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Abstract. We present a framework for adapting consensus clustering
methods with superpixels to segment oropharyngeal cancer images into
tissue types (epithelium, stroma and background). The simple linear
iterative clustering algorithm is initially used to split-up the image into
binary superpixels which are then used as clustering elements. Colour fea-
tures of the superpixels are extracted and fed into several base clustering
approaches with various parameter initializations. Two consensus clus-
tering formulations are then used, the Evidence Accumulation Clustering
(EAC) and the voting-based function. They both combine the base clus-
tering outcomes to obtain a single more robust consensus result. Unlike
most unsupervised tissue image segmentation approaches that depend
on individual clustering methods, the proposed approach allows for a
robust detection of tissue compartments. For the voting-based consensus
function, we introduce a technique based on image processing to gener-
ate a consistent labelling scheme among the base clustering outcomes.
Experiments conducted on forty five hand-annotated images of oropha-
ryngeal cancer tissue microarray cores show that the ensemble algorithm
generates more accurate and stable results than individual clustering
algorithms. The clustering performance of the voting-based consensus
function using our re-labelling technique also outperforms the existing
EAC.

Keywords: Superpixel segmentation · Consensus clustering ·
Histology · Histopathology · Image analysis

1 Introduction

The automatic segmentation of digitised histological images into regions repre-
senting different anatomical or diagnostic types is of fundamental importance
c© The Author(s) 2017
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for developing digital pathology diagnostic tools. Superpixel segmentation is
an advanced method to group image pixels with similar colour properties into
atomic regions to simplify the data in the pixel grid [1]. Recently, superpixel
methods have been combined with pattern recognition techniques for image
segmentation (e.g. [2]) where certain features (e.g. colour, morphology) are
extracted from the superpixels and then fed to pattern recognition procedures
that assign each superpixel to an expected histological class. Supervised methods
are built from labelled training sets to predict the classes of novel unlabelled data
and they require access to ground truth reference images for the training. In con-
trast, unsupervised approaches (clustering analysis) do not require pre-labelled
training sets for their learning but instead rely on certain similarity measures
to group data into separate homogeneous clusters. In histopathological imaging
analysis, clustering is particularly useful as an exploratory tool as it can provide
information about hidden anatomical or functional structures in images.

Clustering algorithms use different heuristics and can be sensitive to input
parameters, i.e. repeatedly applying different clustering methods on the same
dataset often yields different clustering results. Furthermore, a given clustering
algorithm may give rise to different results for the same data when the initialisa-
tion parameters change. Consensus Clustering (CC) [3] methods have addressed
this issue by combining solutions obtained from different clustering algorithms
into a single consensus solution. In unsupervised learning, this enables more
accurate and robust estimation of clusterings when compared to single clus-
tering algorithms. CC is often performed in two main steps, (a) the cluster
ensemble generation, and (b) the consensus function, which finds a consensual
opinion of the ensemble. CC techniques have proved efficient in a variety of prac-
tical domains; their application to histological image segmentation is, however,
relatively new.

In this work, we investigate the use of CC in the context of superpixel-
based segmentation of haematoxylin and eosin (H&E) stained histopathological
images. We suggest a multi-stage segmentation process. First, we use the recently
proposed Simple Linear Iterative Clustering (SLIC) superpixel framework [1,4]
to segment the image into compact regions. Colour features from each dye are
extracted from the superpixels and used as input to multiple base clustering
algorithms with various parameter initializations. The generated results (denoted
here as partitions) pass through an ensemble selection scheme which generates a
more effective ensemble based on partitions diversity. Two consensus functions
are considered here, the Evidence Accumulation Clustering (EAC) [5] and the
voting-based consensus function (e.g. [6,7]).

