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ABSTRACT 9 

Verified static and dynamic models of an operational works were used alongside Monte-10 

Carlo conditions and Non-Dominated Sorting Genetic Algorithm II (NGSAII) to optimise 11 

operational regimes. Static models were found to be more suitable for whole WTW 12 

optimisation modelling and offered the additional advantage of reduced computational 13 

burden.  Static models were shown to predict solutions of comparable cost when applied to 14 

optimisation problems whilst being faster to simulate than dynamic models. 15 
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Total Organic Carbon (TOC); Total Expenditure (TOTEX); True Number (TN); Unique non-22 

dominated Number (UN) and Water Treatment Works (WTW). 23 

INTRODUCTION 24 

The demand for improved water quality is resulting in treatment becoming more rigorous, 25 

energy intensive and costly (Plappally and Lienhard 2013). This increase in treatment costs 26 

can be illustrated by the specific real costs of energy and chemicals increasing at Oslo’s 27 

Water Treatment Works (WTW) by approximately 250% between 2000 and 2009 (Venkatesh 28 

and Brattebo 2011). Lowering the costs of establishing and operating water works is therefore 29 

necessary to help ensure sustainable provision of good quality drinking water in the future. 30 

Optimisation of water treatment strives to achieve the water quality demanded whilst also 31 

minimising capital, operational or life costs. This process is essential to ensure that water 32 

suppliers remain economical. 33 

To compare different water treatment solutions over their entire life span it is necessary to 34 

evaluate total expenditure (TOTEX). Annual TOTEX estimations can be calculated by 35 

summing the annual operational (OPEX) and the annualised capital (CAPEX) expenditure 36 

values (based on assumed asset lifespans and interest rates). The calculation of CAPEX and 37 

OPEX costs of different treatment methods can be estimated using empirical relationships 38 

based on previous projects (Gumerman et al. 1979, McGivney and Kawamura 2008, Sharma 39 

et al. 2013). These estimated costs are traditionally specified by treated volumes independent 40 

of quality, with construction considerations such as tank volumes and pump specifications 41 

not considered. These relationships can be of use when planning costs, assessing budgets, 42 

evaluating options and seeking funding and design services but they have a degree of 43 

uncertainty of approximately 30% (Sharma et al. 2013). Detailed costing of WTWs is not 44 
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possible until detailed specifications and designs have been completed. It was not possible to 45 

optimise WwTWs in terms of TOTEX here due to a lack of appropriate costing formulas 46 

which could consider the influence of design on operating performance. 47 

Optimising water treatment is complex as it involves multiple, non-linear relationships 48 

between solution parameters that are often constrained and multiple objectives that are often 49 

conflicting. It is also important that the varying operating conditions of WTWs (for example 50 

raw water turbidity or temperature) are represented accurately. These challenges can be met 51 

using numerical models (which allow the impact of process modifications on final water 52 

quality); Monte-Carlo methods (which allow the influence of variability to be assessed) and 53 

Genetic Algorithms (GAs) (which have historically been proven to be effective at solving 54 

non-linear problems). In this work, for the first time, operating regimes, identified by genetic 55 

algorithms from performance criteria assessed by static and dynamic WTW models, were 56 

compared. This work was also novel in the application of whole works optimisation 57 

techniques to case study data from an operational works. The models used were calibrated 58 

and verified to observed performance and both solids removal and disinfection performance 59 

criteria were assessed. 60 

 61 

METHODS 62 

Site Description 63 

The WTW from which case study data was used (Figure 1) is based in a rural location with 64 

water abstracted from a lowland reach of a river which was impounded in a reservoir prior to 65 

treatment. The water treated was divided into two treatment streams, one of which had 66 

Hopper Bottomed Clarifier (HBC) and the other Dissolved Air Flotation (DAF) clarification 67 
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treatment. In both streams the water had ferric sulphate coagulant added before flocculation 68 

and clarification took place. Post-clarification, the waters were blended together before being 69 

filtered through dual media (anthracite/sand) Rapid Gravity Filters (RGFs). The water then 70 

passed through a balance tank, to reduce the fluctuations in discharge that were caused by the 71 

backwashing of the filters, before being treated by Granular Activated Carbon (GAC) 72 

adsorbers. Chlorine gas was dosed upstream of the contact tank controlled by a feedback loop 73 

that was dependent on the free chlorine concentration entering and exiting the contact tank. 74 

Disinfected water was dosed with sodium bisulphite to reduce the free chlorine to a residual 75 

concentration for distribution. To help reduce corrosion of the distribution network, calcium 76 

hydroxide and orthophosphoric acid were dosed. The WTW had a maximum treatment 77 

capacity of 60 Ml/d. 78 

Figure 1 WTW Schematic 79 

  80 
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Computational WTW models 81 

The clarification (DAF and HBC), filtration and disinfection processes were all modelled 82 

statically and dynamically for comparative purposes. The coagulation and GAC processes, 83 

which were only modelled statically, were included so that the influence of varying organic 84 

matter concentrations on the solids removal and disinfection models could be assessed. 85 

