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Abstract 33 

Context: Alterations in the cAMP signalling pathway are common in hormonally-active endocrine 34 

tumors. Somatic mutations at GNAS are causative in 30-40% of GH-secreting adenomas. Recently, 35 

mutations affecting the USP8 and PRKACA gene have been reported in ACTH-secreting pituitary 36 

adenomas and cortisol-secreting adrenocortical adenomas, respectively. However, the pathogenesis of 37 

many GH-secreting adenomas remains unclear. 38 

Aim: Comprehensive genetic characterization of sporadic GH-secreting adenomas and identification of 39 

new driver mutations. 40 

Design: Screening for somatic mutations was performed in 67 GH-secreting adenomas by targeted 41 

sequencing for GNAS, PRKACA, and USP8 mutations (n=31) and next-generation exome-sequencing 42 

(n=36).  43 

Results: By targeted sequencing known activating mutations in GNAS were detected in 5 cases 44 

(16.1%), while no somatic mutations were observed in both PRKACA and USP8. Whole exome 45 

sequencing identified 132 protein-altering somatic mutations in 31/36 tumors with a median of 3 46 

mutations per sample (range: 1-13). The only recurrent mutations have been observed in GNAS 47 

(31.4% of cases). However, 7 genes involved in cAMP signalling pathway were affected in 14 of 36 48 

samples and 8 samples harbored variants in genes involved in the calcium signalling or metabolism. 49 

At the enrichment analysis, several altered genes resulted to be associated with developmental 50 

processes. No correlation between genetic alterations and the clinical data was observed.  51 

Conclusions: This study provides a comprehensive analysis of somatic mutations in a large series of 52 

GH-secreting adenomas. No novel recurrent genetic alterations have been observed, but the data 53 

suggest that beside cAMP pathway calcium signalling might be involved in the pathogenesis of these 54 

tumors.   55 

 56 

 57 

 58 

 59 

 60 
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Introduction 61 

Pituitary tumors represent approximately 15% of all primary intracranial lesions. Growth hormone 62 

(GH)-secreting pituitary adenomas are the second most frequent type of hormone-producing pituitary 63 

tumors, after prolactin-secreting adenomas1. Excessive secretion of GH causes gigantism during 64 

childhood and acromegaly in adults, with significant morbidity due to clinical complications involving 65 

cardiovascular, respiratory, and metabolic systems.2, 3 66 

The monoclonal origin of most pituitary adenomas indicates that these tumors derive from the 67 

replication of a single cell that acquired growth advantage. The latter has been suggested to result from 68 

genetic or epigenetic alterations leading to activation of proto-oncogenes or inactivation of tumor 69 

suppressor genes4, 5. However, despite intensive investigations, little is known about the genetic causes 70 

of pituitary adenomas. The only mutations identified to date in a significant proportion (30-40%) of 71 

sporadic GH-secreting adenomas occur in the gene encoding the α subunit of the stimulatory G protein 72 

(GNAS).6-9 These somatic activating mutations (gsp mutations), found in codon 201 and 227, prevent 73 

hydrolysis of GTP, leading to a constitutive activation of the cAMP pathway, which in somatotrophs 74 

and in other endocrine cells acts as a mitogenic signal10, 11.  In somatotrophs the GNAS transcript is 75 

expressed mainly from the maternal allele, due to tissue-specific paternal imprinting12, 13. Consistently, 76 

gsp mutations in sporadic GH-secreting adenomas are found on the maternal allele14 and partial loss of 77 

this imprinting is present in tumors negative for gsp mutations15, further supporting the involvement of 78 

GNAS locus in pituitary tumorigenesis. So far, the screening for mutations in other G-protein subunits 79 

in pituitary tumors has given negative results.16-18  80 

Genetic alterations in other genes involved in cAMP signalling have been identified as cause 81 

of other endocrine tumors. A reduced expression and/or function of the PKA regulatory subunit type 82 