Unlike supervised methods, labels resulting from unsupervised techniques are
symbolic (i.e. labels do not represent a meaningful class), and consequently an
individual partition in the ensemble includes clusters that do not necessarily have
labels that correspond to other clusters in different partitions of the ensemble. In
the voting-based consensus function the label mismatch is defined as the problem
of finding the optimal re-labelling of a given partition with respect to a refer-
ence partition. This problem is commonly formulated as a weighted bipartite
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matching formulation [6,7], and it is solved by inspecting whether data pat-
terns in two partitions share labels more than with other clusters. In this paper,
we present an alternative simple, yet robust, implementation for generating a
consistent labelling scheme among the different partitions of the ensemble. Our
approach considers the space occupied by each individual cluster in an image
and exploits the fact that pairs of individual clusters from different partitions
would match when their pixels largely overlap in a segmented image.

2 Related Work

SLIC [1] is an advanced superpixel method that generates compact, mostly uni-
form superpixels by agglomerating pixels based on colour similarity and prox-
imity in the image plane. Achanta et al. [4] conducted an empirical comparison
of SLIC with other state-of-the-art superpixel algorithms, which revealed the
superiority of SLIC in terms of performance and speed. They also showed that
SLIC is easy to use and implement, low in computational cost and requires
fewer parameters than other algorithms. All these features are potentially use-
ful for automatic segmentation of large, complex and variable histopathological
images. SLIC superpixels have been used before to facilitate and improve unsu-
pervised segmentation of histopathological images. SLIC was applied in [2] as a
pre-processing step to decrease the complexity of large histopathological images.
Colour descriptors of the generated regions were then used in an unsupervised
learning formulation of the probabilistic models of expected classes using the
Expectation-Maximisation (EM) [8].

Consensus Clustering (CC) methods have emerged for improving robust-
ness, stability and accuracy of unsupervised learning solutions. Contributions
in this field include the EAC [5] and voting-based algorithms. A comprehensive
survey of existing clustering ensemble algorithms is presented in [3]. The voting-
based literature utilizes different heuristics in attempting to solve the labelling
correspondence problem. This problem is commonly formulated as a bipartite
matching problem [6], where the optimal re-labelling is obtained by maximizing
the agreement between the labelling of an ensemble partition with respect to a
reference partition. The agreement is estimated by constructing a K × K con-
tingency table between the two partitions, where K is the number of clusters in
each partition1. Each entry of the contingency table holds the number of cluster
label co-occurrences counted for the same set of objects in the two partitions.

There have been previous publications on CC in unsupervised histopatho-
logical segmentation, but to the best of our knowledge, its application to
superpixel-based segmentation remains unexplored. Simsek et al. [9] defined a set
of high-level texture descriptors of colonic tissues representing prior knowledge,
and used those in a multilevel segmentation where they used a cluster ensem-
ble to combine multiple partitioning results. Khan et al. [10] proposed ensemble
clustering for pixel-level classification of tumour vs. non-tumour regions in breast

1 The two partitions should contain the same number of clusters, K.
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cancer, where random projections of low-dimensional representations of the fea-
tures and a consensus function combined various partitions to generate a final
result.

3 Unsupervised Superpixel-Based Segmentation
with Consensus Clustering

3.1 Dataset and Preprocessing

Our data consisted of H&E stained tissue images (paraffin sections) of human
oropharyngeal cancer processed into tissue micro arrays (TMAs), prepared at
the Institute of Cancer and Genomic Sciences, University of Birmingham, UK.
H&E is the commonest staining method used in routine diagnostic microscopy;
haematoxylin primarily stains nucleic acids and nuclei in blue/violet while the
eosin counter-stain primarily stains proteins in the intra- and extra-cellular com-
partments in pink. TMAs are usually used for the analysis of tumour markers
of multiple cases (cores) in single batches where there is a need to identify vari-
ous components in the samples. Samples were digitised using an Olympus BX50
microscope with a x20 magnification objective (N.A. 0.5, resolution 0.67 µm )
and a QImaging Retiga 2000R camera and a tunable liquid crystal RGB filter
(Surrey, BC, Canada).