In the dynamic model, the HBCs were modelled using a similar method to that presented in 86 

Head et al. (1997). The clarifier was modelled as a series of CSTRs which may contain a 87 

sludge blanket which varies in size and composition dependent on the velocity and solids 88 

concentration of the water passing through it.  Making the assumptions that the blanket 89 

concentration and height remain consistent and the flow through the clarifier is plug flow, the 90 

removal of solids was modelled as an exponential decay equation in the static model. These 91 

differences meant that the dynamic model, unlike the static model, would be able to represent 92 

the influence of sludge blanket condition, including blanket loss, more accurately for 93 

changeable conditions.  94 

Flow through the DAF tank was modelled as plug flow in the static model by an exponential 95 

decay equation with the rate of decay dependent on the attachment efficiency of bubbles onto 96 

suspended solids (Edzwald 2006). In the static model, the attachment was assumed to occur 97 

only in the initial contact zone. In the dynamic model mixing is applied using a representative 98 

number of CSTRs and the entire tank is modelled as a contact zone. The dynamic model 99 

would have provided more stable clarified turbidity than the static model due to the degree of 100 

mixing that would have been modelled. 101 

The removal of solids by filtration was modelled in the static model using the Bohart & 102 

Adams model (1920). In the dynamic model, the input suspended solids concentration and 103 
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the superficial velocity were taken as running means over a filtration run. This acted to 104 

dampen the response of the output turbidity to fluctuating water quality. Backwashes could 105 

also be triggered by head loss or filtered turbidity exceeding maximum limits in the dynamic 106 

model. Clean bed head loss was estimated on the assumption of Darcy flow (using the 107 

Kozeny–Carman equation and head loss due to solids accumulation was calculated using a 108 

relationship from Adin & Rebhun (1977). The static model did not require head loss to be 109 

calculated as unscheduled backwashes were not modelled. 110 

Chlorine decay within the static model was calculated using a first order exponential decay 111 

curve. In the dynamic model, a representative number of CSTRs identified based on the 112 

contact tank hydraulic efficiency were used again allowing a degree of mixing to be 113 

represented. An overview of the mechanisms used to model the works are shown in Table 1. 114 

The models were programmed using Simulink, an extension of MATLAB that provides an 115 

interactive graphical environment for modelling time varying systems. Process models were 116 

built as modules that were then grouped together to represent the whole WTW. For further 117 

details of the models applied see Swan (2015) and Swan et al.(2016). 118 

  119 
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Table 1 Modelling methods used to represent WTW 

Process Parameter 
Model 

Dynamic Static 

General Water density Empirical relationship with temperature (Civan 2007). 

Dynamic 

viscosity 

Empirical relationship with temperature (Kestin et al. 1978). 

Degree of 

mixing 

Approximation to plug flow 

proportional to number of continuous 

stirred tank reactors (CSTRs) in 

series. 

Plug flow. 

Suspended 

solids (SS) 

SS (mg/l) : turbidity (NTU) ratio 2:1 (WRc 2002, Binnie et al. 2006). 

SS removal 

efficiency 

parameters 

Empirical relationships with reservoir turbidity (Swan 2015) 

Coagulation 

by ferric or 

aluminium 

based 

coagulants 

SS Stoichiometric analysis based on assumption that metal ions in coagulants 

form metal hydroxides which precipitate out of solution Warden (1983) as 

reported by Binnie et al.(2006). 

TOC TOC adsorption onto coagulants surface using a Langmuir isotherm 

(Edwards 1997). Dosing model to attain target clarified TOC concentration. 

pH Carbonate chemistry (Stumm and Morgan 1970, Snoeyink and Jenkins 

1980) similar to method described in Najm (2001). 

HBC SS Removal by varying density floc 

blanket (Head et al. 1997) 

Exponential decay 

DAF SS Attachment efficiency of flocs onto air bubbles (Edzwald 2006)  

Attachment occurs throughout mixed 

tank (WRc 2002). 

Attachment occurs only in contact 

zone under plug flow (Edzwald 

2006). 

RGF SS Adsorption of SS onto filter media (Bohart and Adams 1920, Saatci and 

Oulman 1980). Filter ripening represented by empirical attachment 

coefficient (WRc 2002). 

Input SS and superficial velocity are 

taken as running means over a 

filtration run. 

Historic conditions have no 

influence. 

Backwashes triggered by duration, 

head loss or filtered turbidity 

exceeding set values. 

Backwashes scheduled only 

Head loss Clean bed head loss assumes Darcy flow (using the Kozeny-Carman 

equation). Influence of solids accumulation (Adin and Rebhun 1977). 

GAC TOC Typical reduction of 25% of clarified TOC due to filtration and GAC 

adsorption (Brown et al. 2011). 

Chlorination Residual free 

Cl2 

Instantaneous demand assumed to be met between dosing and water 

reaching contact tank. The bulk decay of chlorine in the contact tank is 

modelled using first order decay rate. An empirical decay rate parameter 

relationship with initial dose, temperature, TOC and bromide concentration 

based on Brown (2009). 