Iα (PRKAR1A) due to loss-of-function mutations, leading to an abnormal cAMP pathway activation, 83 

causes GH-secreting pituitary adenomas in Carney complex, an autosomal dominant familial 84 

syndrome19, 20. To date, mutations of PRKAR1A gene have been rarely found in sporadic pituitary 85 

tumors21, 22, although a reduced PRKAR1A expression resulting from increased proteosomal 86 

degradation has been described in sporadic GH-secreting tumors10. Reduced cAMP degradation 87 

caused by mutations in PDE11A and PDE8B, coding for members of the phosphodiesterase (PDE) 88 



Ronchi et al., 4 
 

family, have been involved in adrenocortical hyperplasia, adenomas and cancer as well as in testicular 89 

germ cell tumors23, 24. However, genetic variants of PDE11A4 contribute only marginally to the 90 

development of GH-secreting adenomas25. Recently, mutations affecting the gene encoding the 91 

catalytic subunit α of the PKA (PRKACA) have been reported in a large proportion of cortisol-92 

secreting adrenocortical adenomas26-30, resulting in increased PKA activity31. Nevertheless, no hot spot 93 

mutations of PRKACA have been identified in a large cohort of GH-secreting adenomas32. Finally, a 94 

recurrent somatic mutation in the GPR101 gene, which encodes an orphan G-protein–coupled 95 

receptor, has been recently reported in some adults with acromegaly (4% of cases).33 96 

In addition, epidermal growth factor receptor (EGFR) overexpression has been described in 97 

hormonally active pituitary adenomas34 and role for EGF and its receptor in the development and/or 98 

progression of pituitary tumors has been hypothesized35. Dominant mutations in the deubiquitinase 99 

USP8 gene that promote activation of EGFR signalling have been also found in ACTH-secreting 100 

pituitary adenomas by exome sequencing36. Finally, germline mutations of genes such as the aryl 101 

hydrocarbon receptor interacting protein (AIP), the menin (MEN1) and the p27 (CDKN1B) have been 102 

reported in genetic syndromes associated with acromegaly (i.e. familial isolated pituitary adenoma and 103 

multiple endocrine neoplasia type 1 and 4) and in a low percentage of young acromegalic patients.37  104 

Recently, Valimäki et al. investigated a small group of 12 patients with GH-secreting 105 

adenomas by whole-genome sequencing and SNP array and did not find any novel recurrent genetic 106 

alteration.38 Aim of the present study was to perform a comprehensive genetic characterization of a 107 

large series of GH-secreting adenomas to identify novel genetic alterations potentially involved in 108 

tumorigenesis and/or in clinical outcome. To this aim, we used both targeted direct sequencing of 109 

GNAS, PRKACA and USP8 genes and next-generation exome sequencing. 110 

 111 

Material and methods 112 

Tissue samples, patients and clinical annotations 113 

Sporadic GH-secreting adenomas without familial or syndromic presentation were recruited in the 114 

present study. Accordingly, a total of 81 fresh frozen tumors were collected from 4 different 115 

participating European centers. If available, corresponding peripheral blood was also collected for the 116 
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analysis. Inclusion criteria for participating in the study were a certified histological diagnosis of 117 

benign GH-secreting adenomas and available clinical data. The DNA was isolated as described 118 

previously.39  Qualitative and quantitative evaluation of the DNA was assessed by electrophoresis in a 119 

1% agarose gel and spectro-photometrically at 260 nm, respectively. At the first screening, 14 tumor 120 

samples have been excluded due to insufficient DNA quality, so that the final series included a total of 121 

67 GH-secreting adenomas. Among them, the tumor samples were subdivided into two groups 122 

according to the availability of corresponding leukocyte-DNA essential for next generation whole 123 

exome-sequencing. Thus, 31 tumor samples underwent targeted direct sequencing for the analysis of 124 

selected genes (GNAS, PRKACA and USP8) (Group 1), while the remaining 36 cases with 125 

corresponding leukocyte-DNA were investigated by whole exome-sequencing (Group 2).  126 