Tissue core images were ≈3300 × 3300 pixels (inter-pixel distance of 0.367
µm). Fifty five images were used for the analysis (ten for training and forty
five for testing), which provided the range of variations in tissue distributions
typically found in this type of histological material (2.3 to 98.8% of epithelium
tissue component and 25.5 to 83.2% of background out of the whole image).

As a preprocessing step, colour deconvolution [11] was applied to the H&E
image I to separate the RGB information into haematoxylin-only and eosin-only
images. With this procedure, up to three dyes (in our case, H&E) can be sepa-
rated into ‘stain’ channels. This can be applied when the colours of the dyes on
their own are known and combine as light-absorbing dyes. In the case of two-dye
stains, a third component is a residual channel of the deconvolution process. The
results of the colour deconvolution can be combined into a “stain” RGB image
here denoted I∗ to better represent the dye absorption of the different tissue
types. In I∗ the R, G and B channels now hold the light transmittance of the
haematoxylin, eosin and residual images, instead of containing the RGB compo-
nents. The feature extraction discussed in Sect. 3.3 is applied to this image I∗.

3.2 Superpixel-Based Segmentation

The SLIC segmentation spits-up the original image I into a set of superpixels
held in a binary image S. The superpixels tend to be compact and relatively uni-
form. They are formed by pixel grouping based on colour similarity and spatial
proximity. In detail, a k -means algorithm [12] is used to cluster a five-dimensional
vector consisting of the 3 components of a pixel colour in CIELAB space and the
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pixel spatial coordinates. A special similarity measure is then exploited, replac-
ing the standard Euclidean distance, which weighs the distance in the colour and
spatial domain. This measure weighs the relative importance between color simi-
larity and spatial proximity in the five-dimensional space. Furthermore, it allows
the size and compactness of the resulting superpixels to be adjusted, providing
some control over the number of superpixels generated.

In our experiments, we used the recently proposed jSLIC [13], a Java imple-
mentation of SLIC that is faster than the original (in [14]). Unlike the original,
jSLIC avoids computing the same distances between data by exploiting precom-
puted look-up tables. Borovec et al. showed that the jSLIC is able to segment
large images with intricate details into uniform parts, which is particularity use-
ful for complexity-reduction problems (as is the case here). The authors also
defined a function f that compromises between superpixel compactness and the
alignment of object boundaries in the image. This is expressed as: f = m · z2,
where m is the initial superpixel size and z is a regularisation parameter which
affects the superpixel compactness. The value of z lies within the range [0,1],
where 1 yields nearly square segments and 0 produces very ‘elastic’ superpixels.
To ensure an effective segmentation, we performed a cross validation procedure
for the configuration of these two parameters, as discussed in the Experiments
and Evaluation section.

3.3 Feature Extraction

Colour features are known for their relevance in visual perception and are
exploited here for the discrimination of superpixels into different histological
regions. Our H&E images contain at least three types of regions that uptake
dyes differently: (1) stratified squamous epithelial tissue (a ‘solid’ tissue with
densely packed cells which appear more darkly stained than the rest), (2) con-
nective stroma, which is less cellular and contains abundant extracellular matrix,
blood vessels, inflammatory cells, and sometimes glandular tissue, and (3) back-
ground areas, often appearing white or neutral grey. First the colour descriptors
for each superpixel in image S are computed but instead of referring to the
original I, these are extracted from the data in image I∗, so they become ‘stain
features’ that quantify the distribution of the stain uptake in the superpixels. We
used eleven measures for each stain (mode, median, average, average deviation,
standard deviation, minimum, maximum, variance, skew, kurtosis and entropy)
for each of the three colour deconvolution components (haematoxylin, eosin and
the residual channel), forming a vector of thirty-three colour descriptors per
superpixel.