CSTRs represent degree of mixing 

occurring 

Plug flow assumed 

Contact time t10, the time taken for 10% of the concentration of a tracer chemical to be 

detected at the outlet of the tank after being added at the inlet (Teixeira and 

Siqueira 2008). 

Trihalomethanes 

(THM) 
Formation of THMs proportional to free chlorine consumption (Clark and 

Sivaganesan 1998, Hua 2000, Brown et al. 2010). 

Discharge Empirical relationship between time since last RGF backwash and treated 

volumes (Swan 2015). 
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The models were calibrated using a combination of data collected every 15 minutes by the 120 

eScada system and manual monthly measurements during 2011.  The models were then 121 

verified using data from the first nine months of 2012.  Separate calibration and verification 122 

data were used so that the models were not replicating conditions previously observed. A data set 123 

for the entirety of 2012 was not used due to incomplete data sets for some of the parameters 124 

required.  Observed coagulant doses and a dosing algorithm were used with the process 125 

models in separate simulations. The algorithm calculated the required dose to ensure the 126 

clarified TOC did not exceed a specified concentration using Edwards’ (1997) model, which 127 

is based on the Langmuir equation. 128 

The root mean square errors (RMSEs) of the models were found to be approximately ±0.3 129 

NTU for clarified turbidity; ±0.05 NTU for filtered turbidity; ±0.15 mg/l for residual free 130 

chlorine and ±5 µg/l for trihalomethane formation. This degree of accuracy was acceptable 131 

as it was comparable to the tolerances which were allowed between automated and manual 132 

readings taken at the observed WTW (±0.25 NTU for clarified turbidity; ±0.1 NTU for 133 

filtered turbidity and ±0.1 mg/l for residual free chlorine). 134 

The dynamic models were found to be more accurate than the static models. When observed 135 

time series input data were applied to the models, the RMSEs of the dynamic model were 136 

found to be at least 5% less for the solids removal models (HBC and DAF clarified and rapid 137 

gravity filtered turbidity) and between 1% to 3% less for the disinfection models (residual 138 

chlorine concentration, CT and THM formation). The mean filtered turbidity and THM 139 

formation were also found to be underpredicted by the models. This was taken into 140 

consideration in the analysis of the optimisation results. Further details of the accuracy of the 141 

models is provided elsewhere (Swan et al. 2016). 142 
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In order that the performance of the WTW could be assessed for conditions other than those 143 

observed, synthetic time series data were produced using a Monte-Carlo approach. In the 144 

Monte-Carlo simulations, the model inputs were varied for each simulated day for a 145 

simulated year, using randomly produced values from non-standard probability distributions. 146 

Values between 0 and 1 were created using a random number generator which were then 147 

translated into concentrations of alkalinity, bromide, TOC as well as values of turbidity, pH, 148 

abstraction rate, temperature and UV absorbance using cumulative distribution functions. The 149 

non-standard distributions (shown in Figure 2 to Figure 9) were used, as the operating 150 

conditions parameters were found to approximate to different or none of the ‘standard’ 151 

distributions considered (normal, exponential, extreme value, log normal, weibull). These 152 

distributions were representative of the conditions observed in 2012 and were used in the 153 

optimisation procedure described below. 154 

Correlations between water quality parameters and abstraction rates were not represented. No 155 

correlations between abstraction rate and raw turbidity or temperature were found to exist. 156 

Possible relationships between TOC or bromine concentration with UV254 absorption were 157 

not assessed due to a lack of sufficient data. These relationships have been shown to exist 158 

elsewhere by Clark et al. (2011) and could have been present. Although the lack of 159 

representation of correlations between water quality parameters is a potential limitation of the 160 

Monte-Carlo approach, the accuracy of the model to predict failure likelihood was not found 161 

to decrease substantially when it was applied. Coagulant doses were calculated using a 162 

method based on the Edwards (1997) algorithm dependent on reservoir organics 163 

concentration and composition identified stochastically (see Swan et al. (2016) for further 164 

details). 165 
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Figure 2 Alkalinity CDF 166 

Figure 3 Bromide CDF 167 

Figure 4 Turbidity CDF 168 

Figure 5 pH CDF 169 

170 

Figure 6 Abstraction rate CDF 171 

Figure 7 Water temperature CDF 172 

Figure 8 TOC CDF 173 

Figure 9 UV254 CDF 174 
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The likelihood that one or more of the target criteria, given in Table 2, were not achieved at 175 

any moment was used as the performance parameter P(failure). The observed P(failure) for 176 