 Clinical parameters, such as sex, age at diagnosis, date of surgery, tumor size, GH and IGF-I 127 

levels, presence of acromegaly-related complications, as well as follow-up data were collected for all 128 

patients at the local centers. All the patients gave written informed consent and the study was 129 

approved by the ethics committee at each participating institution. 130 

 131 

Targeted and whole-exome sequencing and data analysis  132 

For the targeted sequencing analysis we focused on gene domains harboring alterations known or 133 

supposed biologically relevant in endocrine active tumors, i.e. known gain-of-function GNAS 134 

mutations (codon 201 and 227), mutations in the catalytic domain of the PRKACA (exon 7 and 8) and 135 

in the 14-3-3- binding domain and the MIT (Microtubule Interacting and Transport)-domain (exons 1, 136 

2, 3) of the USP8, which is reported to be involved in regulating USP8 catalytic function. In addition, 137 

we also evaluated the presence of the known hot spot GNAS mutations. The primers used for the 138 

targeted direct sequencing were generated with the Program Primer3Plus39. 139 

The complete list of the primers is reported in the Supplementary Table 1. In brief, PCR was 140 

performed on 1 µl of diluted DNA (2 ng/µl) in a final volume of 25 μl containing 1,5 mM MgCl2, 0,2 141 

µM of each primer, 200 μM dNTPs and 1 U Taq DNA Polymerase. The reaction was started with an 142 

initial 95 oC denaturation step for 3 min, followed by 30 cycles of denaturation at 93 °C (20 sec), 143 

annealing at 58 °C (30 sec) and elongation at 72 °C (1 min). Direct sequencing of PCR products was 144 
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performed using the QuickStart Cycle Sequencing Kit (ABSciex) on a CEQ8000 DNA Analyzer 145 

(ABSciex). 146 

For the next generation sequencing, exomes were enriched in solution and indexed with the 147 

use of the SureSelect XT Human All Exon 50Mb kit, version 5 (Agilent Technologies, Santa Clara, 148 

CA, USA). Sequencing was performed as paired-end reads of 100bp on a HiSeq2500 systems 149 

(Illumina, S. Diego, CA, USA) generating 8-14 Gb of sequence and an average depth of coverage 150 

between 110x and 170x on target regions. More than 95% of the target regions were covered 20 times 151 

or more. Pools of 12 indexed libraries were sequenced on four lanes. Image analysis and base calling 152 

were performed with the use of Real-Time Analysis software (Illumina). Reads were aligned against 153 

the human assembly hg19 (GRCh37) using Burrows-Wheeler Aligner (BWA v 0.7.5a). Variant 154 

detection was done as described earlier.26  155 

Somatic variants have been evaluated by Polymorphism Phenotyping v2 tool (PolyPhen-2)40 156 

and SIFT algorithm (http://sift.jcvi.org/index.html)41. An unsupervised complete linkage clustering 157 

including the most relevant somatic mutations was performed by the Hamming distance as a similarity 158 

metric. The Gene Set Enrichment Analysis (GSEA) software was used for the gene enrichment and the 159 

functional annotation (MSigDB database v5.0)42. A canonical pathway analysis (1330 gene set) and a 160 

gene family analysis were also performed with the same software. 161 

 162 

Statistical analysis 163 

Median, interquartile range (IQR), and frequency were used as descriptive statistics. IGF-I values were 164 

expressed as percentage of the upper limit of the normal range (%ULN). The Fisher’s exact test or the 165 

Chi-square test were used to investigate dichotomic variables, while a two-sided t test (or non-166 

parametric test) was used to test continuous variables. A non-parametric Kruskal-Wallis test, followed 167 

by the Bonferroni post-hoc test, was used for multiple comparisons among several groups for non-168 

normal distributed variables. Correlations and 95% confidence intervals (95%CI) between the total 169 

number of mutations and different clinical parameters were evaluated by linear regression analysis. 170 

Statistical analyses were performed using the GraphPad Prism (version 5.0, La Jolla, CA, USA) and 171 

http://sift.jcvi.org/index.html
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SPSS (PASW Version 21.0, SPSS Inc., Chicago, IL, USA) software. P values <0.05 were considered 172 

as statistically significant. 173 

 174 

Results 175 

 176 

Targeted DNA sequencing (Group 1) 177 

A total of 31 patients affected by GH-secreting adenomas were included in this group. Minimum 178 

clinical data were available for 17 of them (10M&7F; median age: 46 yrs, range: 19-64; 16 179 

macroadenomas and 1 microadenoma; median basal GH levels: 24.3 ng/mL, range: 2.3-333; median 180 