3.4 Consensus Clustering (CC) Frameworks

The CC framework exploited here involves three main steps (1) creation of an
ensemble of multiple cluster solutions, (2) selection of an effective sub-set of
cluster solutions based on their diversity measure, and (3) generation of a final
partition via the so-called consensus function. A clustering algorithm takes the
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set X = {x1, x2, ..., xn} of n superpixels as an input, and groups it into K clusters
(epithelium, stroma and background regions) forming a data partition P . Note
that xi is characterized here by the 33-dimensional colour features described in
the previous section.

Ensemble Generation and Selection. First, a number of q clustering results
are generated for the same X, forming the cluster ensemble E, where E =
{P1, P2, ...Pq}. To this end, we used five different clustering algorithms and ran
each of those multiple times while varying their parameters. There are two fac-
tors that influence the performance of this approach: one is the accuracy of the
individual clusters (Pi) and the other is the diversity within the ensemble E.
Accuracy is maintained by tuning a set of effective clustering methods to obtain
the best set of results. Regarding the diversity of E, it was shown in [15] that a
moderate level of dissimilarity among the ensemble members (E) improves the
consensus results. For this, we studied the diversity within E, using the Rand
Index (RI) similarity measure [16], and created a more effective sub-set of cluster
solutions to represent the new ensemble, denoted here as E′. This new ensem-
ble was obtained by pruning out significantly inconsistent partitions as well as
identical or closely-similar partitions.

Given clustering solutions Pi in the original ensemble E, in order to decide
whether Pi is included in E′, we measure how well Pi agrees with each of the
clustering solutions (Pj) contained in E, where i = 1, · · · q, as follows:

similarity(Pi, E) =
1

q − 1

q∑

j=1

RI(Pi, Pj), (1)

where (Pi, Pj ∈ E) and (i �= j). The RI counts the pairs of points (in our
case superpixel pairs) on which two clusterings agree or disagree and it is com-
puted as:

RI(Pi, Pj) =
TP + TN

TP + FP + TN + FN
, (2)

where TP and TN are the number of pairs correctly grouped in the same, and
different clusters, respectively. FP is the number of dissimilar pairs assigned to
the same cluster and FN is the number of similar pairs grouped in different
clusters. The RI lies between 0 and 1, where 1 implies the two partitions agree-
ing perfectly and 0 that they completely disagree. We defined two thresholds
T1 and T2 that correspond to the minimum and maximum accepted levels of
diversity among the partitions. If Pi exhibits an acceptable level of diversity
with respect to the rest of the population in E (i.e. similarity(Pi, E) ≥ T1 and
similarity(Pi, E) ≤ T2) then it is considered as an eligible voter and is added to
the new ensemble E′. If the opposite applies then the partition is excluded from
the new ensemble. The total number of selected partitions in E′ is denoted here
as q′, where q′ ≤ q. E′ is formed as follows,

E′ = {Pi | similarity(Pi, E) ∈ [T1, T2]}. (3)
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The next step consists of finding the consensual partition, denoted here as P ∗,
based on the information contained in E′. For this we use two consensus functions
described below.

Evidence Accumulation Consensus (EAC) Function [5]. This method,
denoted here as EAC-CC, considers the co-occurrences of pairs of patterns in
the same cluster as votes for their association. In particular, the algorithm maps
the q′ partitions in E′ into an n×n co-association matrix M . Each entry in M is
defined as Mij = uij/q

′, where uij is the number of times the pattern pair (i, j)
are grouped together in the same cluster among the q′ partitions. The more
frequent a pair of objects appear in the same clusters, the more similar they
are. Note that M is needed here because of the label correspondence problem
occurring among partitions of E′. M can now be viewed as a new similarity
measure among the data patterns and it comprises real numbers ranging from 1
(perfect consensus among partitions) down to 0 (no association). The consensus
cluster P ∗ is obtained by applying an appropriate similarity-based clustering
algorithm on M (e.g. the hierarchical agglomerative clustering algorithm [17]).
The final clustering output here (P ∗) is represented in another image, namely
S′. Although the interpretation of the results of the EAC are intuitive, it has a
quadratic complexity in the number of patterns, O(n2).