2012 was approximately 0.3. When historical time series input data were applied to the 177 

models, P(failure) was predicted to within ±0.15. Applying Monte-Carlo conditions resulted 178 

in the error in predicted P(failure) increasing to ±0.20. 179 

Table 2 Good operating performance criteria 

Parameter Success criteria 

Blended clarified turbidity < 1 NTU 

Filtered turbidity < 0.1 NTU 

CT > 60 mg.min/l 

THM < 25 µg/l 

 180 

Operating cost and failure likelihood genetic algorithm optimisation 181 

A multi-objective optimisation problem was set to minimise the operating cost and failure 182 

likelihood of a WTW. The operating regimes were constrained, as shown in Table 3. The 183 

performance of solutions were evaluated over a simulated year with stochastically varying 184 

conditions for each generation. Water quality and abstraction rates were sampled 185 

independently each simulated day from characteristic probability distributions (see Figure 2 186 

to Figure 9). 187 

  188 
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 189 

Table 3 Operating regime options 

Parameter Range Increments 

Proportion of water treated by DAF stream 0% to 100% 1% 

Target clarified TOC concentration (mg/l) 1 to 5 0.1 

DAF compressor pressure (kPa) 300 to 700 10 

Filtration run duration (hrs) 24 to 96 1 

Contact tank inlet chlorine concentration (mg/l) 1 to 6 0.1 

The design of the works in terms of the numbers of clarification and filtration units, and the 190 

volume of the contact tank were the same as observed at the operational site (see Table 4). 191 

Table 4  Operating regime optimisation set parameters 

Parameter Value 

HBC units 10 

DAF units 7 

RGF units 8 

Contact tank volume 2400 m
3
 

In order that different operating regimes might have their comparative costs compared, 192 

costing formulae were produced. All costs were calculated at current value (taken as being 193 

December 2012) and where historical data were used, they were adjusted to current value 194 

based on the consumer price indices produced by the Office for National Statistics (2013). 195 

The total annual comparative costs of operating the works were calculated as shown in 196 

Equation 1 (further details provided in Swan, 2015). 197 

£𝑡𝑜𝑡𝑎𝑙 = £𝑐𝑜𝑎𝑔𝑢𝑙𝑎𝑛𝑡 + £𝐷𝐴𝐹 + £𝑏𝑎𝑐𝑘𝑤𝑎𝑠ℎ + £𝑠𝑙𝑢𝑑𝑔𝑒 + £𝐶𝑙2
+ £𝑆𝐵𝑆 + £𝑙𝑖𝑚𝑒 Equation 1 

where: £total = total comparative cost (£); £coagulant = cost of coagulant (£); £DAF = cost of DAF 198 

clarification (£); £backwash = cost of filter backwashing (£); £sludge = cost of sludge disposal (£); 199 

£Cl2 = cost of chlorination (£); £SBS = cost of sodium bisulphite (£) and £lime = cost of lime (£). 200 
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Evolutionary Algorithms (EAs) have repeatedly proved to be flexible and powerful tools for 201 

solving a plethora of water resource problems (Nicklow et al. 2010). Over the past 20 to 25 202 

years research in this field has focused on developing and testing new EAs and applying them 203 

to new problems (Maier et al. 2014). It has been found that certain EAs work better for 204 

certain problems than others but our understanding of why is limited (Maier et al. 2014). The 205 

choice of an appropriate method and associated parameters is dependent on achieving the 206 

best balance between exploiting the fittest solutions found so far and exploring the unknown. 207 

This work contributes towards increasing our understanding of applying GAs (a type of EA) 208 

to a real-world context along with the complexities this entailed. A GA was applied alongside 209 

a moderately computationally intensive simulation and with uncertainty in operating 210 

conditions represented by Monte-Carlo methods (also computationally demanding). To 211 

improve the efficiency of the process it was attempted to calibrate the GA’s internal 212 

parameters and to limit the precision of the solutions. 213 

The optimisation of the multi-objective problem was carried out using a Non-Dominated 214 

Sorting Genetic Algorithm II (NSGAII) method (Deb et al. 2002). Real-value coded NSGAII 215 

has previously been shown to exhibit good diversity preservation in comparison with some 216 

other GAs (Pareto Archived Evolution Strategy (PAES) (Knowles and Corne 1999), Strength 217 

Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1998) and binary coded NSGAII) 218 

and to be able to identify Pareto fronts in both constrained and non-constrained problems 219 

(Deb et al. 2002, Laumanns et al. 2002). NSGAII was also found to give the best overall 220 

performance in comparison to 5 other state-of-the-art multi-objective evolutionary algorithms 221 

when applied to 12 benchmark problems by Wang et al. (2015).  Some papers have shown 222 

that other GAs (usually created by the paper’s authors) can outperform NSGAII using a range 223 

of benchmark test problems and performance parameters. These other GAs include: FastPGA 224 
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(Eskandari et al. 2007); EMOPOS (Toscano-Pulido et al. 2007); MOCell, OMOPSO, AbYSS 225 

(Nebro et al. 2008); SMPSO (Durillo et al. 2010); SMPSO (again); ϵMOEA; and EMOACO-226 