IGFI %ULN: 391, range: 266-590).  181 

We observed the presence of known activating GNAS mutations in 5 out of 31 evaluated samples 182 

(16.1% of cases), i.e. a p.Arg201Cys substitution in 4 samples and a p.Gln227Leu in 1 sample. We did 183 

not identify any mutation in all the evaluated exons of PRKACA and USP8 (Table 1). However, we 184 

detected different polymorphisms in the USP8 gene: exon 1 (rs3131575 T/G heterozygous in 8 cases 185 

and homozygous in 1 case, rs11632697 G/C heterozygous in 14 cases and homozygous in 1 case, 186 

rs11632708 C/T heterozygous in 13 cases and homozygous in 1 case) and 14-3-3 binding domain 187 

(rs11638390 A/G heterozygous p.T739A in 14 cases and homozygous in 1 case) (Table 1). Allele 188 

frequencies did not differ significantly from frequencies reported in dbSNP database 189 

(http://www.ncbi.nlm.nih.gov/SNP/) (Supplementary Table 2).  190 

 191 

Next-generation exome-sequencing (Group 2) 192 

 193 

The histopathological and clinical parameters for the patients included in this analysis are reported in 194 

the Table 2. At the whole-exome sequencing, we identified a total of 132 protein-altering somatic 195 

mutations in 36 samples, resulting in a median of 3 somatic mutations in exonic regions per sample 196 

(range: 0-13). The genetic alterations included 109 missense and 7 nonsense mutations, 12 frameshift, 197 

2 direct splicing and 2 indel variations. According to the PolyPhen-2, 39 mutations were classified as 198 

probably damaging, 25 as possibly damaging, and 41 as benign. The entire list of the somatic 199 

http://www.ncbi.nlm.nih.gov/SNP/
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mutations including localization, gene symbols and transcripts is reported in the Supplementary Table 200 

3. 201 

We identified a subgroup of patients without any mutation (negative, n=5), a subgroup with a 202 

low number of mutations (n 1-3, n=14) and a subgroup with a high number of mutations (n >3, n=17) 203 

(Figure 1). No significant correlation was observed between the total number of mutations and the 204 

evaluated clinical data, such as sex, age, tumor size and extension, and the initial GH levels. 205 

The most frequent genetic alterations were the known gain-of-function mutations in the GNAS 206 

gene. Specifically, they were detected in 11 cases (31.4% of total, 10 of them being females), 207 

encoding p.Arg201Cys substitution in 7 samples, p.Arg201His in 2 samples and p.Gln227Leu in 2 208 

samples. No difference was observed in total number of mutations between the tumors with or without 209 

GNAS mutations (Figure 1). No further genetic alterations were found in more than one sample in this 210 

series. Even comparing the list of the mutated genes with that of a recent paper on whole-genome 211 

sequencing in 12 GH-secreting adenomas37, no additional recurrent somatic genetic alterations were 212 

observed.  213 

However, some non-recurrent heterozygous somatic variants were observed in genes encoding 214 

G-protein coupled receptors (GPCR), such as the chemokine receptor 10 (CCR10) and the olfactory 215 

receptor OR51B4, which are coupled to the Gs protein (activation of the cAMP signalling pathway), 216 

and the M3 muscarinic cholinergic receptor (CHRM3), which functions through Gq (activation of the 217 

inositol trisphosphate/calcium signalling pathway). Moreover, other non-recurrent alterations were 218 

found in genes coding for proteins involved in cAMP signalling pathway other than GNAS, such as the 219 