Voting-Based Consensus Function. This method, denoted here as Vote-CC,
utilizes a majority voting technique to find the P ∗ that optimally summarizes E′,
first, however, it solves the problem of labelling correspondence among different
partitions in E′. Here we propose a simple re-labelling algorithm using imaging
processing tools to match the symbolic cluster labels between the different par-
titions in E′. The method finds the optimal re-labelling of a given partition P
with respect to a reference fixed partition P ′. P ′ is selected from E′ as the one
with highest RI with respect to the ensemble (see Eq. 1).

As we are dealing with images, we first assign the labels resulting from the
P ′ and P to the corresponding regions (or superpixels in this case) located in
the binary segmented image S. The labelled regions are displayed in K unique
colours in two images denoted here as IMG′ and IMG for P ′ and P , respectively.
For example, superpixels with cluster assignments of ‘1’, ‘2’ and ‘3’ in P will be
represented in IMG as blue, red and green, respectively. We assume that the
number of clusters ranges from 1 to K and the partitions in E′ group the data
(superpixels) into three clusters (epithelium, stroma and background regions).
However, due to the label mismatching problem a pair of correlated clusters from
different partitions may be assigned different labels. Our target is therefore to
permute the labels, so the cluster labels in P are in the most likely agreement
with the labels in P ′.

To this end, individual clusters displayed in images IMG′ and IMG, denoted
here as kp′ and kp, are visualized in two binary images IMG′

kp′ and IMGkp
,

respectively. Note that kp′ ∈ P ′ and kp ∈ P . The algorithm then estimates
the degree of overlapping between IMG′

k′
p

and IMGkp
, to assess the similarity

between the individual clusters (kp′ and kp). The similarity is obtained using
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the Jaccard Index (JI) [16], defined as the ratio between the pixel-counts of the
intersection and union of IMG′

kp′ and IMGkp
as follows:

JI(IMG′
k
p′ ,IMGkp )

=
|IMG′

kp′ ∩ IMGkp
|

|IMG′
kp′ ∪ IMGkp

| , (4)

JI values range from 0 (denoting no matching between IMG′
k′
p

and IMGkp
, and

hence between kp′ and kp) to 1 (denoting perfect matching). For every label
kp′ ∈ P ′ we compute JI(IMG′

k
p′ ,IMGkp )

obtained against all kp ∈ P . Then, we

find the maximum JI value which gives the most similar cluster in P to k′
p. If

k′
p and its highest similar kp have different labels then the match is achieved by

swapping the labels in the original image IMG and therefore the labels in P .
The procedure then stores the swapped labels as well as their corresponding JI in
two variables. These are needed in order to track whether a label pair of (kp, kp′)
has already been swapped in a previous iteration. If true, then swapping kp′ and
kp is only performed if they have higher JI value than before (i.e. the swapped
pair of (kp, kp′)). The process is repeated until all labels in IMG have been
inspected against the ones in IMG′, and therefore clusters in P are matched
with P ′. Note that P ′ remains unchanged throughout the re-labelling process.
The procedure is summarized in Algorithm 1 and it has a complexity of O(K3).
The now aligned labels for all the partitions are combined into a final consensus
partition P ∗ via a majority voting technique. In exceptional cases, where the
number of votes are equal we select the vote of the partitions that produce the
highest total similarity (RI) with respect to the ensemble E′ (Eq. (1)). As before,
P ∗ will be represented in image S′.

The idea of cluster re-labelling based on a similarity assessment has been
proposed before in relation to voting-based consensus methods. However, those
approaches are implemented based on inspection of the labels of data points (i.e.
samples as abstract objects with no shape or size) while our re-labelling captures
the similarity in a different way, based on the overlap of the superpixels, which
in turn represent image regions with their own shapes and sizes.