I (Mortazavi-Naeini et al. 2015). Despite NSGAII being outperformed in these cases, it 227 

continues to be used as a well-established benchmark for new developed methods in 228 

computationally intensive problems. This is due to its common usage, established 229 

performance and availability of code (Mortazavi-Naeini et al. 2015). It is possible that 230 

another GA could have been more efficient in identifying near-optimal solutions to the 231 

problem posed but NSGAII was deemed a suitable algorithm for proof of concept that GAs 232 

could be used to optimise WTW operation and design. 233 

To identify suitable internal parameters for the NSGAII algorithm, preliminary optimisations 234 

were carried out over an arbitrary 12-hour period using a control set of parameters (Table 5) 235 

and alternative runs where individual parameters were adjusted. The values selected for the 236 

preliminary trial were based on values used in previous literature (Nazemi et al. 2006, Sarkar 237 

and Modak 2006, Tang et al. 2006, Jain et al. 2007, Sharifi 2009). A complete cross 238 

comparison between the parameters was not completed due to the prohibitive computational 239 

demands of achieving this. The final generation of solutions identified by the genetic 240 

algorithms were used to assess the effectiveness of the optimisations. Comparisons of 241 

solutions generated from multi-object problems should evaluate i) distance of the obtained 242 

Pareto front from the true Pareto front; ii) uniformity of distribution of solutions in the Pareto 243 

front and iii) the extent of the obtained Pareto front to ensure that a wide range of objective 244 

values is covered (Zitzler et al. 2000). As no single metric completely measures algorithm 245 

performance, 8 metrics as suggested by Mala-Jetmarova et al. (2015) were used to measure 246 

the quality of the solutions identified and their similarity and proximity to the true Pareto 247 

front. An overall score was calculated for each optimisation with uniform weighting for each 248 
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metric. Non-uniform waiting, as applied in Mala-Jetmarova et al. (2015), was not used as it 249 

adds unnecessary subjectivity. 250 

Table 5 Sensitivity analysis of GA parameters 

 Control ηc=30 ηc=10 ηm=30 ηm=10 Pc=0.9 Pc=0.5 
Pm= 

0.15 

Pm= 

0.05 

pop= 

50 

pop= 

10 

O
p

er
at

in
g 

co
st

 o
p

ti
m

is
at

io
n

 

D
yn

am
ic

 m
o

d
el

 