α2 catalytic subunit of the AMP-activated protein kinase (PRKAA2), the G-protein-coupled receptor 220 

kinase 3 (GRK3, alias ADRBK2), the A1 subunit of the lysosomal H+ ATPase (ATP6V0A1). Taken 221 

together, the mutations in genes involved in the cAMP signalling affected 14/36 samples (38.9% of 222 

total). Among them, 9 samples presented only GNAS mutations, 2 samples mutations at GNAS and 223 

other genes of the cAMP signalling and 3 only mutations in other genes encoding GPCR or other 224 

members of the cAMP signalling. The corresponding details are reported in the Table 3. 225 

Finally, a number of altered genes associated at different levels with the Ca2+ signalling and 226 

metabolism (i.e. involving both extra- and intracellular compartment) were observed in 8 cases (22.2% 227 

https://en.wikipedia.org/wiki/Inositol_trisphosphate
https://en.wikipedia.org/wiki/Calcium
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of total). They consisted in the α1H subunit of the voltage-dependent T type calcium channel 228 

(CACNA1H), the large subunit of the calpain 1 (CAPN1), the dystrophin (DMD), the NMDA 229 

ionotropic glutamate receptor 2B (GRIN2B), the junctophilin 2 (JPH2), the mannosidase α class 1A 230 

(MAN1A1), the X-linked protocadherin 11 (PCDH11X), the protein interacting with cyclin A1 231 

(PROCA1), the slit homolog 2 (SLIT2), the erythroid α1 spectrin (SPTA1), and the tescalcin (TESC) 232 

(Table 3). 233 

An unsupervised clustering including all the somatic mutations in genes involved in the cAMP 234 

pathway or in the Ca2+ signalling was performed. The results, including the relationship with the total 235 

number of somatic mutations and clinical data is shown in the Figure 2.  236 

Concerning the correlation with the clinical data, the patients with mutations in genes of the 237 

cAMP signalling pathway were mostly females (10/14, 71%), while those with mutations in genes 238 

associated with the Ca2+ signalling were mostly males (5/7, 71%) and those with other kinds of 239 

mutations were equally distributed between the two sexes (50%, P<0.001 by Kruskal-Wallis test for 240 

multiple comparisons) (Figure 2 and Figure 3). A trend to a lower total number of mutations and 241 

younger age was observed in the group of patients without alterations of the cAMP or Ca2+ signalling 242 

in comparison with the other two groups (Figure 2 and Figure 3). No significant differences in terms 243 

of tumor size and basal GH or IGF1 levels have been found. 244 

Functional annotation and pathway analysis: The gene enrichment analysis in the entire series 245 

identified a total of 117 altered genes associated with a gene ontology (GO) term. Several altered 246 

genes resulted to be associated with developmental biological processes (Supplementary table 4). The 247 

canonical pathway analysis recognized no significant overlaps. The gene family analysis showed the 248 

presence of 1 cytokine/growth factor (SLIT2), 7 protein kinases (ADRBK2, CDK10, CHUK, EPHA8, 249 

PRKAA2, SCYL1, TESK1), 4 known oncogenes (GNAS, KDM5A, SH3GL1, STIL) and 2 tumor 250 

suppressor genes (SETD2, TSC2) among the mutated genes.  251 

 252 

Discussion 253 

The present study offers a comprehensive genetic characterization of a large cohort of 67 GH-254 

secreting pituitary adenomas. We aimed to identify novel molecular markers potentially involved in 255 
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tumorigenesis and/or in clinical outcome. To this end, we first performed targeted sequencing of 256 

GNAS, PRKACA and USP8 genes in order to evaluate the presence of mutations in these genes in GH-257 

secreting adenomas, finding only known GNAS gene mutations. By whole-exome sequencing, only a 258 

limited number of genetic alterations have been detected in the 36 evaluated samples. This finding is 259 

consistent with the low mitotic activity of pituitary tumors and with previous small studies on both 260 

non-functioning (n=7)43 and GH-secreting pituitary adenomas (n=12)37. Moreover, no recurrent 261 

somatic mutations have been observed, except the known alterations at the GNAS gene, similarly to a 262 

previous report on a small series of GH-secreting adenomas37. In particular, no somatic mutations have 263 

been also detected at the gene GPR101, probably due to the low reported frequency of this mutations 264 