4 Experiments and Evaluation

The effectiveness of the proposed methodology—CC applied to superpixel-based
segmentation—was evaluated in the context of clustering accuracy obtained
against five standard clustering approaches: (1) k-means [12], a centroid based
algorithm, (2) Unsupervised Learning Vector Quantization (LVQ) [18],
LVQ algorithm for unsupervised learning, (3) EM [8], a distribution based
method (4) Make Density Based (MDB) [19], a density based algorithm, and
(5) Agglomerative Hierarchical Clustering (AH) [17], a pairwise distance
based approach. These algorithms were chosen to include a range of different
clustering strategies to ensure diversity in the ensemble.

All imaging procedures and machine learning algorithms were implemented
on the ImageJ platform [20] using the WEKA data mining JAVA libraries [21]
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Algorithm 1: Label matching algorithm for the Vote-CC method

Input: P, P ′, S, n, K

Output: Labels matched for P with respect to P ′

for (s=1 to n) do
Assign label of P ′

s to superpixel Ss and save in image IMG′

Assign label of Ps to superpixel Ss and save in image IMG

end for
for (k′

p=1 to K) do

for (kp=1 to K) do
Threshold k′

p in IMG′, convert to mask and save in IMG′
k′
p

Threshold kp in IMG, convert to mask and save in IMGkp

Compute JI(IMG′
k
p′ ,IMGkp

) using eq.(4)

end for
MaxJI = max{JI(IMG′

k
p′ ,IMGkp

), where kp = {1 · · · K}}

if (kp′ �= kp)

SwappedLabels = (kp′ , kp)

JISwappedLabels(k
p′ ,kp) = MaxJI

if (kp, kp′) /∈ SwappedLabels

Swap kp′ and kp and save result in IMG

else if (kp, kp′) ∈ SwappedLabels and JISwappedLabels(k
p′ ,kp) > JISwappedLabels(kp,k

p′ )
Swap kp′ and kp and save result in IMG

end If
end If

end for
Assign the new labels in IMG to partition P

running on an Intel R core(TM) i7-4790 CPU running at 3.60 GHZ, with 32 GB
of RAM and 64-bit Linux operating system. All the algorithms were quantita-
tively evaluated by comparing their results with forty five gold-standard H&E
stained images (denoted here as R) from oropharyngeal cancer TMAs. A set of
R images were obtained by manually labelling them into epithelium, stroma and
background areas by one of us (GL) with a background in Oral Pathology.

We used three well-known clustering measures [16] to evaluate the algorithm
results: (1) The Rand Index (RI) was used to compare the final consensus
clustering solution given in image S′ with their corresponding reference partition
given in the gold-standard image R and it is estimated as, RI(S′, R) (see Eq. (2)),
where TP , TN , FP , or FN were calculated by considering the overlapping
superpixels of S′ and R (as explained before). (2) F1-score that is defined as:
2 · precision·recall

precision+recall , (3) Jaccard Index (JI) that is defined as: JI = |S′∩R|
|S′∪R| ,

In all experiments, (hyper)parameters of jSLIC and CC methods were tuned
via a cross-validation procedure on a training set of ten additional images. For
the superpixel segmentation, the regularisation parameter z and the initial super-
pixel size m were tuned over the values of (0.2, 0.3, 0.4) and (40, 50, 60),
respectively. We found that the optimal values were at 0.3 and 60 for z and
m, respectively. The number of clusters was fixed to three in all experiments,
corresponding to three most distinct types of content: epithelium, stroma and
background regions. The ensemble of cluster solutions was generated by running
the five aforementioned clustering algorithms multiple times with various para-
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meter settings. The number of seeds in k -means and EM algorithms were chosen
randomly from the range [10, 300]. Learning rates in the LVQ algorithm were
set at the values of 0.05, 0.07, 0.09, 0.1 and 0.3. The AH algorithm was used
with Complete and Mean link types. The ensemble generation process yielded
a total of thirty one clustering solutions, stored in the initial pool of cluster
solutions, E. The diversity selection strategy was applied to form another better
performing ensemble E′. For this, we assigned the values of 0.5 and 0.9 to the
diversity acceptance thresholds T1 and T2, respectively.