NN 100% 100% 97% 54% 97% 80% 97% 100% 90% 92% 100% 

UN 34% 27% 24% 34% 30% 44% 17% 17% 67% 14% 13% 

TN 0% 0% 83% 0% 0% 50% 0% 0% 90% 0% 0% 

GD* 24.5 7.5 0.2 3.3 24.4 4.7 15.1 44.8 0 44.4 1.1 

IE 2.0 2.1 1.1 2.1 2.0 1.3 2.2 1.4 2.0 1.7 4.2 

SM* £156 £154 £150 £150 £151 £152 £152 £152 £151 £155 £154 

EX 140% 100% 91% 89% 140% 99% 107% 139% 86% 124% 0% 

SC* 7.0 1.6 0.3 0.1 7.4 1.2 20.5 7.0 0.0 5.7 NaN 

Score 66% 68% 83% 64% 65% 78% 53% 61% 85% 57% 36% 

St
at

ic
 m

o
d

el
 

NN 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

UN 77% 64% 93% 70% 73% 17% 77% 77% 77% 32% 90% 

TN 0% 0% 10% 0% 27% 0% 27% 57% 20% 2% 0% 

GD* 47.0 48.6 86.4 115.3 27.1 71.2 3.0 10.2 30.7 37.4 2.3 

IE 1.7 1.2 1.1 1.7 1.6 1.7 1.1 1.0 1.7 2.0 4.2 

SM* £141 £147  £146  £145  £143  £151  £142  £140  £147  £142  £140  

EX 80% 122% 81% 187% 91% 166% 83% 100% 116% 80% 65% 

SC* 2.5 10.5 2.7 19.8 1.0 30.6 9.7 16.1 10.5 6.4 5.3 

Score 69% 72% 71% 68% 77% 59% 77% 80% 76% 63% 63% 

Mean of 
Scores 

± standard 
deviation 

68±2% 70±33% 77±88% 66±3% 71±9% 69±713% 65±117% 70±14% 80±6% 60±4% 50±19% 

x103 251 
Known Pareto front (PFknown): final Pareto front returned at termination, for the particular parameter 252 
setting combination. 253 
True Pareto front (PFtrue): best possible Pareto front (often not known for complex problems). Formed 254 
here out of all of the solutions identified using all the parameter setting combinations. 255 
Non-dominated number (NN): the percentage of non-dominated solutions in PFknown.  256 
Unique non-dominated number (UN): percentage of unique non-dominated solutions in PFknown. 257 
True number (TN): percentage of solutions in PFknown, which are members of PFtrue. 258 
Generational distance (GD): measure of how close PFknown is to the PFtrue. Calculated as Root Mean 259 
Square Error (RMSE) of Euclidean distance between the all solutions in PFknown and the nearest solution 260 
in PFtrue. GD=0 indicates that PFknown=PFtrue. 261 
ε-indicator (IE): ‘the smallest distance that an approximation set (PFknown) must be translated in 262 
order to completely dominate a reference set (PFtrue) (Kollat et al. 2008). Factor by which PFknown is 263 
worse than PFtrue with respect to all objectives. The minimum factor such that any objective vector in 264 
PFknown is dominated by at least one objective vector in (PFtrue) (Zitzler et al. 2003). The IE metric 265 
adopts values equal or bigger than 1. A result IE=1 indicates that PFknown=PFtrue. 266 
S-Metric (SM): the area covered by the PFknown from the worst possible solution specified. 267 
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Extent (EX): ratio of Euclidean distance between the objective function values of two outer solutions in 268 
PFknown to Euclidean distance between the objective function values of two outer solutions in PFtrue  269 
(expressed as percentage). 270 
Spacing (SC): represents the spread of solutions in PFknown. It is calculated using Equation 2 where εi is 271 
the Euclidean distance between the ith solution and its closest neighbour in PFknown, 𝜀 ̅is the mean of 272 
all εi. 273 

𝑺𝑪 =  √
∑ (𝜺̅ − 𝜺𝒊̅)

𝟐𝒏
𝒊=𝟏

𝒏 − 𝟏
 

Equation 2 

Score calculated as mean value of all metric scores where: GD scored 0% for the maximum value and 274 
100% for a value of zero; IE scored 0% for the maximum value and 100% for a value of one; SM scored 275 
0% for a value of zero and 100% for a maximum value (P(failure) =1, Operating cost = £200,000) and 276 
SC scored 0% for the maximum value and 100% for a value of zero. 277 

Through examination of the sensitivity analysis results, no clearly optimal set of parameters 278 

were identified but conclusions were drawn regarding some of the parameters (see Table 5). A 279 

mutation probability (Pm) of 0.05 was found to improve the meta score of the optimisations 280 

substantially. The optimisations performance score proved to be relatively insensitive to 281 

mutation distribution index (ηm). Based on the results of the sensitivity analysis, the GA 282 

internal parameters finally applied are shown in Table 6. The suitability of using a hundred 283 

generations was assessed by assessing the influence of simulating an additional hundred 284 

generations on the performance of the GA (see Results and Discussion sections). A cross-285 

over distribution index (ηc) of 30 was also applied based on the performance of another 286 

optimisation process which was carried out at the same time (see Swan (2015)). Although 287 

individually tailored NSGAII parameters for each optimisation may have increased 288 

efficiency, consistent values were used so that the influence of model type on the process 289 

could be assessed more clearly. 290 

 Table 6 NSGAII parameters used 

 ηc ηm Pc Pm pop Generations 

Control 20 20 0.7 0.1 30 n/a 

Final 10 20 0.7 0.05 30 100 

where: pop = population; Pc = probability of cross-over; ηc = cross-over distribution index; 291 

Pm = probability of mutation and ηm = mutation distribution index. 292 
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To make the search for near-optimal solutions more thorough, and to reduce the influence of 293 

possible premature convergence, the optimisation was carried out three times using different 294 

initial random seeding. The loss of Pareto solutions, a known deficiency of the NSGAII 295 

process, was addressed through the compilation of a secondary population of all parent 296 

solutions identified through each optimisation. A non-dominated sorting algorithm was then 297 

applied to these solutions to compile a new super Pareto set as previously applied by Wang et 298 

al. (2015) to identify best-known Pareto fronts to benchmarking problems. 299 

The University of Birmingham’s BlueBEAR high powered computing cluster (HPC) was 300 

used to complete the optimisations. Optimisations were carried out using multiple 48 hour 301 

sessions on a single core of a 64-bit 2.2 GHz Intel Sandy Bridge E5-2660 worker with 32 GB 302 

of memory. The computational time required to simulate and evaluate a generation of 303 

solutions (up to 60 solutions) using the dynamic model took approximately 1 hour. The static 304 

model, in comparison, took approximately 20 minutes. The time spent evaluating solutions 305 

using the NSGAII algorithm was insignificant in comparison to the time spent simulating 306 

WwTW performance. 307 

RESULTS  308 

Degree of optimisation achieved 309 

The degree of optimisation achieved by the GA was assessed by observing the variance of 4 310 

optimisation metrics. These metrics assessed how the objective functions, non-dominated 311 

fraction and convergence of the solution population varied generationally. Greater 312 

optimisation was assumed if these metrics were found to stabilise, indicating that the solution 313 

set was not evolving significantly towards fitter solutions. To give greater confidence in the 314 

degree of optimisation achieved after an initial hundred generations, an additional hundred 315 
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generations were simulated for comparison. Based on visual assessment of the optimisation 316 

metrics (convergence metric, mean cost function, mean failure likelihood and proportion of 317 

Pareto solutions), no improvements in optimisation results were observed by increasing the 318 

number of generations from 100 to 200 for both optimisation problems. 319 

Figure 10 shows the Pareto optimal solutions identified after 100 and 200 generations. Pareto 320 

solutions are not inferior to each other both in terms of their cost and performance criteria 321 