(11/248 cases)33, and, at both the exome-sequencing and the targeted sequencing, we did not find any 265 

mutations of the PRKACA and USP8 genes. These findings further confirm that both these genetic 266 

alterations are not involved in the pathogenesis of GH-secreting adenomas32, 36. 267 

Interestingly, several non-recurrent alterations affected other genes involved in the cAMP 268 

signalling besides GNAS (see Table 2). These findings further support the view that deregulation of 269 

cAMP pathway is the most important pathogenetic mechanism in GH-secreting adenomas. 270 

Furthermore, a number of genes associated with the Ca2+ signalling (see Table 2) were altered. These 271 

findings are in agreement with another recent study on whole-genome alterations in 12 GH-secreting 272 

adenomas37. This is consistent with the notion that binding of GHRH to its receptor activates not only 273 

the stimulatory subunit α of the G-protein (Gα-S, cAMP-dependent pathways), but also Gα-I, Gβ and 274 

Gγ leading to release of intracellular free Ca2+
 , which then further triggers secretion of GH44, 45. 275 

Moreover, ATP, which is co-released with pituitary hormones, induces an increase in free Ca2+ in 276 

pituitary cells46. These data strongly suggest that dysregulation of the calcium signalling might be an 277 

important co-signal in somatothrops and potentially involved in pituitary tumorigenesis. However, its 278 

biological role needs to be better investigated in future functional studies.  279 

It has been suggested that tumors might be very heterogeneous with few mutations in 280 

common. Instead, different genes acting through the same molecular pathways may contribute to 281 

tumor formation47. Therefore, it is possible that at least some of these low-frequency GH-secreting 282 

tumor variants present tumor promoting mutations. Alternatively, they may present other types of 283 
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molecular alterations not detectable by exome-sequencing (i.e. mutations in non-coding intronic 284 

chromosomal regions). 285 

In conclusion, we found no novel recurrently mutated genes in a large series of GH-secreting 286 

pituitary adenomas. However, our and previous genetic findings suggest that beside cAMP pathway, 287 

also different pathways, such as Ca2+ signalling, may play an important role in the pathogenesis of 288 

these tumors.  289 
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Legend to the figures 470 

 471 

Figure 1. Total number of somatic mutations in the 36 GH-secreting pituitary tumors evaluated by 472 

next-generation exome-sequencing (Group 2). The tumors affected by mutations in GNAS are 473 

represented with red bars. The numeration of the GH secreting adenomas is consecutive and do not 474 

correspond to the tumor identification number.  475 

 476 

Figure 2. Overview of the somatic mutations at genes involved in the cAMP signalling (i.e. CCR10, 477 

OR51B4, CHRM3, GNAS, PRKAA2, GRK3, ATP6V0A1) or in the calcium signalling (i.e. CACNA1H, 478 

CAPN1, DMD, GRIN2B, JPH2, MAN1A1, PCDH11X, PROCA1, SLIT2, SPTA1, TESC) in GH-479 

secreting adenomas evaluated by next-generation exome-sequencing (n=36) and relationship with the 480 

total number of somatic mutations, sex, basal GH levels, and tumor extension at the time of diagnosis. 481 

Age: child < 18 years, young ≤50 years (median), old >50 years; tumor size: macro=macroadenoma, 482 

micro=microadenoma; tumor extension: extra=extrasellar, intra=intrasellar; GH: low ≤15 µg/l 483 

(median), high >15 µg/l. 484 

 485 

Figure 3. Relationship between the genetic alterations observed at the exome-sequencing (i.e. 486 

mutations in genes member of the cAMP pathway, of the calcium signalling or in others) and clinical 487 

data (i.e. total number of somatic mutations in upper panel, age in the middle panel; sex in the lower 488 

panel) in 36 evaluated GH-secreting adenomas. 489 

 490 

 491 

Suppl Table 3. List of all genetic alterations observed in 36 GH-secreting pituitary tumors by next-492 

generation exome-sequencing (Group 2), including gene symbols, transcripts and aminoacid 493 

substitutions. 494 
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