Table 1 presents a quantitative comparison of the EAC-CC and Vote-CC
methods with five individual clustering approaches (mentioned above). For each
of the individual clustering algorithms, we selected the result of the best per-
forming run (out of the multiple runs) then we evaluated its mean RI, F1-score,
JI and the standard deviations across the forty five images. Figure 1 provides
a visual comparison of our output against the clustering methods. For display
purposes we randomly selected one clustering output (out of the multiple runs)
to represent the performance of the individual clustering approaches.

The results showthatEAC-CCandVote-CCfollowing jSLICsegmentationpro-
ducethemostaccurateresultsoutofthe individualclusteringstested(81%and82%,
respectively). The accuracy of theVote-CCcomes very close to the one inEAC-CC.
However, Vote-CC significantly outperformed EAC-CC in execution time. This is
due toEAC-CChaving a large complexity of the orderO(n2) (in our case,n reached

Fig. 1. Examples of tissue regions detection in seven H&E images. From left, the orig-
inal image, gold-standard, EAC-CC, Vote-CC and the individual clustering methods
after superpixel segmentation. Black, white, magenta and green colours correspond
to the segmentation lines, background, epithelium and stroma regions, respectively.
(Color figure online)
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Table 1. Performance evaluation of the EAC-CC and Vote-CC frameworks compared
against five individual clustering approaches in terms of mean RI, F1-score and JI along
with standard deviations (±) across the forty five images. The best results (Vote-CC
method) are marked in bold font.

Measure EAC-CC Vote-CC k -means LVQ EM MDB AH

RI(±) 0.81 0.82 0.78 0.77 0.76 0.79 0.72

±(0.05) ±(0.05) ±(0.15) ±(0.11) ±(0.16) ±(0.07) ±(0.12)

F1-score(±) 0.74 0.75 0.71 0.72 0.69 0.73 0.68

±(0.08) ±(0.09) ±(0.15) ±(0.12) ±(0.14) ±(0.09) ±(0.15)

JI(±) 0.71 0.72 0.69 0.61 0.66 0.68 0.60

JI(±) ±(0.10) ±(0.10) ±(0.18) ±(0.12) ±(0.20) ±(0.13) ±(0.17)

Time (ms) 748.95 31.02

up to5000 in some images)while the complexityofVote-CC isO(K3) (withK = 3).
Theresultsalsoreveal thatCCmethodsresult ingreaterconsistency inperformance
over individual clusteringmethodsas illustratedby lower standarddeviationsof the
RI and F1-scores. This consistency can be seen visually by comparing the results in
Fig. 1. In particular, despite the apparent satisfactory clustering results obtained
by the single algorithms across most images, they all failed to perform well in some
cases (e.g. notice the unstable performance of the LVQ, MDB and AH in the seven
examples depicted in Fig. 1).

5 Conclusion

We presented a method of tissue segmentation of histopathological images using
superpixels and Consensus Clustering (CC), a combination that, to our knowl-
edge, has not been applied before in quantitative microscopy. Our approach
decreases the spatial complexity of images while retaining important information
about their contents which are essential for enabling automated pre-screening
and guided searches on histopathological imagery. The proposed method per-
forms an unsupervised detection of image regions that correspond to three classes
of interest: epithelium, connective and background areas. A superpixel segmenta-
tion was initially performed that was followed by a CC technique which combines
the ‘opinions‘of several clustering algorithms into a single, more accurate and
robust result. Our work exploited two CC functions, the EAC and the voting-
based. For the latter, we introduced a label matching technique which imposed
consistency to the different base clustering outcomes. The method is easy to
understand and implement and specially tailored for unsupervised imaging seg-
mentations. Qualitative and quantitative results tested on a set of forty five
hand-segmented H&E stained tissue images verified that the CC methods out-
perform the individual clustering approaches in terms of the accuracy of the
results and consistency. Furthermore, the voting-base CC using our re-labelling
technique outperforms the EAC in terms of execution time.
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The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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