(i.e. they are not dominated). The general profile of the Pareto fronts using both models, did 322 

not change considerably beyond the 100
th

 generation in comparison to the significantly 323 

different results identified using the different models. Therefore, for the purposes of 324 

comparing solutions identified using the dynamic and static models, the Pareto solutions 325 

identified after simulating 100 generations were representative. 326 

Figure 10 Comparative cost vs. failure likelihood of Pareto optimal solutions 327 

The application of dynamic or static models was not found to consistently identify more 328 

optimistic or conservative solutions to the optimisation problem. The relative costs of the 329 

solutions identified were dependent the failure likelihood of the solutions identified. An 330 
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overview of the optimal values identified in comparison to the currently applied values is 331 

given in Table 7. 332 

Table 7 Currently applied and optimised values for P(fail) 0% to 5% 

Parameter Currently 

Applied 

Static Model 

Optimal value 

Dynamic Model 

Optimal value 

Operating regime optimisation 

Water treated by DAF stream 55% 55% to 100% 85% to 100% 

Target clarified TOC 

concentration 

2.5 mg/l 

(estimated) 

4.6 mg/l to 5.0 mg/l 4.8 mg/l to 5.0 mg/l 

DAF compressor pressure 400 kPa  400 kPa to 550 kPa 510 kPa to 700 kPa 

Filtration run duration 48 hrs 96 hrs 89 hrs to 96 hrs 

Contact tank inlet free 

chlorine concentration 

1.6 mg/l 1.3 mg/l to 1.5 mg/l 1.3 mg/l to 1.8 mg/l 

 333 

Coagulation 334 

Figure 11 Target clarified TOC vs. failure likelihood of Pareto optimal solutions 335 

 336 

Figure 11 shows that target clarified TOC concentrations of between 4 to 5 mg/l were 337 

identified as being optimal using both models (approximately double the concentration 338 

currently predicted at the operational site) regardless of the solutions’ reliabilities. The target 339 

TOC concentrations predicted using both models were similar; with their Pareto optimal 340 
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solutions both having mean values of 4.9 mg/l and standard deviations of 0.2 mg/l. The 341 

higher target clarified TOC concentrations resulted in lower coagulant doses and 342 

subsequently reduced: (i) coagulant; (ii) pH/alkalinity adjusting chemical; and (iii) sludge 343 

disposal costs. Lower solids loading of the clarification and filtration stages was also 344 

achieved. The findings suggest that the historically greater use of coagulant at the site was 345 

inefficient and potentially necessary only due to known mixing issues at the site. Higher TOC 346 

concentrations would, however, likely result in increased THM formation (which was seen to 347 

be underpredicted by the model) and biological growth in the distribution system. 348 

 349 

Filtration 350 

Figure 12 Filtration run length vs. failure likelihood of Pareto optimal solutions 351 

The near-optimal filtration run lengths identified in the operational cost optimisation were 352 

found to be in the region of the maximum value of 96 hours (Figure 12), with low standard 353 

deviations and negligible correlation with failure likelihood (dynamic model 95.3 ± 2.7 354 

hours, static model 95.1 ± 3.7 hours). The models therefore predicted that filtration run 355 
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durations could be increased significantly beyond their existing operational duration of 48 356 

hours, without increasing the failure likelihood of the works substantially. As solutions 357 

identified using the static model predicted these extended durations, frequent unscheduled 358 

backwashes were not required to achieve this performance and therefore disruption to 359 

operational routine was predicted to be minimal. 360 

Chlorination 361 

Figure 13 Inlet chlorine concentration vs. failure likelihood of Pareto optimal solutions 362 

The inlet free chlorine concentration identified as optimal reduced as the failure likelihood 363 

increased. This relationship was comparable for both models. Solutions with failure 364 

likelihoods less than 40% were found to require greater than 1 mg/l of free chlorine and the 365 

maximum dose identified using the dynamic model was 1.8 mg/l in comparison to 1.5 mg/l 366 

using the static model. These results indicate that for the observed operating conditions, the 367 

existing inlet concentration of 1.6 mg/l is appropriate to provide the required degree of 368 

disinfection cost effectively without exceeding the final water THM concentration limit set 369 

often. 370 
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DISCUSSION 372 

The failure likelihood of the solutions was unconstrained and most Pareto solutions identified 373 

had failure likelihoods greater than 50%. As reliable solutions are of greater interest, the use 374 

of some mechanism to limit the failure likelihood could have resulted in more efficient use of 375 

computational resources, although premature convergence would have been a concern. Not 376 

constraining the failure likelihood of solutions also resulted in the near-optimal solutions 377 

identified by the static and dynamic models being difficult to compare, as they inhabit 378 

different regions of the search space. The use of constrained or pseudo-constrained 379 

acceptable failure likelihoods, as carried out by Gupta and Shrivastava (2006, 2008, 2010), 380 

would have allowed easier comparison of solutions identified using the different models. 381 

