2¼0.11,
Parabolic: R2¼0.05) in agreement with the data of [8]
(Fig. 3C of [9]). Overall, this shows that the non-heritable
non-linear mechanism between mitochondrial functionality
and cell volume found in [26] may broadly account for the data
in [8] without invoking a phenomenological stochastic model
for the inheritance of mitochondrial functionality.

Conclusion

Heterogeneity in mitochondrial content is exerted along many
axes, including intrinsic functional variability, network status
and genetic variability. A host of cellular phenomena are
affected by noise, a growing number of which are being
directly attributed to mitochondrial variability. The study of
Miettinen and Bj€orklund [26] has extended this picture by
probing the link between mitochondrial content and cell
volume, suggesting a non-linear relationship between mito-
chondrial functionality and cell radius.

We have shown that a simple model of power demand
scaling predicts a decreasing trend in relative mitochondrial
functionality with increasing cell volume. By combining this
with a simple cell death model, we were able to qualitatively
account for a large number of observations by Miettinen and
Bj€orklund [26]. We also found that incorporating the nonlinear
relationship between rDC and cell volume as suggested by
Miettinen and Bj€orklund into a model of mitochondrial
heterogeneity [9] was broadly consonant with a wider set of
single cell data [8]. We have found that it is also compatible
with the data of [26] to suggest that cell death is the causal

Figure 3. Nonlinear connection between mitochondrial functionality
and cell volume is consonant with a wider set of single cell data.
Replacing the stochastic process determining mitochondrial func-
tionality (Original) with the parabolic relationship in Equation (6)
(Parabolic), and comparisons with data from [8] where available. A:
Distribution of cell volumes is relatively unchanged by the modifica-
tion of f. B: Distribution of mitochondrial mass in both models are
comparable with data. C: Distribution of mitochondrial functionality.
Since Equation (6) is deterministic, f cannot exceed its maximal
value fmax, causing the skewness observed. D: The distribution of
total mitochondrial functionality nf has a reduced variance in the
parabolic model, which departs somewhat from the data of [8]. E:
Relationship between ratio of cellular volumes at birth and the ratio
of cell cycle lengths for sister pairs. F: Relationship between ratio of
mitochondrial contents at birth and the ratio of cell cycle lengths for
sister pairs. Both models are comparable with data in E and F. G:
Mean cell cycle lengths� standard deviation for the original (O) and
parabolic (P) models, as well as the experimental observation in [8]
(Data). The variance in cell cycle lengths is greatly reduced, since an
additional source of variability is removed in P from the deterministic
relationship Equation (6), which has better agreement with data.
vopt¼2000, fm¼2.0, fmax¼1.0. All other parameters appearing in
the original model were kept the same as [9].
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variable in determining the non-linearity in rDC. Our analysis
has shown the existence of multiple competing hypotheses
which are able to account for the data of Miettinen and
Bj€orklund, thus highlighting the importance of accounting for
cell cycle, volume, mitochondrial density and cell death in
future single-cell studies of mitochondrial heterogeneity.
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