Constraining the precision of solutions (using the increments allowable in Error! Reference 382 

source not found. Table 3) and simulating only unique solutions each generation improved 383 

the efficiency of the search process. Solutions identified in previous generations did however 384 

required their failure likelihood to be reassessed each generation. This was necessary because 385 

of the variance in conditions between runs (found to result in approximately a 5% variance in 386 

failure likelihood). This continual assessment of failure likelihood did have the advantage 387 

that over multiple generations, the solution population was assessed against an increasingly 388 

diverse set of conditions, resulting in a more robust population evolving. If the sampling of 389 

the conditions was increased so that the variance in performance of the model was negligible 390 

between runs, then it could be possible that only newly identified solutions would need their 391 

failure likelihood evaluated. For computationally demanding models this could improve the 392 

reliability of results (as a greater combination of conditions could be assessed) and possibly 393 
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reduce the computational demand (as individual solutions would only be assessed once). 394 

Further research is required to examine the potential of this. 395 

The static and dynamic models were similar in predictive ability in terms of their RMSE 396 

(±5%), likelihood of failing the performance targets (±5%) (Swan 2015) and optimal 397 

operating regimes identified through the use of a genetic algorithm (see Figure 11 to Figure 398 

13). Despite these similarities, the Pareto fronts identified using the different models were 399 

substantially different (see Error! Reference source not found. Figure 10). Neither model 400 

resulted in the identification of consistently more reliable solutions. The relative costs of the 401 

solutions identified by the models were dependent on the failure likelihoods of the solutions 402 

identified.  403 

Although the GA process identified contact tank inlet free chlorine concentrations similar to 404 

those applied in reality, in future it would be more useful to optimise contact tank outlet 405 

concentrations. This is because in practice residual free chlorine concentration is closely 406 

controlled by feedback control systems. The influence of coagulant dosing on the 407 

consumption/cost of chlorination could then be optimised and the formation of disinfection 408 

by-products could be predicted more accurately. 409 

A relatively high target clarified TOC concentration (approximately 5 mg/l) was identified as 410 

being optimal due to the lower doses of coagulant required. Although this was predicted not 411 

to result in excessive free chlorine consumption or disinfection by-product formation, 412 

application of this operating regime may not be suitable, as insufficient destabilisation of 413 

colloids or excessive organic growth in the distribution network could result. Longer duration 414 

filtration runs were also identified as being preferable. This agrees with the observed 415 

performance, where excessive head loss or turbidity breakthrough were rarely observed at the 416 
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WTW. As the identified optimal filtration duration (96 hours) was considerably outside the 417 

calibration conditions observed, limited confidence should be placed in this estimate but it is 418 

believed that the application of longer filtration runs would have been more efficient at the 419 

examined site. 420 

The recommendations from this research have not been applied to the WTW from which the 421 

case study data was taken. Attempting to apply the amendments to the operating regime 422 

suggested by the optimisations through pilot plant or full scale investigations would be 423 

informative future research. 424 

 425 

CONCLUSIONS 426 

Static models were found to have similar accuracy as dynamic models and their use alongside 427 

GAs predicted similar solutions to an operational optimisation problem. The application of 428 

dynamic or static models was not found to consistently identify more economical or costlier 429 

solutions. The use of static models reduced the computational requirements of carrying out 430 

optimisations (the optimisations using the dynamic models were found to take five times the 431 

computational resources of the static models), allowing a greater number of operating 432 

conditions to be considered and/or generations to be simulated. Static models also had no 433 

requirement for the sampling frequency of operating condition parameters to be defined... 434 

Based on these findings, it is concluded that future whole WTW modelling optimisation 435 

studies should favour the use of static models. 436 

The constraining of the precision of solution parameter values and simulation of only unique 437 

solutions was identified as a method of increasing the optimisation efficiency. Increasing the 438 

number of stochastic conditions which are simulated so that the variance in performance 439 
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between runs using alterative seeds is insignificant could allow unique solutions to only 440 

require a single evaluation for all generations. This method should be considered for future 441 

Monte-Carlo optimisation studies. Future comparisons of failure/cost optimisations using 442 

different model types should also consider limiting the failure likelihood to allow easier 443 

comparison of results.  444 

In comparison to the observed operating conditions at the WwTW from which the case study 445 

came from, the following predictions were made by the optimisations to comply with the 446 

performance goals specified more than 95% of the time: 447 

 It should be possible to reduce the coagulant dose applied whilst still achieving 448 

sufficient treatment. This reduction in coagulant dosing could only be made if 449 

sufficient mixing was achieved at the site and the influence on distribution network 450 

organic growth was assessed to be tolerable. 451 

 Filtration run durations could be increased significantly beyond their existing value 452 

of 48 hours 453 

Finally, effective future CAPEX and TOTEX optimisation work will benefit greatly if 454 

costing formulas for WwTWs which can be linked to predicted performance are developed. 455 
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